From aefaa91512f42f1cacd4aa51e21cbe615329b001 Mon Sep 17 00:00:00 2001 From: Harrison Nicholls Date: Thu, 4 Jul 2024 12:55:28 +0100 Subject: [PATCH 1/5] Can now handle spectral surface albedo, or a grey blackbody as before. Moved data around: spectral file Oak, thermo ncdfs, literature values. New folder for notebooks which aren't tutorials (misc). Updated cfgs and readme files. --- .../rce-runaway.ipynb | 0 misc/selsis.ipynb | 1165 +++++++++++++++++ res/config/55cnce_chem.toml | 4 +- res/config/condense.toml | 3 +- res/config/default.toml | 27 +- res/config/hotdry.toml | 3 +- res/config/selsis.toml | 68 - res/spectral_files/Oak/{ => 318}/Oak.sf | 0 res/spectral_files/Oak/{ => 318}/Oak.sf_k | 0 res/stellar_spectra/_readme.txt | 8 + res/surface_albedo/_readme.txt | 17 + res/surface_albedo/c1bf01.tab | 224 ++++ res/surface_albedo/c9mb29.tab | 461 +++++++ res/{thermo => thermodynamics}/C2H4.nc | Bin res/{thermo => thermodynamics}/CH3.nc | Bin res/{thermo => thermodynamics}/CH4.nc | Bin res/{thermo => thermodynamics}/CO.nc | Bin res/{thermo => thermodynamics}/CO2.nc | Bin res/{thermo => thermodynamics}/FeS.nc | Bin res/{thermo => thermodynamics}/H2.nc | Bin res/{thermo => thermodynamics}/H2O.nc | Bin res/{thermo => thermodynamics}/H2O2.nc | Bin res/{thermo => thermodynamics}/H2S.nc | Bin res/{thermo => thermodynamics}/H2SO4.nc | Bin res/{thermo => thermodynamics}/HCN.nc | Bin res/{thermo => thermodynamics}/HNO3.nc | Bin res/{thermo => thermodynamics}/N2.nc | Bin res/{thermo => thermodynamics}/N2O.nc | Bin res/{thermo => thermodynamics}/NH3.nc | Bin res/{thermo => thermodynamics}/NO.nc | Bin res/{thermo => thermodynamics}/O2.nc | Bin res/{thermo => thermodynamics}/O3.nc | Bin res/{thermo => thermodynamics}/OCS.nc | Bin res/{thermo => thermodynamics}/OH.nc | Bin res/{thermo => thermodynamics}/S2.nc | Bin res/{thermo => thermodynamics}/S8.nc | Bin res/{thermo => thermodynamics}/SO.nc | Bin res/{thermo => thermodynamics}/SO2.nc | Bin res/{thermo => thermodynamics}/SiO.nc | Bin res/{thermo => thermodynamics}/SiO2.nc | Bin res/{thermo => thermodynamics}/_readme.txt | 0 res/{thermo => thermodynamics}/standard.txt | 0 src/AGNI.jl | 23 +- src/atmosphere.jl | 75 +- src/dump.jl | 14 +- src/energy.jl | 9 +- test/runtests.jl | 6 +- tutorials/01_canonical-runaway.ipynb | 9 +- 48 files changed, 2004 insertions(+), 112 deletions(-) rename tutorials/03_rce-runaway.ipynb => misc/rce-runaway.ipynb (100%) create mode 100644 misc/selsis.ipynb delete mode 100644 res/config/selsis.toml rename res/spectral_files/Oak/{ => 318}/Oak.sf (100%) rename res/spectral_files/Oak/{ => 318}/Oak.sf_k (100%) create mode 100644 res/stellar_spectra/_readme.txt create mode 100644 res/surface_albedo/_readme.txt create mode 100644 res/surface_albedo/c1bf01.tab create mode 100644 res/surface_albedo/c9mb29.tab rename res/{thermo => thermodynamics}/C2H4.nc (100%) rename res/{thermo => thermodynamics}/CH3.nc (100%) rename res/{thermo => thermodynamics}/CH4.nc (100%) rename res/{thermo => thermodynamics}/CO.nc (100%) rename res/{thermo => thermodynamics}/CO2.nc (100%) rename res/{thermo => thermodynamics}/FeS.nc (100%) rename res/{thermo => thermodynamics}/H2.nc (100%) rename res/{thermo => thermodynamics}/H2O.nc (100%) rename res/{thermo => thermodynamics}/H2O2.nc (100%) rename res/{thermo => thermodynamics}/H2S.nc (100%) rename res/{thermo => thermodynamics}/H2SO4.nc (100%) rename res/{thermo => thermodynamics}/HCN.nc (100%) rename res/{thermo => thermodynamics}/HNO3.nc (100%) rename res/{thermo => thermodynamics}/N2.nc (100%) rename res/{thermo => thermodynamics}/N2O.nc (100%) rename res/{thermo => thermodynamics}/NH3.nc (100%) rename res/{thermo => thermodynamics}/NO.nc (100%) rename res/{thermo => thermodynamics}/O2.nc (100%) rename res/{thermo => thermodynamics}/O3.nc (100%) rename res/{thermo => thermodynamics}/OCS.nc (100%) rename res/{thermo => thermodynamics}/OH.nc (100%) rename res/{thermo => thermodynamics}/S2.nc (100%) rename res/{thermo => thermodynamics}/S8.nc (100%) rename res/{thermo => thermodynamics}/SO.nc (100%) rename res/{thermo => thermodynamics}/SO2.nc (100%) rename res/{thermo => thermodynamics}/SiO.nc (100%) rename res/{thermo => thermodynamics}/SiO2.nc (100%) rename res/{thermo => thermodynamics}/_readme.txt (100%) rename res/{thermo => thermodynamics}/standard.txt (100%) diff --git a/tutorials/03_rce-runaway.ipynb b/misc/rce-runaway.ipynb similarity index 100% rename from tutorials/03_rce-runaway.ipynb rename to misc/rce-runaway.ipynb diff --git a/misc/selsis.ipynb b/misc/selsis.ipynb new file mode 100644 index 00000000..13a9fc0c --- /dev/null +++ b/misc/selsis.ipynb @@ -0,0 +1,1165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Replicate temperature profile from Selsis et al., 2023" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import system packages" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import system packages\n", + "using Printf\n", + "using DelimitedFiles\n", + "using Plots\n", + "using LaTeXStrings" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "35.6" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selsis_data = readdlm(\"../res/literature_data/profile/OTR10000.txt\", Float64; header=false, skipstart=1)\n", + "sel_p = selsis_data[:,1]*1.0e-5\n", + "sel_t = selsis_data[:,7]\n", + "sel_s0 = 35.6" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1360.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F_sun = 1.36e3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setup AGNI" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"/Users/nichollsh/Projects/AGNI/socrates\"" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set directory\n", + "ROOT_DIR = abspath(joinpath(pwd(),\"../\"))\n", + "ENV[\"RAD_DIR\"] = joinpath(ROOT_DIR,\"socrates\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36m\u001b[1m[ \u001b[22m\u001b[39m\u001b[36m\u001b[1mInfo: \u001b[22m\u001b[39mPrecompiling AGNI [ede838c1-9ec3-4ebe-8ae8-da4091b3f21c]\n" + ] + } + ], + "source": [ + "# Import AGNI\n", + "using AGNI\n", + "import AGNI.atmosphere as atmosphere\n", + "import AGNI.solver as nl\n", + "import AGNI.dump as dump\n", + "import AGNI.plotting as plotting\n", + "\n", + "# Disable logging from AGNI module\n", + "AGNI.setup_logging(\"\",0)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"/Users/nichollsh/Projects/AGNI/out/\"" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Configuration options\n", + "instellation = 50*F_sun # Stellar flux [W m-2]\n", + "gravity = 9.81\n", + "s0_fact = 0.375 \n", + "zenith_degrees = 48.19 \n", + "albedo_b = 0.0\n", + "radius = 6.37e6 \n", + "nlev_centre = 40\n", + "p_surf = 270.0 # bar\n", + "p_top = 1e-5 # bar \n", + "mole_fractions = Dict([(\"H2O\", 1.0)])\n", + "condensates = [\"H2O\"]\n", + "tmp_surf = 3000.0\n", + "thermo = false\n", + "\n", + "spectral_file = joinpath(ROOT_DIR,\"res/spectral_files/Oak/318/Oak.sf\")\n", + "star_file = joinpath(ROOT_DIR,\"res/stellar_spectra/sun.txt\")\n", + "output_dir = joinpath(ROOT_DIR,\"out/\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Create output directory\n", + "rm(output_dir,force=true,recursive=true)\n", + "mkdir(output_dir);" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup atmosphere\n", + "atmos = atmosphere.Atmos_t()\n", + "atmosphere.setup!(atmos, ROOT_DIR, output_dir, \n", + " spectral_file,\n", + " instellation, s0_fact, albedo_b, zenith_degrees,\n", + " tmp_surf,\n", + " gravity, radius,\n", + " nlev_centre, p_surf, p_top,\n", + " mole_fractions, \"\",\n", + " flag_gcontinuum=true,\n", + " flag_rayleigh=true,\n", + " thermo_functions=thermo,\n", + " condensates=condensates\n", + " )\n", + "atmosphere.allocate!(atmos, star_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "fill!(atmos.tmp, atmos.tmp_surf);\n", + "fill!(atmos.tmpl, atmos.tmp_surf);" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solver success? true\n" + ] + } + ], + "source": [ + "solver_success = nl.solve_energy!(atmos, \n", + " sol_type=3, # Conserve energy, but with fixed surface temperature\n", + " sens_heat=true, # Do not include sensible heat transport\n", + " latent=true, # Include condensation\n", + " method=1, # Use the Newton-Raphson method\n", + " dx_max=400.0, # Allow large step sizes because of the poor initial guess\n", + " linesearch=true , # Enable Linesearch\n", + " save_frames=false, modplot=1, # disable plotting \n", + " conv_atol=0.1\n", + " )\n", + "println(\"Solver success? $solver_success\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running model for 9 samples... \n", + "Running model for instellation = 5.00e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 4.50e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 4.00e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 3.50e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 3.00e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 2.50e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 2.00e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 1.50e+01 F_sun \n", + "--------------------------------- \n", + "Running model for instellation = 1.00e+01 F_sun \n", + "--------------------------------- \n", + "Done!\n" + ] + } + ], + "source": [ + "ins_arr = collect(range(start=50, stop=10, step=-5))\n", + "atm_arr = atmosphere.Atmos_t[]\n", + "\n", + "@printf(\"Running model for %d samples... \\n\", length(ins_arr))\n", + "\n", + "for (i,ins) in enumerate(ins_arr)\n", + " @printf(\"Running model for instellation = %.2e F_sun \\n\",ins)\n", + "\n", + " atmos.instellation = F_sun * ins\n", + " \n", + " # Run model\n", + " solver_success = nl.solve_energy!(atmos, \n", + " sol_type=3, \n", + " sens_heat=true, \n", + " latent=true, \n", + " method=1, \n", + " dx_max=500.0, # Smaller steps\n", + " linesearch=true , \n", + " save_frames=false, modplot=1,\n", + " modprint=0,\n", + " conv_atol=0.1 \n", + " )\n", + "\n", + " # Store result\n", + " push!(atm_arr, deepcopy(atmos))\n", + "\n", + " @printf(\"--------------------------------- \\n\")\n", + "end \n", + "println(\"Done!\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"Times New Roman\"" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fs=12\n", + "lw=1.5\n", + "ff=\"Times New Roman\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACDQAAASwCAIAAACBtx8kAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd2BT5foH8PdkN2nS3VLa0lL23lAoogxBKCDIdS9ARETGFVDR+7vuqyiCOEDxXhUQFfUCMkQZelWmbMqQ3UEHbdM2abPHOb8/Us85SZM0SdOm4/v567wn7/uet4e2pOfJ+zwUwzAEWhmapvv06XPu3DkvfV566aWXX365sVYEAAAAAAAAAAAAAK0IheBEK/TNN9/cd999XjrIZLLc3NyEhIRGWxIAAAAAAAAAAAAAtB6CUC8AGhvDMG+88Yb3PjNmzEBkAgAAAAAAAAAAAAAaiCjUC4DGtmXLluzs7F69enXt2tVTn8WLFzfmkgAAAAAAAAAAAACgVUFap9aFYZhBgwadPn36/PnzXbp0CfVyAAAAAAAAAAAAAKA1Qlqn1mXbtm0nTpy45557EJkAAAAAAAAAAAAAgFDBzonWZfDgwcePHz9z5kyvXr1CvRYAAAAAAAAAAAAAaKWwc6IV2blz57FjxyZOnIjIBAAAAAAAAAAAAACEEHZOtCJDhgw5evQoISQlJWXIkCEjRoy499574+PjQ70uAAAAAAAAAAAAAGhdEJxoLX766afx48e7nBSLxRMmTFi6dGlGRkZIVgUAAAAAAAAAAAAArRCCE63FsGHDDh8+7PYliqIefPDBt99+OzExsZFXBQAAAAAAAAAAAACtEIITrcLevXvHjh3rvU9iYuK2bdsGDRrUOEsCAAAAAAAAAAAAgFYLwYnWQq1Wl5SUFBcX5+fnHzt2bPfu3Tk5OS595HL5999/f/vtt4dkhQAAAAAAAAAAAADQSiA40UoxDLN///4333zzp59+4p+PjIw8cuRIly5dQrUwAAAAAAAAAAAAAGjxEJxoWpYtW6bRaIIy1ZNPPpmamlpntx07djzxxBPFxcXsmf79+x87dkwgEARlGQAAAAAAAAAAAAAALhCcaFratWt348aNoEx14MCBzMxMX3oWFBRkZWVlZ2ezZ7788ssHHnggKMsAAAAAAAAAAAAAAHCB4ETT8t133+l0uqBMlZWVFR8f72NntVo9dOjQq1evOpojRoz47bffgrIMAAAAAAAAAAAAAAAXCE5AjSNHjmRmZtI0TQgRiUSlpaVRUVGhXhQAAAAAAAAAAAAAtECoKwA1MjIyHn30UcexzWa7ePFiaNcDAAAAAAAAAAAAAC0VghPAWbBgAXvML5ENAAAAAAAAAAAAABBECE4Ap2/fvomJiY5jsVgc2sUAAAAAAAAAAAAAQEuF4AQ46datm+MgOTk5tCsBAAAAAAAAAAAAgJZKFOoFNDkWi2Xjxo0mk2nu3Ln1n81msx06dOjo0aNqtTohISE9PX306NHh4eH1n7mBONYmkUjS09NDvRYAAAAAAAAAAAAAaJkQnOBYLJZNmza9+uqr165dy8jIqGdwwm63r1mzZvny5Tdu3OCfV6lUjzzyyEsvvRQbG1u/9TaI0tJSQsjYsWMjIiJCvRYAAAAAAAAAAAAAaJkQnCCEELPZvH79+ldffbWwsDAoExYUFEybNu3o0aOEkLZt286cObNTp05FRUW7du3av3//hx9+uHXr1o0bN952221BuVyw6PX6U6dOEUIeeeSRUK8FAAAAAAAAAAAAAFosimGYUK8hlHQ63aeffvrWW28VFxfzz2dkZBw+fDiwOU+fPj1hwgTHhOPHj9+0aZNKpWJfXbdu3axZs+x2u0gk2rx58+TJk+uz/uBau3btnDlzhgwZcvjwYYqiQr0cAAAAAAAAAAAAAGiZWm9worq6es2aNW+//XZFRUXtVwMOTuTn52dkZDgiEz179jx27JhMJnPp89prr7344ouEkLCwsJ9++mnEiBEBXCjoioqK+vfvr9FoDhw4MHDgwFAvBwAAAAAAAAAAAABaLEGoFxAy33zzzfHjxz///PMbN278/vvv7dq1q/+cVqt1ypQpjsgERVHr1q2rHZkghCxdutRRbtpoNN51111FRUX1v7QXlZWVd911V5cuXR577LGbN2+67VNSUjJ58uTS0tJ///vfiEwAAAAAAAAAAAAAQINqvcGJWbNmfffdd5MnT05OTr7llltef/31+s+5fPlyR80GQsj48eMHDBjgtptYLF60aJHjuLy8fNasWfW/tBerV6/eunXr5cuXP/vss65du7755ps6nY59lWGYzZs3Dx48ODs7e82aNQ8//HCDLgYAAAAAAAAAAAAAoPWmdXJx4cKFHj16sM0A0joVFRV16NDBZDI5mtu2bfNST6KioqJt27Zms9nR3LlzZ1ZWlv+r9sm6detmzJjBPxMTEzN69Oj4+Hi1Wr1///7CwsK0tLTPPvts5MiRDbQGAAAAAAAAAAAAAAAWghM1NBpNVFQU2wwgOLF48eKVK1c6jsPCwtRqtVwu99J/9OjRv/zyi+O4f//+J06c8HPJvqJpesaMGRs2bHD7aps2bebNm7do0aKwsLAGWgAAAAAAAAAAAAAAAJ8o1AtoKpRKZX2Ga7XatWvXss3MzEzvkQlCyMiRI9ngxMmTJ3/77bdbb721PmvwRCAQrF+//t57792+ffuNGzcKCwsFAkFcXFyfPn1Gjx49cuRIiUTSENcFAAAAAAAAAAAAAHALwYkaQqFQIBDQNB3Y8C1btuj1erbZr1+/OodkZmbymxs2bGig4ITDhAkTJkyY0HDzAwAAAAAAAAAAAAD4CMEJjkQiYStG+Ourr77iN3v37l3nEH6JC0LI999/v3btWpGotfyLXLp0yccdG0KhsJ77WmiatlqtUqm0PpO0WjabjaZpbK8JjMViEQgErefnOrjMZrNYLBYIBKFeSLNkNBqRrC9guHv1gbtXH7h7AbPb7TabDW/2AmO1WgkhYrE41Atplsxms0gkEgqFoV5Is2QymaRSKUVRoV5Is4T/MuoDd68+cPcCxjCM2WyWyWShXkizZLfb7XY7nk0Fhn02VVVV5ePn8q1Wa+fOnRt6YQ54ZMYRi8WBBSf0ev1vv/3GP5OWllbnqPj4+NjYWLVa7WhWVFScPHly8ODBASygebHb7XK53GKxhHohAAAAAAAAAAAAAOBEoVDodLpGuBCCE0Fw7NgxxweOWMnJyb4MTE1NZYMThJADBw60huDEwYMHEZnw16jhYbffylUx+fWgcfevhoa+6P2L2woENZ9jomlm8+qbFlMgec9U7SI6TOrENu0W+7l1Z2irf1NJEmMixnDZ0hiaqdh6kDb4Gk1U9OsrSU5im7aKyuqDh+ocRVGC+OFOydAqsw9btOWe+ocp48UypWOgMrpdlfp6lTqH3yFcGtc2shfbtNgNueoj/A4SIm1H8UPTTC5zyUacfr0AAAAAAAAAAAA0HL1eX1xcnJiY2NAXQnAiCA4fPsxvCgSCtm3b+jIwISGB3zxz5kwwl9VUtWvXjj32cQ+vVCoNeNug1Wp1BPrEYnF4eHhgk4ScVCp6bl4E25x5f8SQCRptNdOgF+3WP6LbEO62y2Sy79dUBjCPhJJ0mdZNpOByBagSIs6v9u+7XSCURN0xiArj0jUoOyVr3t9BGJ9ugiRCFTZ6FP+MXKGwHDte50BVSgdpm1S2GZHe7cqX7zI2m9vOxupSY3Wp41ivKUzpOlqvLbZbTXK53JFoQiyQpMYOElDcL16JVFhmuMA2KSJIrGonpbnbHimNuSbP9uVrbGF0Op0j6BseHo5EE/6qqqqy2+2EEJVKhUQT/tJoNAzDEEIiIyORaMIvNE1rtVpCiEAgiIiIqLM/8NlsturqakKISCSqZzbLVshisThqv0kkEoVCEerlNDMmk8loNBJCZDIZ0nT4S6/XOz50pVAokGjCX9XV1TabjRCiVCqRBNVfWq3WkZcjIiICSVD9VVlZ81dtVFRUaFfS7Njt9qqqKkKIUChUqVShXk4z0zKeTYWK2Ww2GAyEEKlUKpfL6+wPfEaj0ZEoSCQSOR4U1In561Fb42Qhw5uAILh06RK/mZCQ4ON70/j4eH7zwoULnnq2SGlpaTk5OXX3q5/t27ffeeedhJDx48dv27atoS/XcBjNfGL6yXEcFyO4fvbvlOqfDXrFKsu1Pfn3Eapmi8PEmXGrXtynkrQPYKqTladXXfmQITW/3dImpS9b+EZm7FC/JjlQcu2Jw1/a//oVKend/h+/f7O4xxgfhz//895N586yzfCs8Z98/PGo9uneRxVVVt377pcafc0WDUlM4pBHFh75bEWdl7NZDDnZO8KUcUar6Y033li4cKHj/M5vjn74+na2W7e2Y3/57vuk1Fj2zMU/rjx964s2S038I9IS99nyL6fMH+/bV9lyTJ48eceOHYSQr776atKkSaFeTjPTs2fP8+fPE0IOHTrkUt8I6iSXyx3P6YqKivCczi83b950fKwmPj6+uLg41MtpZg4dOpSZmUkIGTx48MGDB0O9nGZm48aNDz/8MCHknnvu+eKLL0K9nGbm1Vdffemllwghzz777CuvvBLq5TQzM2bMWLduHSHkww8/nD59eohX09zcdtttjtzIO3bsuPXWW0O9nGYmJSWloKCAEHL27NmUlJRQL6c5sVqtjsc1YrG4oqIi1MtpZi5dutS1a1dCSMeOHS9evBjq5TQzP/7444QJEwghY8aM2bVrV6iX08ysWbPmqaeeIoQ89thjq1evDvVymplnnnnmnXfeIYS8+eabS5Ys8WVIdHQ0G8dtBIixB0Fubi6/mZSU5KGjK5dPxpWWlgZrSdDyUMp/EIoXHzZ8Sax/NugVVZIOumvd2SbNWE+q3yAkkO0a/aP63tHmdv6ZdXlfFBqL/JpkeEKHv3cfzT/z78sHt+Sd9nH4ayNHD03m3rjbGWbhT7sul6u9DCGEtI1SvX7fOP6Hp3WRSR1uucPHixqrywhF7d27l838NvHewRm3dWU7mIyWZc9+a7NxseuuQzrNfP1+/iRrl6y/cPiyj1cEAAAAAAAAAABoFhCcCAKX4ITvm/EdmV5YGo0mWEuCFkjYhgp/kte2M9WvBBYq8F3VlT6lBVyBELXxZF51gBH+e1Pu7qLkqimY7Ob3rqw22f0rQf9458y7Uvvyz7xy5ofsykJfxooEgtVZk1IjI9kzOotl1vZtFUaj94G3dk+fcdtA/pmIoeOnPPyYr4tmmB9++GHgwIF//PGH48TTr06NiuV2cV65ULTpk9/4I/62eFLmFK78jM1q/9f971aVV/t6RQAAAAAAAAAAgCYPwYkgcGRYZvme/swlOFFdXe1j8i9opeSPEREvDZHlBDF+36AXZOzC/7yUzz+TXb7SbA8kiiakBPM7zokQc1nIi003P81d7+88L/XJ6h3FbU4y221PHdlUYvTpwX2UTPbp5Ckq3s/djSrtEzu3W+r6uVswIXNAOndRi81u7Za5ZfvOtLQ0H5ednZ09bNiwJ554orq6OiJKsfi1afxc9l9/8uufZ7j7TFHUkk/ntmnPpX0rzVcvn7Ga8a3ABgAAAAAAAAAAQNOH4EQQGJ0/ee17imqX0lUMwziKCwG4R4kp1Uv8E0z124Ru2O+ZU79VHd3DRSPMds35ijWBTRUhjpjbYbaA4r7tj5Qf/aX0V78mkQpFqzPuSwjj9ieVmXRzj3xtsrsvUu2iQ1T0hxMmCnk/eseLCl/4ea/3UUKBYMUjE+NUXI3NPLXmoIacP3/+ueee87HgME3Tn3zySdeuXbds2TJweKcJdw9iX7Lb6bee+86gM7NnwqMU/7fpaZGEKwt0ZOeJze/+4MuFAAAAAAAAAAAAmj4EJ+rLbrebzWb+Gd+DE2waepaj+jwEkVgsdjlo3iTDiGws16TVjO79BryaREII+ey1AruVe/6eU7W13JQd2ITdVV2ntHUqbvxF3tc5+ly/JomTha/JuF8m5B7cn9cUv3R6h4/Db2mX+q+RTrUrNv95Ye2JY95HxSjlbz00QSDgtjvsPn1528nLy5YtO378+MCBA72M5SsqKpo2bdqkSZMmPtgnpX0ce/5mYeXat51SZnUZ1HH2Ww/zz/xn6cbzB1tL2bGW9pPbuHD36sNx0wQCgY9xR2DhGw9CBd979eF4s0dw9wKC7736wN2DkGDf4+EbLwD4sa0P3L36wNuVlg3BifoSCAQuGyBkMpmPYy0Wi8sZ3wMb4KNbbrmlf//+SqVy1qxZoV5LcFDK/yMU7/vEsJHYGuqB9aRJkzp06CCwRcTb72JPMoQ+WfYvmvFpp0JtU5Im9YnoxTZtjO29K6t1Np1fk/SITHylr1OQY1t+9udXD/s4/N6evR7p41S74u2DB/Zcu+p91KAOyU+NG+o0avtvp3OL+vbte/jw4VWrVoWHh3sa62Lnzp39B/Rt01MrFHO/PXZvPfH77rP8blMXTrhlWgbbtNvs/7p/lVbdKopPzJo1S6lUDhgwYPjw4aFeS/Pz5JNPSqXSrKysjh07hnotzc+8efPEYvETTzzBvgMGH8XExDz44INisfipp54K9Vqgdbn99tt79OgRGRk5ffr0UK+l+Zk2bVpycnJSUtLdd98d6rU0P48++mh0dHS3bt3GjRsX6rU0P0888YRcLh8+fPiAAQNCvRZoRYRC4dy5c8Vi8bx580K9luanffv2d955p0QiefLJJ+vuDc6GDRs2aNCg8PDwxx9/PNRraX6ysrI6deoUGxv70EMPhXotEHwUkpizVCpVdXXNU7+MjIzDh3190MkfSAiZMWPGZ5995svA+fPnf/jhh/wzRqPR99hGM5Wbm9u+fXtCSFpaWk5OTiNcsaqqymQyxcfH1921udCtYXTvck3JQCr6K0IozwMCp9FobDZbTEzUz4UPa8yX2PN9YhZ1inwwsDn1NsM/z79SZlazZ/pG9l7UeQHl55fw1tk9/ICEgKI+yrj/1jadfBlrZ5jZO7b9knOdPSMTib752z29E9p4GcUwZOG67f87d4090yZS+e2iB6MUYYSQ69evP/nkk3v27PH9S+jSsVccNUwhjXU0w1VhH22eF9eGq8yh0+jnDnyu+HoJe2bw+H6v73ieEjTIP3eTUlpaKpPJVCpVqBfS/NA0XVZWplQqfa+BBCyLxVJZWRkVFYXgRABMJpNWq42JiRGJRHX3Bp5Dhw5lZmYSQoYNG3bw4MFQL6f5aYFv9hpRRUUFISQ6OjrUC2mW1Gq1RCLB25XAlJSUKBQK3z/fA6yUlJSCggJCSH5+fkpKSqiX08zgzV59GAyG6urquLg4lw/pgi90Op1er09ISAj1Qpolx7Op2NjYUC+k+XnmmWfeeecdQsjy5cuXLFniy5Do6OjKykpCSEVFRVRUVMOuDzsngsLlzajJZPJxoEtPkUjkUiIbwD3F40TUnmtajhOjr0mNAkNRwv5x/6B4vzHOV35stJV4GeKFQiR/quMcEcU9ujqtyd5ZtMvLELee6Xk7PxRBM8ziY5uvVpf5MlZIUe/fMaFzDPcfm8lmm71j+02dt30JFEVev29sUjQXPLipqX7hq59ohiGEpKen7969+9tvv42Li/M8h5NLV88euvafyyW/0IydEKKrMr774lZ+zDg8UvHy5iXSMO5989EfT327fJuP8wMAAAAAAAAAADRNCE4EgUtwwqU+thcajYbfTEpKoqiW/2loCAJKTClf5J9gqt8kTMNm+4mW9khT3ck2bbThtHpFwLN1ULS/v909/DPfFWw9p73g1yQCiloxaFpHJRcJ0NnM8498U2X1KUCokEg+nTwlhvfR8hK97vEd2wy1isHwqcJk7zySJRFxyegPXMz9z89H2ebdd9998eLF2bNn+/hV0LQ9p+zw4WufagyFhJCTh69u+/IIv0N6n7TZyx/hn/n8n5vO7v/Tx/kBAAAAAAAAAACaIAQngqBTJ6c0Mr4XtXbskWGlpqYGbU3Q4kmHE+kYrkmrGd2HnnsHR6+YBVIht+W/UP9zsWF/wLONTRidGcOVcGAI8/H1f1daNF6G1BYukn6Qca9KzCVDy9GVLzr2X7tvCeuSVaqPsyZJeGVvz5WWLtlTsxPCk54pCUsmjeCfWf3T4cOX89hmdHT02rVrp02b5uuXQYjOVPbH9XXni3bZaPOn7+7OuXyT/+rkueNGP3gL27Tb7K/fu7Lipn/3CgAAAAAAAAAAoOlAcCIIevTowW8WFRX5ONAlOOGoxADgI0r1T6fK2Pr1DVcZ20EiUPWKWcA/c6rsLRvt61ah2qanPZwU1pZtaq1V719dY2fsfk3SPjxm5aC/CXm7jg6UXHv3/M8+Dh/YNunN0bfzz/x49cqqI3WUnLl/eN+JA7qxTZphln75U6nWqax3cnKy44CifP1NW1Bx6sDljwvU55Y9963F7FRyfOFHs1O6JrHNipuaNx96j7bTPs4MAAAAAAAAAADQpCA4EQTdu3fnNwsLC30cWFxczG8OHjw4aGuC1kDYllLwcwfZmapXCGnYEvdpyonxYYPYpsFWfFHjU/l3t2RC6cJOT8mE3L6Hq7pr/y3Y6u88wxM6PN1jNP/Mf64c3Jx3ysfhd3XrPmfgIP6ZD48e+f5iHXmT/jltdIeEGLZZoTMs2rDTxosWCP/akLFo8ZKo2HY+LsZs053O3/zj7xvWf7CXfz4sXPbPbxZJ5VxZmtO/nPv6Tb/vFQAANEFsCXEhbzMfAACAW+x/FvhfAwAAvGP/p2D/4mhqEJwIgoyMDH6zsrJSr9fXOcpkMt286ZS5xWUegLopZrtWxjb90MCXpPrFPS+guPrMlzVfVFmuBzxdoqzNzDSnggo/FP90vPKkv/PM6pQ5LbUf/8yrZ3adqfQ1Uvhs5i0TO3dhmwwhS/ftPekcPnQhl4rfeSQrTCJmz5zJLf7gx4Nsc+rUqWFhYdHR0XOeeHzPz7+m9coSCMXuZnLjRsWJle+uOv2H041t36vd3Hen88+sf/mbE3uzfZwTAACarF69evXo0UMgENx///2hXgsAADR1DzzwAEVRt956a2JiYqjXAgAATdqUKVPkcnlUVNT48eNDvRb3EJwIgo4dO7psnrh4se7sOnl5eQwvr310dHTv3r2Dvzho2SgJpfwn/wRT9QZhdJ66B4VSnNo58kG2STPWk2Vv1GfHxtCYIaPib2WbDGH+ff3zUnOZv/O82GdCnygu8ZHZbpt3ZFOJ0ac64RQhy28f1zuhDX/4rB3f52m91XXo2Cbm5XucUkJ9/uvxn89edRwPHz78jz/+OHz4cMeOHQf2bv/UvL/3HbM4Mr6zj19ObtmR5S98V611ypo14fExtz/Cu1c089Yj75cXVdYaDQAAzUlYWNjevXsPHDjwxBNPhHotAADQ1L388sv79+/fsmULxcttCwAAUFtGRsaRI0cOHTrUpUuXunuHAoITwTF58mR+88SJE3UOuXTpEr85ZcqUJru/Bpo06S1EOpJr0mWMbnVDX7Nb1OMKMRcGUJtO5VXXa8fGw6kPtFdwBeENdsN7V1ZbaItfk0iFog8z7ksIU7Jnyky6uUe+NtltXkaxZCLRJ5MmtwnnhlcajY9v31ZtNnsZNaFfl79l9GKbDEP++c2egnJtzZKkUrG4ZrfEU4/emp6e3n34450G3ieWKOpcj8laVVx0c9XLrombFqx+PLV7MrfIEi2KTwAAtAACgSAsLKzufgAAAIQoFHX/QQEAAECcn001QQhOBMe9997Lb548WXdSmmPHjvGb9913X5DXBK0GpfonobhSBET/ObFd8tw9CISUtF/sUv6ZM+UrzXZvmwy8E1GiBR2fCheFs2fyDTe+zN/k7zxxsvA1GffLhFyc77ym+KXTO3wcnqAI//ekO+W8X9lXKsrn//iDnfG2L+T5qSO7JyewzWqj+e/rdpitrhGRMKn4uSfHURSJazeg37jnEtpnEFLHB53stO3gvgs/7zjNPylTSP/PufjEmV/Pf/Had3V+dQAAAAAAAAAAAE0HghPB0bdv37Fjx7LNX375pc4hR48eZY+7d+8+evRoL50BvBGmENfK2G809DXbyIclKUaxTYtde76iXjs2YqUxs9NnUrzn9b+U/rZffcjfeXpEJr7SdxL/zLb87M+vHPZxeM/4+BVj7xDw9kf/lpf75v7fvQyRiITvTp8YIefKel8qKntr22+1ew7s1W7CyJ6EEJE4rEO/aT1HzImI9p4lliGErHljZ4lz4qa0HimLPpnDP/Pl65uP73aKYQAAAAAAAAAAADRlCE5waJp2e+yj5557jj2+cuXK2bNnvXQ2GAwHD3KFc5cuXSoQ4N8CAkcpZhNhCte2HCKmXQ190b6xS0QCOdvMqfq+3HSmPhP2i+yTlXgH/8y63C/yDPn+znNnu94zOg3ln1l+fu+vN6/4OPyOjp2ezhjGP/PpqRMbs719aW2jVP+6fxw/4+t3h7O3HbtQu+eCGSPjY2oyR6li07vdMj86Js7TtAxhCCF6nentpf91+aU06oHhY6ffxvWkmWWPfKAurPCySAAAAAAAAAAAgKYDD8Q5JpOJPbZarf4OHzVq1MiRXOr/zZs3e+m8c+dOvV7vOO7fv//999/v7+UAnFAySvUP/gmm+k3CGBr0mmGihO5RXN1OhtAny96gGZ8KPHhyd/JdPVRceXkLbfnw6sdGu9HLELee6XH7bW06sU2aYZYc23y12tci208NHjK1q1OV+1d++9/BG97CJLd2T59+20D+mX9t+SW/wrUcd7hcumT2GLYpEIpN3ipr1KSTOn8q79tP97u8tnDN7PQ+aWxTW1b12j0rbFa7l+kAAAAAAAAAAACaCAQnathsNrude6hn9loC15M1a9ZIpTWJ4D/++GOj0eMT1VWrVjkOhELh2rVrUQobgkA6mkhv45r2m41QGbtTxP2R0i5sU2u5elXrd6EIPgEleLLD41GSSPbMTVPJpznr/Z+HemfQtI5KblOCzmaef+SbKqvJyygWRchbY24fksTVnbbR9FM/7MyprPQyauGEzP7pXJ1wo8X69p4TBotrtCZzYIfbh3dlm17qWfBf+mL1z5fOFovhDYIAACAASURBVPBflcjE//xmkVzFVU+9cPjyhpe/8bJCAAAAAAAAAACAJgLBiRqlpaVemj7q2rXrypUrHcclJSUffPCB224bNmw4fLgmA/7KlSsHDhzothuAv1wrYxs+J7brDXtFSjgg7h8U7zfJ+YqP9Lai+swZIVbN7TBbSHFz/lFxbE/JPn/nCRdJP8i4VyXmSkHk6MqfPvpf79WtWWKh8KOsSakRXJhEazZN37al0nPQUSgQrHgkK06lYM8Ua/Wr/+emFMTTs0ZHR/6VEctzVezMMdzuDbudfmvpd0aD0z6L5M6JT691Kj6xadn3h7Yd8zgjAAAAAAAAAABA04DgRI0DBw7wm2q1+s8//wxgnrlz586dO9dx/H//93+1K2P/8MMPc+bUPEx89tlnFyxYEMBVANwTtiOKx7gmY2WqXmnoa0ZJe7RXTWGbdsaUrX63nnN2VXaZljyVf+ar/G8v6676O0/78Jh3B/9NyKsFcbD02srzvsY5osLC/jN5ilLKxXvytdonfthutXtMnRSrVCx7cLxAwF1x/5WCrw+61quIUIb9fSZbTtxjdOK+x0ckpcawzaL88k9X/uTS57Z7h014nMsTxTDM8pmrS3J9TWAFAAAAAAAAAAAQEq09OGE2m69fv7527Vo2YMCaOHHi119/XVhYaLP5l0P/gw8+WLx4MSHEarVOmDDhH//4x8WLF81m89mzZx9++OGJEycajUaZTLZmzZq33noraF8JACGEEEoxhwi5zELEcoiYXSNkQdczZr5UGM02C/W/lBiO1HPOiYnj+0X2YZt2xv7RtX/bGb8r1WfGd1jUYwz/zKdXDh0q9XVDScfo6PfumMAPbxwrLFx55JCXIYM7pswd61SO+53tv+WpNS7dRmd2HTG4IyGEojwGJyRS0ZJ/TRMKuV/UP3x7LPtYjku3p96byS8+oavUr3j8Iy8rBAAAAAAAAAAACLlWHZxITEyUyWQdOnSYM2dOZa1U8tevX3/ggQeSk5PFYvEDDzzg+7QCgeCdd97ZunVrWlqa2Wx+4403unXrJpPJevfuvXHjRoqiJk+enJ2d/eSTTwb1qwEghBBChVHKF/gnGNOPDX1NiUDVO2Yh/0y+rr4XpQj1RPqsOGkse0ZtVp+vuhDAVI91GjY5pTf/zDe5J3wfPjKt/T9G3Mo/szHbdSeEi8fHDB7eNY1tWmz2HcfdrHzJ7NuV4TIvOydomu7Wp919j3NXZxjmp83HXbpJZOIXv3UqPnHq57MFl4u9LxIAAAAAAAAAACCEWnUd5sOHD9O0Tx/EVigUdXdyNmXKlIkTJ+7YsWPPnj1//vmnwWBISEgYOnToXXfd1bVr17rHAwRMNpaIuhDbpZomrW6Ea6Yqsy5rNmotVxzNepadcFCI5HM7zH7lwhvsmRJTKYkIZKrX+k26oC2+WlWT7ChPV+7X8Bl9+58tKd16sSbAoLNYdBZLuETiqb+Aot58YPzkt9ZV6msKVOSUVNTuFhOlmHXvsP3fewxOMAxDCHlgzsiD+y7kXi2pWfw1NxVxkjolzv9g1luPcnVurpy8ntw5se6vDQAAAAAAAAAAIBRadXAiLS2tQecXiURTp06dOnVq3V0Bgkug5I4ZjwUSgooKF7djgxMWu+tWpMCkK9oLKAH9VzYnrVUb2DxSoahPVDIbnFCb9f7OMCwlhQ1OEELK9HovwQlCSKRC1jkx9o+rNxzNwsoqt926dGjjJa2TI3oqFAp69E9lgxNF+eUMw9QeNezOQRRFMX+V+845mzfyvsw6vioAAAAAAAAAAIAQadVpnQBaLjHv2L+iKQGTCaPYY5PdzUaBAAgogVLEBVq0VveP+H0RKwtnjyvNevtfD/F9FOe8fUptMNQ5JDFaxR4XeQhOJMQo3Z53YCMN/LLYRoOlokxXu7NcFdamfTzbzDmbX+cKAQAAAAAAAAAAQgXBCYCWiBJyx0wjBSekvOCExV5FB+m6kWIukVPAOycIIbFSLrpgZxiNpe7ogtNwuZzfLDPUvfeibRQXnKjUGY0Wq5tpo8O97JzgBSdi+eeL8t2n6krvncoeX8/Oq3OFAAAAAAAAAAAAoYLgBECLxM/Y1kjBCQkvOEEIY6E1QZk2Qsw94tdYA5+Tv3OCEFJmcrP5wIs4ud87J9pGOe2KKK6srt1HIKBEImHt8w5sURz+zglCSEGu+5oZ7Xu3Y49L89W6Sr+zVwEAAAAAAAAAADQOBCcAWqQQBCdkwmh+0xykshMRvJ0TmvqkdZI6BSfUfgYnosPCBLwtDj7tnIh2Kt7tKbOTWOyx9g+7c6JNcpRQyP26Lsz3EJzomcpv5pzF5gkAAAAAAAAAAGiiWnVBbIAWi+L9aDdeWieX4ERwyk5ESrhH/FVWLUMYinjMg+SFy84Jtdm/4IRIIIgKCyv/a8NEmQ87J5J4aZ0IIUUVfgcn2J0TIpEwvm1k8Y2aW1qUV3daJ0LI9ez8XiO617lOAAAAAACAlmTt2rXvv/++yWSq/RLDMDRNCwQCL/l1wRPH3RMKPe7+By9ommYYBncvMM307onF4hEjRnz00UfNbuWNCcEJgBYpBDsnpE5pnYgpWDsnRFxwws7QOpuOXyLbd647J/wMThBCYuVyNjih9mHnREJkuICi6L92P3jaOSH0vIGNDU4QQpJTY9ngREGe+50TSR3byBRSk97saOacw84JAAAAAABoXWiaXrhwodlsDvVCAADIpUuXHnjggdtuuy3UC2m6kNYJoCVqQTsnIiRO+w80lgBrYivFUpmQuy3lJr/rMfDLTpTp6945IRQIYsJlbNNtcEKr1RYVXPc0g5xXhbstr+xE8Y0KftyCRQmotB4pbPN6dn6diwQAAAAAAGhJbDYbIhMA0HTo9SgI6g12TgC0SPz9YvbGuaREqKIoIcPUXC5YNScixU6VG7TWqhRPXesSIw0vNNSU1C4LaOcEe+zLzglCSFx4WFm10XHsNjixb98+u8199EgkEnXo0IFt8mtiWy22spvahLZRtUe175168ehVx3HO2TyGZigBdisDAAAAAECrIxaLL168GOpVAEArNWvWrP/973+hXkUzgOAEQEtEibljxtpI1yQCqSDC9NeGiaDtnHANTgS4c4IQEitVsMEJfwtiE+edE2qDgSF1176ICw9jj93WnNi1a5ensZmZmQoFd8Wk1Fj+q4V55e6DEz3bsccmvbn4eknbjm3qWiYAAAAAAEBLQ1FUenp6qFcBAK0UPxkGeIG0TgAtEj/u2Eg7J4hzZqdg7ZxwCU5orJqAp+LXxA6g5kScgvt/xWK3V5ndVFdzHaLkghPqar3ZeZMEwzA//fSTp7Hjx4/nN/k7Jwghhbnuy07UqomNshMAAAAAAAAAANAUITgB0CLx0zo1Us0J0jDBCbkwTCKQsE2t1X1ZaV84BSf83zkR6xz09qXsRLySG8Iw5KbG6aKnTp0qKiryNHbChAn8ZkJipETKxZwK89VuRyE4AQAAAAAAAAAAzQLSOkHIaLXat956i39GLBbfc889ycnJoVpSyxGKtE7ENTgRnLROhJBIcUSpucxxXJ+0TnFSLjihtRittF0sEHrp7zqcl9aJEKI26DtGR3vqXDOEl9aJEFJUoU2NjWSbXnI6JScn9+zZk3+GElBtkqPzr5U6moV57ndOKKPDY5Oi1YU1Nz/nHGpiAwAAAAAAAACAq5ycnM2bN9vtTjlXTKa6M4UEEYIT0NiMxpr6wJWVlUuXLnV5dd26db/++mtwr1hdXW02m0WiVvTdHma3yriWvaIi8DhBVVWVzWYTCHzbZWXlnsUbbeX1uS6fglIQUhOcKDMEPq3MzhWJYAi5VlIYzwtX1ElsdQrz5JSWdnYOV7i5ovO2lSsFN7vEKtnmjh07PA0cM2ZMZaXr1pO4Nko2OJF/vdTTfUjp1pYNTlw5dT1Y/wqNT6PRSKVSm4eC4eAFTdMajcZmszXyW4qWwWq1ajQaQohYLK6zM7gwm81VVVUURbWq/3ODRaPRVFVVVVRU+Pp/LvC0wjd7QeT4pQeB0Wg0YrEYb1cCo9FoLBaLxWIJ9UKaH6vVWlVVhR9eT/BNBQBNSnV1dWifzGi1WqFQ6HYNI0eOzMvzmHLDJWjRQPAOHhobwzBeXrVYLDRNB/2KNE0HfdqmjGZ4zzUYW32+dvovvnQWUVx9CDtjtNEmAZF46e8jpZALIVTbqwP+cqJEMn5TbdLFiv0oTxQtdRpebjTUuZKoMLGAoui/vudvarjFV1ZWnjhxwtPAUaNG1Z68TTK360J9s8pitorEbnZ+pHRPOrXvnOO4NE9tqDbKFFLv62yaaJp2/PCGeiHND80T6rU0P7h79eG4b/jJDQy+8eqjFb7ZCyLHfcPdCwx+6dUHfu8FDG9XvMNtAYAmJeRvFWiapijK7Rq8R3O9P8INFgQnoLGx1eojIiLmzJnDf0kikTzyyCOxsbHBvaJEIjGZTEGftknTqRiuugEdGxsdcIEZkUhks9l8vHtVVUk5vA9qh0dSclEQbnu8Lo7oa451tC7gf8p0gZH8yTVtYWK/popmGKFAYP/rt7mRouocXlFRESWXlev/2i1k4u7knj17PIWgJRLJlClTlEqly/kOXZMJqYln2O203SJsk+hmAd0HddlOdjuOGZqpLtYnZyTV/eU1PTRNy2QylUoV6oU0P44HJUqlUi73I/wGDhaLRSAQREVFSSRBiK22NiaTSSQSxcTE4APsAbDb7WazOTY2FjsnAtAa3+wFj+NbLrquZJXgiUQiwduVwNjtdoVCER7ux1ZmcLBYLJGRkdHR0fjJdQs7JwCgSVGpVKF9m1pRUSEUCt2uYd++fV999ZXLHtD33nvPkYahcf6sw5+OEDJRUVHLli0L9SpaKMr5A/WMnVCN8aRDJnR6c2y2V8pFifWfViXm/t7T2wxW2ioWBJJuJdY5iZPa7F9NbAFFxYSFlepr4iRlfx14F6cMY4MTRZVcNe8ff/zR05ChwzJrRyYIIcmpTv+RFOSWJ6W6+a+lVk3s/G4ZnX1ZKgAAAAAAAAAAtBLdu3d//fXXXU5+8sknjZkjGp/MAmiRXJ7dN1IaXKkwit80212rJgQmUsKlM2IIo7VWeensRazMOThh8i84QQiJ5X0OXW0w+DIkXsnV4SiqqFk5TdN79uzxNGRQxgi355NSY/hNTzWx23VLEku5b4Cccx6zBwIAAAAAAAAAAIQKghMALZLLpqhGC0447Zww2YNT8CdSHMFvaq3awOYJE4oVIi5Pi787JwghcbwK2GUGn3ZOxKu4IaVVOpudJoQcPXq0tLTU05DuvYa4PR8dpwyTc+svyle77SYUCVO6cnmcrmfn+7JOAAAAAAAAAACAxoTgBEBL5JrWKTTBCXOQghMRYqc0vppAgxOEkBheZqfG3zlB08xNTTXxmtNJpoiWKtznIqQoqm07bvOEp50ThJD03u3Y45zsvMYpYQQAAAAAAAAAAOA7BCcAWqTQpHUSCxRCivtof7DSOkW47pwIMK0TISSOl9mp3OzT1gen4Qr+zgkD7cND/zilU0ViR9mJXbt2eeof1aZbibra06s+Bifa9+TKTug0+rIbHnsCAAAAAAAAAACEBApiA7REIdo5QQiRCqMMthLHcfCCEyqKUAypiQQEnNaJOJedKKvfzgk7TWtNpqiwMC/9CSEJKufgREVVaWnpyZMnPfWPbNO1VO0x+pKcxm2qKCvRWsxWidRNbXD+zglCyPXsvPh27ndjAAAAAAAAADSEoqKin3/++eTJk2q1WqPRyOXydu3a9erVa+TIkSkpKS6d582bN2nSpHHjxoVkqQAQKghOALRIoak5QQiRCqN5wYngpHUSUSKFSKGz1cQS6pPWKVbKbX0IKK2Tgt8sM+jrDE7EK+UURdgtFkWVVbsuHKNp2m1ngVAcEduhpNynnRMMzRTdqEjrmFC7W3rvVH4zJzsvY+IA7+sEAAAAAAAACIr9+/e/9tpre/fu9dShf//+M2bMePDBB6Oiogghubm5a9euHTAAf7cCtDoITgC0RJTzj3aj7pzgyk4Ea+cEISRCrGKDE/XZOcGvOaGzmU12q0zoZueBJ3Fyp20QZQZD5xhPfWtIRMIohbxCV1Ogoqiy+tz333vqHBHXUSAUl3pO65SU6nS9wtxyt8GJ6MSoyPgITWnNjco5h5rYAAAAAAAA0OAsFsvf//73jz76iD3TqVOn/v37R0REmEymy5cvnz592mQynTx58uTJk88888zEiRM7duz43Xff2WyN9+ACAJoOBCcAWiLG4txuzOBEJHscrJ0ThJAIsarQWOQ4rl9wwmnrQ7lZnySP9NTZzfAwp+CEjzWxk6JVbHAir0TtteBEV0KIpspgsdokYje/n5NTnbIzFeV7LjvRq92pn886jnPOIjgBAAAAAAAADctgMIwbN+7AgQOO5qhRo5YvX96/f39+n+rq6s2bNy9fvvzChQsmk+m///1vKFYKAE0FCmIDtDwMY9jAa1JE0Hj1BrSWq+yxkJIFZU4rbc3Vc4/XpQJpwFOdqrjBb4YJJZ56unWm5Ca/KRf7tOuiXMfFMEpLSqxWq6eekQldHQeeKm3Lw6UURbFNi8Vj2KlNWhx7XF3pdwIrAAAAAAAAAN/Z7fZ7772XjUwsWLBg7969LpEJQohSqZw+fXp2dvaKFSskEv/+JAeAlgfBCYAWx/QTsV7gmpJhRBDVOFfW24o05ktsMy5sUFCmPaE5ZbBzz/d7RfQMbB6j3bqn6E+22SMyMVoq99K/tu8vcsPFQuGgtkl1DrlZpS+q4ApcF1445alneGSyTBFNCImLUUol7re1VZRVM7zARVRsuNtuhBC7jStrIfIwGwAAAAAAAEBQfPzxxzt37nQc33nnnatWrRIIPD51FAqFixYt2rt3b3i4x79qAaA1QHACoIWxM7r3+G1K+fdGu3ah7hd+M0kxMijTHlQfZo8pQg2NGRLYPD8WnDfYuIRXU9v19Wt4iV53tLCAbY5unx4pq3tryJkbZfxm7olDnnrGp9XEctoneyxkUeFcjiI6Vumpp5W3qUKM4AQAAAAAAAA0mKqqqhdffNFxTFHUypUr+Zv+PRkxYsSmTZt86QkALRWCEwAti3E7sV3jmtLRROzfI/j6KNL/jz0WC5RxYQPqP2eVteqs9jzb7BnRI1oS4EaQrfmn2WOxQJiV4t8OjG0XL9p5uxbu7NLVl1FnCrjghIDQhuI8t90ogTAmuY/jOM1LcKLMKTgRE6/y1NPGC06IJH4U/QYAAAAAAADwy44dOyoqaqpO9unTJz093ceBWVlZjz32WIOtCwCaOgQnAFoSG6P7kNekqPCFjXZts72i3JTNNhMVtwioIDwTP1h+xM7Y2ebw2KGBzVNo0Jwo5wpX3Namc5Qk8JxO4RLJbWnt6xzCMORcoZptGgpzGLv7KhExbXuKJTXFulN9Dk542Tlhs2LnBAAAAAAAADSGXbt2scdJSXUnQOZ76aWXpNLAS0sCQLOG4ARAC2L4jti55+9ENoGIuzXaxYv0vzGEq3PQEDmdZEJp/8h+gc2zNf8Mzdv3MLVdH7+GX62o+FPN7YHI6txFJqr7iX9eRZXGYGab2ut/euoZn8rV50hLjvbUrZyX1okSUJExCk89+TsnhGJhnUsFAAAAAAAACExOTg57fPPmTb/GJicnZ2VlBXtFANA8IDgB0FIwZkb/Ea8tpMLnN+b1C3k5nYSUNCEswC0OTnMai/IMXLhlSPQgmTCQz1MwhNmef4ZtxkgVIxI6+TXD1osX+M0pvuV0OsvbNkEI0eVfcdstKjouIp5bT1qSTzsnIqMUQqHH3+GoOQEAAAAAAACNg83pRAg5ffr09evX/Ro+ZcqUYK8IAJoHBCcAWgrDV8RezDXD7iSiDo12cRttKDMeY5sJ8qEiQVj9p/1dfYDfzIwZFtg8x9X5+fpKtjkxpZdI4MdvP4aQ7Zcuss0ERfigpGRfBp4tLGeP7WajqbTQbbdeA0ZRVM16IlXyCJXHW8cPTkTHe8zpRFxrTiA4AQAAAAAAAA0lPj6ePbbb7fPmzbPb7V76uxgyZEgDLAoAmgEEJwBaBMbI6D/htUVU+LzGvH6xYb+dsbDNoOR0ohn6kPoI24yVxnRVdQ5squ952yYIIVP8zOl0vLCwoKqKG961m5Ci6hxlp+k/b3IfHtHfuMowdO1uFEXFtuMqh3vJ6URcghOeC04QQmxW7o0gdk4AAAAAAABAw0lNTeU3f/zxx0cffdRmc19zsbZOnTpFRkY2wLoAoKlDcAKgRTCsIzQvg5D8XiJMaczr83M6UUTQRj68/nOerTqvsWrZZmbMUIrUHRKozWS37SnikjJ1UsV3i2jj1wzfX3KqFTGlq285nfJvGnjbFzzldLrllls0BgnbTEvxmNOJuAQn4nzdOYGaEwAAAAAAANBwJk6c6HLmyy+/HD16dGGh+/wBLiiKmjFjRtu2bRtgaQDQpCE4AdD8MdWM/lOuSUkpxZzGvD7NWEoMh9hmXNgAqTAIH3ngl8ImhAyLzQhsnj1FF6qtXFXqaan+ldS22u0/XrnMNjtFx3SNjfNl4B9XbvCb+vzLbrtNnXafyWxlm14KTtjttLbSwDZ9D05g5wQAAAAAAAA0nClTpsTEuP4x+/vvv/fr1+/rr7/2ZYaVK1eOGzeuAZYGAE0aghMQMjab7bqzGzdu1D0MamH0/yE0t8OAyB8iQv92BtRTifEPK61nm22DkdPJaDeeqDzFNjuGd2grSwxsKn5OJyElmJjc06/hv+blVppMbHNqt24+DjxyhSvlbdNVmStKa/cJDw/v1d9pl0lassfghKZcT9NcYqgYr2mdrKg5AQAAAAAAAI1CKpUuW7as9vmysrIHHnjgjjvuuHbtWuOvCgDqlJeX5/J4lv/oqRHgiRU0NvZbvKCgoEMH14rNjz766Jo1a4J7RYPBYDabDQZD3V2bIYrRSHXruGxHlNwkeIgJ3hdrMBhsNpv3u5en2ctfUZRgSP3v9sHKwxaaK2IxWDUgsDlLTbo/ynLYZmZsezkt8GuqzefPsccUIWNSUn0ZbrLYsvO4+uQ6D9sm7rrrrsISHf9MfEyYp/kLbziFNxQqiZeVWHm7MYiANMfvf6PRSNO0SIT/p/xG07TRaBQKkc4rEBaLxWg0SqVS3zPkAstkMhmNRoPBgJ/cABiNRpPJZDAYBAJ8eMhvLfvNXkNz3DeZTBbqhTRLjrfK+KUXGKPRSFEUfukFwGKxOP7LwE+uWxaLpe5O0ABmzZq1c+fObdu21X5p9+7dPXr0WLBgwQsvvIDaEtDahPxtqslkEgqFbtfw0EMPbd26tfGXxId3UdDYtFqtl1d37dpVXV3tpUMAdDqd2Wxuqe/bwslHFOF+v+jJ3XqdmJCg3UOdTmez2aRSqacODKFLTAfYplLQyWYIq673Ag6ouTxRQiLsKuwc2DfG5oKTdoZhm2OiO/g1j95q/TUvl232iYtXEeLLDMdzii02riS1/ob7ghPTpk07fqWEbcplYqmI8TR/0Y0yflMqF3hZidXCBScY4nHOpkyn01mtVsqH2uPggqZpnU7HMIzdbq+7NzizWCw6nU4oFEokkrp7gzOTyaTT6cRiMZ7TBUCn0+n1+urqajynC0DLfrPX0HQ6HSFELBaHeiHNkk6nk0gkeLsSGJ1OR9M0w3uvDj6yWCx6vd7xf26o19IUWa3WujtBw/jqq6+mTp26Z8+e2i+Zzebly5d//vnnr7zyyuzZs/F2EVoPo9EY2mcyjr9wa6+BYZhdu3Z5Gdg4sV78LoDGFhUV5TgQiUQpKU5FmyUSybPPPls7TWE9icVik8kU9GmbBLpMWMn7VIJAJYt8UiaICOIVhEKhzWbzcvfUppNWHRdwSom4PUZV31utNpfnmPPYZr+oPilxAdb33pfNbR2NkIRN7NhfIvDj4+S/XvzTzHu8+7eePX38Rrr4x0V+U3fjau0+HTt2HD9+/A+Hv2XPpCbHxMZ6nN9myeU30zokxcR4/MgJbeN24SmUiub4/W+322UymUqlCvVCmh+apmmaViqVcrk81GtpfiwWi0AgiIqKQnAiACaTSSQSxcTE4K/NANhsNsfbFQQnAtCS3+w1PMeD9ejo6FAvpFliGEYikeDtSmBsNptCoQgPDw/1Qpofi8USERERHR2Nn1y3sHMihORy+fbt26dPn75p0ya3HdRq9VNPPbV69ep33nln/Pjxjbw8gJBQKpWhfZtaXl4uFArdrmH58uUffPCBS9qAvLw8R9qbxvmjGH86QsgkJydfv369ES4k+ksjXKuRMVUfE8bINinFLJEkyL/vHPfNy90rMf3Ob6YoR9X/Vh8u+YMh3EeobonNDGzO0xUFObpytjkxuadc4nELiFs7Ll9ij8VC4YTOXX1cydFrheyxpbLMWlVZu8/MmTPFYnFeEfdSWrK3J3qacq6wB0VRcQmRXjrza05IZZLm+P3fgn9yG5ojHRbuXmBw9+pDxBPqtTQ/7K1DcCIA+Marjzrf7IEX+N6rD9y9gOHtineNnC0dXEil0q+//vquu+6aM2dORUWF2z4XLlyYMGHCmDFjVqxY0bt370ZeIUAjEwqFof11LRKJPK1h/vz58+fPdzkZHR1dWenmKVYDwR8/AM2WvZAYv+Oagigif6TxV1Fk4IITKkl7pTit/nMeLv+DPQ4XhfeO9K+ENWtr/ml+c0q7vn4NL9XrjxRwRdpHprWP8i1fRLXRfLGIqw+hc5fTSSAQPPTQQ+UafbWOq7btpRo2IaSijNuCp4wIE3stc21DQWwAAAAAAAAIhbvvvvv06dNZWVle+uzbt2/AgAHPP/+82WxutIUBQFOD4ARAc8Xo3icMl0yTUswllKKR16AxX9RbuS0CbRUj6z/nFd3VYtNNtjksJkNEBfJs3Wy3/Vhwnm12VMb1imrr1wzbLl3k16uY0qWrSFgxVgAAIABJREFUjwOPXr1B09xAXb6b4MTYsWNTUlJyb5TzT7ZP8RqcUHPBiehYpfc12KxcNirvYQwAAAAAAACA4EpJSdm5c+fevXu7devmqY/NZlu2bFn//v2PHTvWmGsDgKYDwQmA5smWQ4z8ahPxRH5f46+iUP8/fjMpGMEJfilsQsjw2KGBzfNz8aUqK7cpYUpqH39n2HbxT/Y4XCIZ2T7dx4F/XMnnGgyjd1dwYubMmYSQ3AKn4ESqzzsnYuK9BSdoO03bub3MQpEfZTYAAAAAAAAAgmLMmDFnzpxZtWqVUunxb9gLFy5kZmZ+9913njoAQAuG4ARAs8ToVhHCfTSeCp9PKJ8yDgUXPzgRJoqPknr8QISPbIztaMUJttk2LLG9Ii2wqb7n5XQSUNTE5F5+Db9WWXG+jEvNNKFTZ5nPKQKPXOGSQZnKiuxGvUuH5OTkKVOmEELyCrkUnBKxqG28t2Lm5aW8nRNx3oIT/IIThBCRGDsnAAAAAAAAIATEYvHChQsvXLjw4IMPUhTlto/Var3//vu//vrrRl5b81JZWfn7779v3bp1y5YtR48eRTosaBkQnABohmyXiOknrilMImHTGn8VOuuNKss1tpmkGEWI+/cZvjtZeVpn07HNW2IzA5un3Kw/WMqVW8+M79AmTOXXDN/ztk0QQu70OadTaZUup5QLOejyL9fu8/TTT4vFYuK8c6Jd2yiBwOMNZGhGW8EFObyndbLzcjoR1JwAAAAAAACAkEpOTt64cePRo0czM93/mW+322fNmnX1qpvEA62cVqt9//33+/fvHxsbO2bMmMWLF8+ePXvIkCExMTHTp0+/fv163VMANGEITgA0P0z1SkK4pD1U+N8JJW78ZRTqf+Y3g57TiSLU0Jghgc2zNf+0neFu0ZR2/uV0YgjZfuki20xQhA9JTvFx7B+8bRPEXcEJlUr12GOPOY75wQnvOZ20GoPNxoUc/No5gZoTAAAAAAAAEHIDBw7cv3//hg0bYmNja79qMBiefPLJxl9Vk2W321evXt2hQ4eFCxfabLZNmzZpNJrr16+r1epr167ddddd69ev79Gjx2effRbqlQIEDsEJgObGmk3MvEoPovYkbFJIFsLP6SQRRsTK+tVzwmpbdbb2HNvsEdEtRhId2FTb87PZY6VYOjrR130PDieKivK1WrY5uUsXoYfNp7XxC04wtN1QmOPSYfbs2REREYQQnd5cXslthkhL9vbF8gtOkLqCEzaXtE4ITgAAAAAAAEATQFHUww8/fOHChXvuuaf2q/v27Tt37lzt861QQUHBqFGj5s2bV15evmjRouPHj999991yudzxanp6+oYNG2bOnGkymR577LE1a9a4nWT37t0ffPBBI64awG8ITgA0M0z1CkIYtkmFLyIkBOWOjbayCtN5ttlWPoKi6ruMQ+o/7Ay3OWB4zLDA5jlXWXS5ilcuIrmnTOjf0/ltl5xzOnX1o5bGsasF7LGxOJ+2OmWBFIvF8+fPdxy7VMNO87pzorysit/0ntbJNTghRkFsAAAAAAAAaCgnTpz4/ffffe8fFxe3adOm559/vvZL69evD966mqszZ84MHDjw999/pyhqxYoVK1askEgktbu9++67jj0oCxcuPH36dO0Oy5cv//PPP2ufB2g6EJwAaFYsx4mFS3xERF2JbGxIFlKk/5UfI2kblJxO5dyXJhVIB0T1D2yerfln+M2p7fr6NdxG0z9c4QpFdIyO7hEX7+PYvLLKokouilC74MQ999zTrl07x7FfwQnXnRPx/hTExs4JAAAAAAAAaDA7dux44YUX/BpCUdQbb7zBJj1mHT16NHjrapbOnDkzcuTIkpISQshzzz23aNEiTz1VKtXMmTMJITab7dlnn3V5taSk5Ndff83KymrQ1QLUE4ITAM2Ijal+nd+mlItD9VNcoN/LHosEYQnyjPpOaCzM1eexzcHRA2RCaQDzWGn7DwVn2WZaeEyf6CS/Zvg9L7fSaGSbU/zZNuFScEJ/w7WWF/9dBT84IRBQKYlRXmZ2DU543zlhRc0JAAAAAAAAaDzHjx838v6U9tGqVavatGnDP5Obmxu0NTVDxcXFkyZNqqysJIQMHTr0tdde897/jjvucBzs27fPpTj2li1bwsPDR48e3UBLBQgKBCcAmg2m+n1i5TIpEXE/Ir0tJCtRG0+WGU+wzYSwYUIqkEAC396SX/jNzNgAczr9evOKxsILLbTrQxFfy0U47L7GRRQoQiZ38aNexS9nuDLatNViKM7lvzpq1Kj+/bntIAU3NexxUkKk2GvypWqNgT0Ok0ukMm8l0Gle6WxCiECIX/UAAAAAAADQgMxm87Fjx/wdFR4e7rJ5IoAIR4vBMMyMGTNu3Kj51OOKFStEojo+a9ivXz927ObNm/kvffXVV/fdd59MJmuIpQIEC55YATQTluNE/wmvTVHKJaFay9mKD/nNNOXEek6otxkOqg+zzXhpXHeVfyWsWdtvcDmdBBR1Z0pvv4bTDPNzDvdZgz5tElNUET6OZRhy7CpXDdtQeJ2xOwUJFi9ezG8Wl3I1t5PaRHqf3MLL1OQ9MkEIEYqd3r7YnWMVAAAAAAAAAEG3Z8+eAEaNHOmUJrpt27Y+DjQajf/9738fffTRHj16KJVKiqIiIyN79Ojxt7/9bePGjY7NB83Lhg0bdu/e7TgeO3bs0KFD6xwSGRkZFxfnOOZnxDp16tSBAwdqZ80CaGqQ6wOgOWCqGe0SQniPmOUPE8ngkKyl2LC/3MQFAKKk3RMVt9Rzzl/LfjPTXOHo2xNG+bvdwUFrMf528wrbHByblij3NbTgcLK4uNzA7VEYk57ux9jL1y284uQuOZ26dOnCbrd0uFnKVadoE6fyPrnVwv3r15mmyaWD1Wzz1BMAAAAAAAAgKL788stXXnlFKPSWFaC2+HinKo/du3evc4jZbH7//feXL19eVlYWFxc3ZMiQcePGKRSKqqqqoqKiI0eObN68WSaTzZ8/f+nSpdHR0f59GSFiNptffPFFtrlgwQIfByYmJpaVlRFCzp7lcly/9957gwcPHjRoUHAXCRB0CE5AyBQUFKQ7P/kVi8XPPPPM9OnTg3sh21+CO21jEuhepuyFbJMRptNhT5NG+Ypq3T3mXPkafofukXNt9ftgPs3Q+0r+xzZlQumwqKGB/Xttz8+20NxiJiX39Heevdeu8JujUtv7PsN7X3xLCJfeSuccnFi8eDFN0zRN17xqMOsMXDwmPibc+4UsZit7LBQJvHemhE6hHbPJ0hy//1vAT26o0DSNuxcw9tYJBNhd6jd849UHvvfqA9979eG4b7h7gXH8zOLuBQY/uQGz8YR6LU0RbksI5ebmfvXVVw8//LBfo/Lz8/nNqVOneu9/+vTphx566Pz582PHjl2yZMmoUaNcwiEMwxw7duyjjz5auXLlf/7zn/Xr10+aNMmvJYXEF198wd4KlUo1ZswYHwdGRtZkYigvrylsmZubu2nTpu3btwd9kRAAu90e2t9LNpuNYRi3a/jwww9Xr15td077odVqa/dsOAhOQGNjN9bZbLacnByXV1944YWg/59RXV1tNpv9Dd03HVLm1wjC/x9FpKGft1boCdE3wtW1Wq3NZqOomofdZbZftZbL7KsqYU+BPr1cX+5htE/OGs6rLdwMA+T9jBqDkRi8DPFka85J9lgqEPWXxLP/N/to9xUuOJEUHh7NMD7OYLFYjlzOk6Z0djRpi9lUWsC+GhsbO27cOP5UuQVOO0wVYQLvF9LpuBsiEFLeO1frnapnayo0/t6HpqCyslIqlVqt1rq7gjOapisrKy0WS2vO1howi8Wi1WppmpZIJKFeS/NjMpmqq6sJIXXmxoXaKisrtVpteXk5ghMBaO5v9kLL8eacYZhQL6RZqqiokEgkeLsSmMrKSrPZbDab6+4KzhxvVyoqKvCT6xZ+JENryZIlY8aMSUxM9H0I/xl6UlJSVlaWl8579uyZNm1aRETEDz/8MGHCBLd9KIoaPHjw4MGDFy9ePGPGjClTpixbtuyZZ57xcT2HDh3asmVLUVFR7969Z8+e3WgbLzZs2MAeZ2VlSaW+lvZke7LPlJ9//vmMjIyxY8cGd4UQmOrq6tA+k9FoNEKhsPYaGIZZunSpl/+ILRZLAy+NEAQnoPFFRHhLszNx4kSlUhncKzIMIxaLgz5t46DoUqn+bcJ7z2mTLZBJBjdaPSNHgNdx9xhCnyzdxH+1R+RTSkl9b+xhNZcVkSLU2MQxgc2Zr6/8U1fKNkcndE6I9O89RL5Wm1fNpVoa076D79826zds+H/27jywafJ9APibpve1rdu6MTa2AY5bbjkEBAQUURD9eqOIguLXEzxARUV+HoCKeKKIX1Q8ULkUEBUVEMc9AYdDYAM2xtjRbV3Xpm2aJr8/OpO069o07dqOPZ+/8qbJm7fd2qZ58j6PNLUj27SVlzD/TpJACP33v/9NSUnhb99ImPjN7MzUYMfiJkMolEH+nyVur6szOIa3xf9/h8OhUCja4shjjqZpp9Op1WrVanWsx9L2kCTpdrt1Oh0EJ0SQyWQMw+h0OghOiGC3261Wq06ng+CECG36ZC/mPFfx4NUTx+l0yuVyePXEsdvtarVaq9XGeiBtD0mSGo1Gq9XC/55f0bmaBlpSXV09ceLEX375xecncEuKioo++eQTtrlkyZIAv2IOHDgwderUrl27btu2TUhpit69e//+++8zZsx46qmnDAaDkAIMr7/++rx58zw5D7766qvly5dv2bJl0KBBQp5LOGpqav744w+2GThC44M9e/TcGr93795vvvlm9+7dkR0hEE2lUsX241qr1eK4/+tC1157rU8ddb7o/CiGn44g2tgPzczMzF27dvEfksvlmZmZET+iZ7Z127xIRzN1zyOGu1yO5INkiffJUPRuDCRJkqIoz6t32rLB5uamW2ZoRndMDLfuRbn9/Ckbl/6oT0Kvzom54rr68ew+/o1DN3YeEOofffc/Rfzm1Xl5Anugafr9z9biw6awa2znuBkYarX64Ycf9umq3uIVms7NMgY+Fi9bFVIoZIE3ljBe/yEYapP//yqVSqlUtsWRxxxN0yqVSq1Ww6snglQqdTqdarUaghMiSCQSl8ulVqshOCEC+6EHwQkR2vLJXuw5HA6EELx64ni+L+DVEwdOV0STSqWerwx49fyC85CYO3r06KBBg7744ovLL7888JYVFRWTJ09m40l33nnn7bff3tLGFovlP//5T3p6+s8//5yWliZwMCqVylMc+7///W/v3r2HDBkSYONTp049/fTTNO9Gw6qqqkmTJh09ejQ9PV3gEcU5ePAgfy6UkFLYLP7Zo91uv/fee6dPnz58+PBIjg+EQaFQxPbjWqlU4jjudwzr1q0rKyvzyfg0YMCAaGZ2go9sEDNSqbRzKNWG2yPb/xC5l2tK9FjC6yiKkQk+N0P+U7+KbWJI0stwf/jd/lj5M8ObGDIhXWhSRR8MYrac40o/GZW6oakh/3dtP13CLicqlYMyOgbYmO+rr76qJDH+qQq/4MTdd9/d/J6Ryhou5iST4oYkTeBDUC5eQWxZsILYCq8NKBKSrgIAAAAAAAAAiJLS0tKRI0fefvvtTz75ZN++fZtvQNP0+vXrH3744aqqKs+aiRMnfvzxx2xO6eaeffbZioqK/Px84ZEJD6lUunbt2r59+z7yyCP79u0LcIh9+/Y1z8tfXV396quvvvXWWyEdNFQnT3IJtI1GY0iXy/gBuaeeeqq+vv71118PvAvDMIWFhZWVlVVVVTU1NbW1tTfeeOOAAQNCHTa4CHTq1MlnTZRvloLgBADxijrJWJfzV2D6FxEu9HJ5xJU0fENQVWyzk25igjwvzD4bKeveWi6nU7oy7dKE3uK6OlBTWk6Y2ebkrEvxlk84/Kp3OP68cIFtjs7JlQr7OHa5XAsXLtT0Hs2ucTsIR02FZ1kikTz22GPN97pQw0Wh01J0kmCjdfECDFJZkAAVLsUxCcbQTVEfygXBCQAAAAAAAAAArctzVb2oqMhisTAM88UXX3zxxRc9evQYO3Zsz549U1NTJRJJTU3NsWPHfvzxx5KSprsDMQybP3/+okWLAsx6KSsrW7ly5b333ht46kNLkpKSFi1aNGPGjA0bNtx4440tbdZSHvJvv/22tYMTbH1WhNDAgQND2pd93RiGWbFixY8//hi0TsYvv/ziU5Fi2LBhEJwAMQHBCQDiEkMy5rmI4WX+UU1BymtjNRyKJk6YP2WbEkzaI+m+8LvdUb2LpLl8oBPSxmEotIgC67tzR/nNyZ0uDbWH386cdvMmb47r3EXgjh9//HFJyenuV81g19jKS9C/8zHHjx9/ySWXNN+LP3MiPVUf9Cj84IRMHvyjWyaXkg5X830BAAAAAAAAAICIS05OPn78uMFgcLvd+fn5mzdv/uGHH4qKio4fP378+HG/u2AYNnHixAULFgTNYvS///2PoqhnnnlG9PDuvPPOl19+eeXKlQGCE1deeWV2dnZpaanP+gsXLjQ0NAQuoRomHOfuQQw14blMJmOXH3/88XHjgmekGD9+vM1mq62tnT179g8//IDj+IgRI0I6KACRAsEJAOIR07gEUSe4Np6O6Z6L3XDQSfMap7uObebqp2pl4VYHcTP0r9U72KYSV45ICSGpIp/DTW2v4M51eiZ2yNMbQ+3kV15OJ6lEMrJTtpC97Hb7Sy+9pEzLxBUqdqWNl9Np1qxZfnesrOYFJ4zBT3Fc/LRO8uCpvaS84ASkdQIAAAAAAAAA0HqUSuXkyZM9N+zjOD5q1KhRo0a99tpr586d++mnn3bs2HHu3DmTyWQymdRqdUpKSm5u7qhRoyZMmNCtWzch/a9fv37UqFHZ2YJ+p/uF4/iNN964bNkys9mcmJjodxuNRrNz586FCxcWFhb27NnzzjvvPHjw4IIFCxBCBEG0anAiNTWVXRaRt4pdFh6/8dStsdvtCKG+ffu29JoA0NogOAFA/CHzEbGG15ZgCa8jSSt+CwbmYiynGr5gmzim6J54T/jdHqw/VEdy8xZHp45U4aoA2wewveJ4o4ubZTIlK+RpE6Tb/XsZd3PE8KxOeoVCyI7vvffe+fPnUy+7kr+SrYY9evRov/Mi7U5XQ6OdbQqbOcEFJ6TBak4g79kVMHMCAAAAAAAAAEDrmT9/vt/1WVlZM2fOnDlzZjidNzY2FhUVvfDCC4E3q6+vT0hICJAu/9prr12yZMmuXbumTJnS0jY5OTmffPIJ2/T0huN480KSkcW/dBBqUXf+zAmdTid8R4qiDh48iBAaNWpUSEcEIIKiWuACABAcXc+Yn0S8GtFIcx+Si0mqGCllzrUu2sY2uybcppKGPC+huZ8rf2WXMYRdaRwjuit+Ticck0zKDLlwRf65MhvJJZi6MldQ7Smr1fraa68hhDRZXdmVlN3qMFUhhDAMe/TRR/3uWFndwG8KCU7wC2LLBcyckCm4sxOX0xV0ewAAAAAAAAAAIA4VFxfTNN2rV6+WNnC73VOnTjUYDN26dSsrK2tps65duyKEysvLhR/6zJkzCKGBAwfyAwCtYdCgQezkicrKSuE7Hjhw4NdfuasrDodD+L5//vmn1WpFCF1xxRXC9wIgsiA4AUB8YSwvILqGa8t6YdpHYjcc5KRrzzu3cMORaLslTQ+/27O20lNWLvdRv8RL05WhzVtkVTsa91afZpsj07qmKLWhdsLP6YQQGissOPH6669XV1djElydkcuutJ0r9sSWbrnllp49e/rd8QIvpxNCqIOgtE68mhMCZk5IeTMnIK0TAAAAAAAAAIA2ylMsOkCR5+3bt2/atAkhVFxcvHz58pY2MxqNUqn0woULwg+9efNmhNCtt94awnBFwXH8kUeaLv7k5+cL3Ovtt98eOXIkf1aHJ9jg4Xa7Dx8+HGD3nTt3IoQwDIOCEyCGIDgBQDyxf4Mc27gmpsASliKsdePzgZ2xf0YjLmNSXuJdcknw2/yD+rFqO795VXrwek0t2Xyu0M1wE02mhF4Km0Ho1zNn2GavVGOmPvhzNJlMb775JkJIld5JIpOz621lxQghHMcDzDnlV8NGoRfElsoEzJyA4AQAAAAAAAAAgLbPk+bI7Xa3tEFSUpLfZR9ut5umaeFzIA4fPrx169aMjIz77rtP8GDFe+yxx/Ly8hBChYWFe/bsCbxxYWHhxIkTX3755W+//faXX36Ry5suSpSUcHdevv322+PHj2d4F0x8eIITvXr1au2kVQAEAMEJAOKG+xxjeYW/AtM9g6R5sRoOQsjqKqtw/sg2FXjSJQm3hd+txWU5UHeIbXZUZfTU9xDd2/fn/mKXtVLFmHRB1bT4jlVVVVob2ea4zl2E7PXqq69aLBbkndMJ/VsNe8aMGd27d29pX35wAsclqYbgUz0or4LYAmpO8NM6QXACAAAAAAAAAEDb5JkzUV1d3dIGQ4YMWbx4cffu3e+44445c+a0tNmFCxdoms7IyBByUKvVOn36dITQ6tWrNRpN6KMOmVar/fbbb5OTkxFCM2fOrKmp8btZYWHhjBkzBg4cmJycXFhYOHny5OTk5Ntua7pWs2/fPs/C+fPnX3nllXvuuQfDML/9UBTlmaIBOZ1AbEFBbBAzDQ0NS5Ys4a+RSqU333xzVlZWrIYUU27GPBcxXGkHpBiJ1BGIBITj77oPaYa7rt0jaaZUog6/21+rd7porgrChLRxGPL/ZRlUkbnyREMV27wms5cSD/ljbbt3TichwYmKiooVK1Z4lrX8ghM2i7O+WqlUPvfccwF2v8CrOWFM1uF48DgxvyC2TEDNCX5aJ6g5AQAAAAAAAACgjcrLy1MoFEePHr399ttb2mbevHnz5s0L3E9hYSFCKDc3N/BmCCGz2XzDDTccO3Zs5cqVEyZMCHXAol166aX5+fk33XRTYWFhv379nnzyyVGjRiUmJlosltOnT+/fv3/Dhg1nzpy5+eabjx492qMHd5fnW2+9lZ+f78lqNXr06OLi4vnz5+fl5b300kstHaugoMBzwyVUw27PSkpKNmzYQNM0f2VIlUvCB8EJEG12u92zUF9fP3/+fJ9HV69e/fvvv0f2iI2NjU6n0zMNMG4p3R+p3EfYJoMlWZin6br6GA7J6j5Tbv2ZbSolxkRqdF1dXZjduhn3r1U72aZKouqJdxPd7Tcl+/nN0Ym5Irr66dRJdtmoVneQSoN28swzz3j+kzFcqsrIYddby04hhGbMmKHVauvq6hoaGqT+eiu/wK1JSVIHPRzDMBTFBSdcFBl0F4wX77Db7OH/4aLPbDYrFAqKgmkfIaNp2mw2UxQV5VOKi4PL5TKbzQih1i55d1FyOp0WiwXDsDj/zo1PZrPZYrHU1dVJJDCzOWRt4mQvbnk+9IA4ZrNZJpPB6Yo4ZrOZJEmSJGM9kLbH5XJZLBZ487YE/qkuPnK5/LLLLtu2bZvPHa6h+v777/V6/ciRIwNvtnXr1kceecRisXz33XfXXXddOEcUoVu3bkeOHPnyyy+/+eabhQsXNjQ0IIRUKlVGRka/fv0WLFhwzTXXsKWzWQkJCbt3737yySc3bNgwYMAAvV4/ffr0V199lU331JwnpxNCaNSoUfn5+YsXLy4pKbFYLGlpaXPnzr3jjjta7Sm2O42NjbG9JtPQ0IDjuN8xjBkz5ty5cy3tGCCXWgTBGTyItgDZ7lC0/u/jjZQpUrk/4a8hpM/SKDlGw2ly2v4/BnGx01zVXRKsxW814f60HmmguHkDwxOGyMV262bon6u5uEIHpb5vQodQO6m02U7Vcx/Qo7M6BZ3EcebMmS+//NKzrM7IkUi5K5i2c8UajebRRx8N3EN1LZdFKtUQfH4o5fIKYgupOYHztuGnhAIAAAAAAAAAANqWm2666ZFHHjl48ODgwYPF9WCz2TZt2jRx4kSFQtHSNvv27XvwwQePHTt2//33L1iwwGg0ih1vWCQSybRp06ZNm4YQstvtLpdLL6AuZnp6+po1a1avXt3Y2JiQkBD0fhdPcCIvL+/999/fvn378uXLhwwZghCaP3/+tGnTTpw4sWjRogg8GRDffOZMxAQEJ0C0qdVNeYESEhJmz57Nf0iv1996662eZIIRJJVKHQ5HxLuNGMbOmF5EiHe/lfo2rX5K7AaEEEJ1zr9N9dykBJ0su2fazRgW/Jp4UHsvcN1KMMmkThMNCpF/mp2Vp+pIgm3emNM/2RByRGfzuVJ+uGxSj55B/1Uefvhhl6spUVLzghPz5s7t1q2p7oXJZJLJZD4dki6qoZG7nz07MzXoEQmrk99MSNAF3UWt5RJwMW4Uv///LaMoSqlUCjkJAz5omna73Tqdjv28BcJ5brVLSkoKcJMRaInD4ZBIJAaDAW5gF8HlctntdoPBADMnRIj3k722AF49cWialsvlcLoijsvl0mg0Wm3w6mvAB0mSer0+MTER3rl+wcyJi9L06dMXLly4cOHCrVu3iuth2bJlNTU1ASpSIIQqKytvuummLVu2dOgQ8o2PrUSlUqlUKuHbS6XSACXBWS6X648//kAInT17tri4eNeuXezPn0WLFn366acvvfTSuHHjIONTROh0wa/htCqTyYTjuN8x/PLLL19++aXPx+Zbb73lScOA4xG4DBgU/HQEMZOUlLR48eJYjyL2GMuLyH2Wa+PZmM4321X0Fda+jRB30b6X4b8RiUwUW0tKbGfY5oDEfqmKFNG9fX/uKL95bVYfEZ3wC06oZbKhmUFKnhQWFq5du5Zt8oMTrkazRkIHPtdBCFXWWPjTh9KNwX/NulxeuQJksuAf3fyaExQUxAYAAAAAAAAA0Gbp9fqnn376ySef/Oqrr9jiz8KdOHHitddeu+GGGzyTA1py/fXXhzHGtqSgoMBqtSKEhg8f/sknn/BvzJLL5QMGDPjhhx/eeOMVCyIvAAAgAElEQVQNCE5c9Lp37958iszKlSujmSMa7swCIKYc25F9Pa+NY4lvICzGNztXEXtr7IfYpg6/JFN7ZUR6/qnqF37zqvRxoruyUs7fLpxgmwOSs3K0IU+baHQ6D5w/zzZH5+TKg4WFn332WXbWm0QqV6d3Yh+ynTs1f/78oDcpVNZY+M0OqQlBx8mvho2EFcSW8QtiQ3ACAAAAAAAAAEBbNmfOnKFDh953330FBQUh7Wg2m6dMmaJSqZYtW9ZKY2tzPDmdMAxbvXp18ynjnssaO3bsiIecP+CiB8EJAGKHrmYsz/BXYNpHkKxvrIbzL+bvuhX8dmflDISCFmIIrp40H6zjziEyVR276fJE97at/G+Hm7vmPiVLzOu2s/Ssi1fmZHznLoG3P3DgwJYtW9imumMOhnMxAKnF9NBDDwU96IVqr+BEemrIMyeE1JzwnjnhCro9AAAAAAAAAAAQt3Ac37BhQ3Jy8oQJE3bt2iVwr7Nnz44ePfrMmTPr1q3r1KlT8B3aB09wolevXjk5Oc0frampQXFQxhm0ExCcAOj48eODBw8eNGjQCy+8EOuxtCsM0/Asos3cCvlApL0/duNpUm79tc75N9tMlPZOkg6MSM+/Vu9wM1wk4Or0CVgYMY/vz/3FLitw6cTMXiI6+YWX0wnHsCtycgNvP3/+fH5Fd03WJfxHZ98yRUiK/8oarh64BMOMKbqguzSbORE8rZNMwZs54YSZEwAAAAAAAAAA2rYOHTrs2LHDaDSOGzduwYIFBEEE2Njtdq9evXrw4MHnzp3bvHnzyJEjozbOOOdyufLz8xFCLb0mJSUlftcD0BogONHeURQ1ffr0Q4cOFRQUnD17NtbDaU9snyLnTq6JqbGEJQhFo9RMAAyii+o/4K/por4nIj1TDLWz5ne2qZNqhyVfJrq3CqLhkKmUbY5Jz9PLlCEPiaZ38f7nB3fMTFIG6mTr1q07duzgr+EXnKCtDXNmzxJyXH5apxSDViYN/kf3ycskEzBzAtI6AQAAAAAAAAC4yOTm5u7du/f2229/+eWXc3NzX3zxxePHj/tsc/bs2eXLl1966aX33HPPJZdcsn///gkTJsRktPGJLTjhNzhhMplOnz6NEFIoFEJqawMQJghOtHfPP//8wYMHYz2K9ocqZqyv81dg+oUIz47VcFiljVssJFewuoN6RFKE0kztrT3Q4OIuyo82jpJLfNMaCrex7AivpDSa0knMIPefL29wchV+xnXuHGBjt9s9f75XoXKJXKFKy2Sb/ToZmydq9KuSl9ZJSE4nhBDlCnnmBBTEBgAAAAAAAABw8UlMTPz00093797dr1+/RYsW9ezZ02AwDBkyZPz48YMHD+7YsWNubu6cOXOUSuWGDRv27NnTtWvX4J22J3v27PEsjBgxovmj+/bt82SMuPTSS/FgVTkBCF/wK1zgIpafn7906dJYj6IdcjMN8xDj5FYor0GqqbEbTxM3QxbVcdMmMCTpnfwgE2iWZAj40yZwTHKlcUw4vW2v4O6MMCjUI41iTjXyy8r4zXG5gQpOrF69+tixY/w1qvROmIT7nr7tqtECj1tlamSXxQUnhNSckClk7LLTTgocGwAAAAAAAAAAEP9GjBjx008/lZeXb926taCgoLS0tL6+3mg0Xnrppb17954yZUrngDcgtmcHDhxACHXs2DErK6v5oz///LNnYdKkSVEdFmivIDjRflmt1rvvvtvtdgfftHXU19f73IoulUrvuuuuvDzxRZLbBttHyMXVS0B4OqZfFLvRcIob1hJUFdvM1I5PkOeZCXOAXQQyOU2nGovZ5sCkAclyg+jeap22Ew3cOK/u2EsqETMJ7K/qSnY5OyExOzGxpS0Jgli4cKHPSkViKr/ZNzdD4HFtdi4updephOwiwb2Kc9BuOugu+iQtu+wknESjXS3sWAAAAAAAAAAAQJuQmZl5//2xL97ZtlRVVSGEBg8e7PfRbdu2IYSkUundd98dzVGBmCgsLFy7dq3PxWG73R7NMUBwov16+OGHi4uLr7zyyl9//TWax2ULFjU0NCxZssTn0W+//dZTlieCrFarw+GQiLp+HXE4czrB/TbvSjNmYea76lwImWI3KIQQohjrP43/Y5sSTJqB3WoymSwWC0WFmxRou/k3BnF5mC6V9zaZxD/fn6tP8nM69VUZRfTGIHSsiotwdE9KCtDJG2+8cf78eZ+V8qQUdlmKS+RusnkP9fX1MplMp/Mqee1wuthl2u0SMngbYeU3Taa6oHspErxyTJ0qLOmYlx70QHGlrq5OqVSSJEz7CBlN03V1dSRJBi4QB/xyuVxms5mmaZlMFnxr4M3pdFosFoQQTAAXoa6uzmw2m0ymODljaVvi6mSvzTGbzQghmg5+6wNorq6uTi6Xw+mKOHV1dQ6Hw+FwBN8UePOcrmi1Wnjn+gVvSQACc7lcCKGcnJzmDx08eLC4uBghdOedd2Znxz73+MXBYrGEcxEsfPX19TiO+x3DhAkTKisrm6/3CP96oBAQnGinNm3a9Mknn/Tv33/hwoVRDk5gGBbgUaVSGfEflhiGSSSS+Pi96ta6XsYQd23aiV/vxofFw8jK7GtdDJduKEN+rUaaiRCS/Cuczv+0HmGXNbi6h6abBBPf4UHzOXYZxyQDkjJFDK+8sbHByc1g6JGc0lInJpPpvffea75ensgFJ9ITtDKpn49TiUTi+fdj19AM4+bNe1DIpUIGr1B4XSSlXHTQvVIzk/nN+sqGrO5C53bEieavHhAuIu/c9knCE+uxtD2e1w3eueLA/1444ulkr+3xvG7w6okDH3rhgA890eArIzB4WQAILC0tDSGUkJDQ/KF3330XIZScnPzKK69Ee1gXr5ifKgT4ylAqlQF2DHwJN1IgONEeVVRUzJw5U6lUfvbZZ9G/r1alasotk5SUNG/ePP5Dcrn8lltuMRjEJ/zxSyqVOhyOiHcrhvV9hizimnhHZcrzSkzb8g5RYqeqz5u/Z5tSibpfhweVuAEhJJFIKIoK59UrJcoqSW6OwtDkIcZkYzijPWypYJf7GzKzUsVMCNhjquE3h+TktPQcn3vuucbGxubrFbzgRG5ast/dTSaTTCbjP+RwuhjevI+kRJ2Q19bp/TZVyJVB98rp7nWPg7OBjIu3QCgoilIqlXq9oLIcgI+mabfbrdPp1Gp1rMfS9nhutUtKShJY4h7weW5dNxgMUn/xWhCYy+Wy2+0GgwEuqYgQRyd7bRa8euLQNC2Xy+F0RRyXy6XRaLTa2P8aanNIktTr9YmJifDO9QtmTgAQ2NChQzds2FBdXe2zPj8/f82aNTiOr169Oj29jaVeiGc6naArP63HZDLhOO53DDt37ly3bp3PDIkXX3zRk9kpOhPi4adju8MwzKxZs2pra99///3evXt7yuDEREJCgk9w4iJHlTC293ltDNP/H4qDyARC6O+69928At15iXd5IhMRsce0j98cnjI0nN6KLTWVdgvXmzFQFesACqu5eAmGUK9U//GSkydPfvTRR34ewDBZAjc1ITulxXoVPpxOr098hVzQh7DcezOSDD6xzmfmhOl8nZADAQAAAAAAAAAA4CI2bdq0hQsX5ufnMwzD3hpfXl5+xx13SCSSlStXXnfddbEdIYia7Ozsxx9/3GflkiVLoll2Au7ManfefffdH3744eqrr549e3asx9KuuJmGpxAvAIDUtyLFyNiNh9NAFpc2bmWbCtyQl3BHpDpnELO3jguApSiSL9GKDCd45FeX8JuXGzuL6+cY7x6BnKQknULhd7P58+d7sjH6kGkTJVIu1VKW8OAE6ROcEJTUXuYdnHCRwevYKzUKbZKGbZoqIDgBAAAAAAAAAAC0dx06dFi+fHlhYeGbb77pWbN79+4xY8bY7fbvvvvunnvuie3wQHsDMyfal+PHj8+bNy81NXX16tXRSRwGmlg/RK6/uCbeEdPFy6yRY7XvMIirgtDTcL9UErFUMEWWf+rJerZ5efIwDIX1j7en5jS7rJcpeyeJqaPAIHSMN3PiUmOa38327du3adMmvw/xq2EjhDqJD04I+hD2DU44/cRLmkvpmGytt3mWTeW1wgYIAAAAAAAAAACAi9msWbNSUlJeeOGFt99+21M/6bbbbpszZ05ycnLwnQGIKAhOtCMul2v69OkOh+Prr7+G5HFRRRU3S+j0EsI0LW4fRSb7nxeIP9imVtYpV3d9BPvfU+uV02lY8pBwenPR7oOmUrY5JDUHF1VYu8xstvCqYfduITjxxBNPMPwCETz8ghMonJkTCmFpnRQhp3VCCKVmGs4eK/Ms10BwAgAAAAAAAAAAAAghhKZOnTp16lS73c4wDFQrBDEEwYl25Pnnnz948OB///tfSB4XXc0TOt2GFCNiNx4vhXXv8Ju9DQ9KsIh9LLho16G6AraZo8nuqBIz0YF1uO4cQXHFzUQXnPiLN20CIdQnzU9wYt26dfn5+S31YOjIlZvGJZKOSUKrIDq8Jz0InDmB4xKJRELTTRNchKR1Qgil8MpOwMwJAAAAAAAAAAAA8KlUqlgPAbR3EJxoL/Lz81977bUePXq89tprsR5LE7vd/ssvv/DX4Dg+bNgwpVIZqyG1CusHyFXINfGOmO6p2I3GS7n1l1oHl2wqSdErU3tlBPs/bD5KuLkSOsOTwyqFjRDKrz7Nb4ouOFFY5VUNu2dKqs8GLpfrmWeeCdBD78uGFzc2TV/ISNJLcaETOMSldUIIyRVSh70pMOMSNnMiJYOram6ptZIOl1wpqMQFAAAAAAAAAAAAALi42Wy2/fv3s/fCevitvdp6IDjRLlit1rvvvlsikXz66acxn6tFUU3XVauqqsaPH+/z6Lhx4zZu3BjZI1qtVpIkrVZrZLsVQkKfVNnf463AHLJn3TYGoRgMxgfDuI/V8ZNNoa7qmVarzWczm81GUZS4iNGuKi5hFIawPoqeYf4V/qg8xS53UOoNjFxch0cvVLDL2QkJmMtl9f7k/eCDD06dOtVsvybdunWjVTrU2FRLI9Oga2kYBEHIZDL+ow0Wry1pt0vgU5DKJOjfQI/Naheylz5Vyy4zDFN2qjw91zcME88IgqAoSiIRk7mrnaNpmiAIDMN8zjCAECRJet65crk81mNpexwOB0EQCoVCKoUzzJARBEEQhNVqhc89EWJ4sncRsNlsCCH40BPHZrORJAlvW3EIgmgphyoIzHO6YrPZ4J3rF0mSwTcCAIBocTgcsT1NJQgCx3G/Yxg7duzBgwdb2jE6X9Pw0zFenDlzZu/evRHpKj09fezYsfw1Dz74YHFx8ZIlSwYPHhyRQ4SDIIgAjxYVFQXeQASHw+G5XBLZbgVwJzELEcNd9bZjU61kX0RGfyR+VLi2WimufkOy9DIV1Z2gfMdmt9spihLx6hFu+9+NRWyzq7Kz3CUnXOKfeyPl/MfCzXgYlJAp7m/KIHS81sQ2uycZfPqxWq1Lly4N0MNzzz2/vJDLkpSmV7c0EofD4fPqWRq9wj8MLfS1lclxdtluF/T/rEn2ikSeL6nQp8VFpROBCIKgaRoucYrAMAxBEHChRByXy0UQhFwuZ0PpQDin00kQhFKpxHE8+NbAG0EQDofDbrdjGBbrsbQ9sTvZuxjY7XaEkEKhiPVA2iS73e52u+F0RRzPvRRwxiKCy+XyfGXAO9evKN/zCwAAgcX8NNXhcOA43nwMDMOcOHEiwI7R+TiFs6h48fvvv999990R6WrMmDH84MTGjRs/++yzkSNHPv744xHpP0x6fVN2fpVKdfnll/Mf0ul0Dz30kNFojOwRlUqlw+GIeLfBWd9lrMe5Jt5RnfK8Oj7qYFO0/UDZV2wTQ5L+6Y8lKvy8RJ4rdCkpKc0fCuy36l1uxJVGGN1hlDE1rD/B4fNFbl7Mdlx2L3F/07Pm+kberTSDOnXy6eett96qqalpafcrrrhi/LWTF//5EbsmLzO9pZGYzWaZTMZ/VKH06rlDutFoFFRMW6lUINQU2MAlMiHPvWsvB79J2egYvAvCo1Qq2U8MIJxnwoROp4v5VLm2iCRJqVSalJQEtyKK4HA45HJ5cnIyXKcTgWEYl8uVmpoK1+lEiNnJ3kXB84Y1GAxBtwTNSSQSuVwOpyviMAyj0Wi0Wm3wTYE3kiRrampSUlLgnesXzJwAAMSVxMTE2J6mms1mHMf9juHLL7/84IMPHA6vy0e7du3yhCWi86MYfjrGi549ez722GMR6eqSSy5hlysqKmbNmpWYmLhmzZp4u40xLS1t+/btsR5Fq6H+YWz8pEkYlvAyio/IBELoZMPnDjd373+2blKioltkD7Gndh+7LJPIBhkGhtkhv+AEjmFDU3PF9fNXlXc1bKNXNezz588vX768pX0xDHv99dfLTGb+yk4pgqILHqJrTvBnTpBOQTd0p/IKYiOETOfrBB4LAAAAAAAAAAAAAFzcJk2aNGnSJJ+VBoOhvr4+amOA4ES8GDx4cMRzLjEMM3PmzNra2i+//DI7OzuynYOA3EzD0/yETkh9B5Jf3vL2UeV0158yr2GbOCbvaZgd2UPUknUnG7maDf0T+6pxVZh97q3hghM9EzskyEV2eKyaC05IMKyn93yOF198McBsu9tuu23QoEEb9h/jr4xScELBbelyCQpOaJM0Kq3Sbm0KgNdWQHACAAAAAAAAAAAAAMQLmDZ+MXvnnXe2bdt255133nbbbbEeS/vCWN9HLt71a7wjpnsidsPxdbx+lYvmKh90TbhVLU2P7CH2mPYyiEvBNDx5aJgdltnqztm4sO3lxi6iuyqsrmaXcxOTtLxJamfPnv30009b2lEuly9atAghdK62gV0pwbCOhgThRyd9ghMKwcEJGS84IWzmBEIoOSOJXa4prw2wJQAAAAAAAAAAAAAA0QQzJy5aRUVF8+fP1+v1M2bMKCgoaGmzf/75h12ura1lt5TL5X369Gn1UV6UqH+QbQWvHV8JnWyu86ctG9imTKLrlnh3xI+yp3Y/u6yRqvsmhvu/xM/phMIITjAI/V3DBSf6pHnldHrhhRcC5Cd96KGHunTpghAqq+HCJB2S9HJpCAnT+DMnJBgmE5yWXc4LY5CkO8CWfCmZyeUnL3iWTRCcAAAAAAAAAAAAAABxA4ITF60PPvjAbrfb7XZ+cezAtm7dunXrVs9yTk7OmTNnWm10CCFkt9t/+eUX/hqpVDps2DCFQtGqx21lzRM6TYufhE4IoWN179EMd/29e9IMOR7Cjf9ClBJl5fbzbHOIYbAUC/ejZk91CbuswmV9DZni+jlbX9/odLJNfsGJkydPfvnlly3tmJSU9Mwzz3iWy2q5mhMh5XRC3sEJuVyKYUJ35AcnXKQrwJZ8/LITMHMCAAAAAAAAAAAAAHjY7fZ9+/a53V63wHqqYUcNBCcuWjRNx3oI/lFU08XZqqqq8ePH+zw6YcKE9evXR/aIVquVJEmr1RrZbv2SkR/IeQmdaCzDIXmAicqhhbC4TpVbuSLkSjw1HZ8U+JWx2WwURSmVSuFH2VW9m9/sr+4b5ovvZph91VyobKAhiyTsLU5wCOhAWSm/2VWnZ8f2zDPPsP+czc2dO1ehUHg2LqvhghMdEjQBnh1BEDKZjL9Bo5UraCGX4cJfGX4Yw2EX+v+sN+rY5fqqhgZzAx7KPI/YIgiCoiiJBNIPhoymaYIgMAyL2y+CeEaSpOedK+flfAMCORwOgiAUCoVU8LQwwCIIgiAIq9UKn3siRPNk7+Jjs9kQQvChJ47NZiNJEt624hAEwTBM8O1AM57TFZvNBu9cvwLMhgcAgOhzOByxPU0lCALH/V+AGjdu3P79+5uvjyb46ejFZrNt3LjxiiuuyMrKCr83mqYLCwtPnz5N03ROTk5eXp5Opwu+28XO8/unJYWFhYE3EIEgCKfTqVKFW5A5KCkq1jAf81ZILOgZ0kYjFOFnJFqR/T0GcRcrO8mmOQh34OGFGpxgEHOg/hDbTMQT0pm0MP+mRY1VjRQ33aGfJl10h39VXmCXJRiWpVR6uvrnn382btzY0l5Go3HatGmeLetsdoI3cSFVowgwGM8lTv4GNsLBLstkEuFPRMKLKTgdLoE76pK5fGK0m644U2nICG2qRwx5/vdwvM1EU+IHTdOe/xD4wS8CSZI2m00qlUb5bpGLg8Ph8FwogeCECDabzW6322w2uMopQtRO9i5KEJwIh+dDD05XxLHZbAzDYMKnEoN/kSTp+cqAd65fcBYHAIgrnl9JMRyAJzjRfAwMwxQVFQXYMTqxXvjp2MRqtX788ceLFy+urKzcunVrmMGJxsbGZcuWffDBB5WVlexKtVp9++23z5kzp2fPnmGPN7iFCxfOnTs36GZHjx694YYbPMtTp059/fXXPcutd1khIaEpiZBKpbr88st9Hrr//vvTvMsAhE+lUjkcDqPRGNlum3EztfcjF+/We/W0JP1VrXzQEFQRe83Ww2xTJ8vpk3EbhgX5KaVQKCiKSklJEXiUIsvxBreFbY5Muzw9Ldxq2+vq/+E3r+7SL02fKq6rksZGdrlzUlJuZlN6qPvvvz/APebPPvtsTk6OZ/n8mfP8h3rlZgX4j21oaJDJZPwNJLiMXVarFML/23V6LbtMu5HAHXO7Z/ObjAOL+Pur9WAYplQq9Xp9rAfS9tA0LZFIdDqdWq2O9VjaHpIk5XJ5UlIS/NoXweFwKJXK5ORkCE6IQ1FUWloaBCdEiNbJ3sVJJpMhhAwGQ6wH0ibhOC6Xy+F0RTSNRqPVaoNvB7yRJFlbW2s0GuGd6xfMnAAAxJXExMTYXoppaGjAcdzvGD7//PMVK1b45BHZtWuXJ8obnR/F8NMRWSyWFStWLF26tK6uLiId/vbbb9OnTy8vL0cIde7c+aqrrsJx/NixY7t27Vq1atWaNWuWLl368MMPt/YdIikpKUIuKJtMJnZZp9N17ty5NQflJS0tbfv27cG3ayMY6zvI9TfXxjMx3eOxG44vBtGFde/y11ya8ljQyIQIe2r38ZvDk4dGoE9eNWyjUtdFLzRS4oNBqMhUwzb7GJuiJgUFBd9//31Le2VkZMyaNYttnjOZ+Y9mhVFzQiEP4RNYztvY5Wox/ZQPfs0JhJDpfGQ+5QAAAAAAAAAAAABAmzZ58uTJkyf7rDQYDPX19VEbQ7sOTphMpnffffett94ym83BtxZm5cqVDz30kMvlwjDsxRdffPrpp9mbBw8cOHDzzTeXlpY++uijR44c+fjjj2EG68XDdRxZP+S1JVjCEoTF0T3L5xp/NDu5+Qcpyv4d1CMjfhQX7TpY9yfbzFZ3ylR1DLNPG0UerS9nm8ONnTEk8o1zxqcadlrT/ZULFiwIkP3m+eef56eJOFfbwC5LMCwrObRy4g4nN8U4pOCEjFcQm3QKDU6k+AQnoCY2AAAAAAAAAAAAAIgP7TQ4UV1d/f7777/55psWiyX41oJ9/vnns2fP9lzlfP7555977jn+o5dddtlPP/00cOBAm822evXqpKSkN954I4JHB7FDMZanEfJK6ITkl8VuPL5oxlVUz4+doD7JD7fGgQ6bjxJuruBzRKZNHDCdpXgJly43dhHd1V9VlfxmH2MaQmjPnj0//vhjS7tkZ2fPmDGDv6aUVw07LVGrkIX2KcqfOaFUyAJs6UMmFxOcSDTqZQqZ69+IiKkCZk4AAAAAAAAAAAAAgLjQHoMTLpfrsssuGzp06Ntvv52amrpixYotW7aE3+3+/ftnzpzpiUwMGjRowYIFzbfp1q3bggULnn76aYTQsmXL8vLy7r///vAP3UaRJFlQUMBfI5VKe/fu3eYKyjHW97wTOnXCdE/Ebjh+lDR8Y3Vxkw86aq5MVvZtjQPxczphCBuaHIEITX51Ca9PNDQ1V3RXx6qr2WUJhvVISUUI+X2rshYuXOiTYq+Ml9apU3LIxaWjnNYJwzBDh8Sqs03JrGDmBAAAAAAAAAAAAABACFEUdezYMbfbzV/p02xt7TE4IZPJTp48yV5wHDduXHZ2Nr9ytQgkSd57773OfzPGPP/88y2VgnzooYeWLFniSSQ1d+7csWPHXnLJJeEcus1h/8UrKioGDRrk8+j111+/Zs2ayB7RarWSJGm1WiPbrQfG1KiJlbwVEof8BbfNjVCrHE4EhnGfMH/GNjEM76y6W/irYbPZKIpSKpVBtyQZ8qi5kG3mabrKSZmVDPd12FPFBSe66lJVFBL9p/yr8gK7nJOQwJDkzzt37tixo6Xtu3Tpcv311/scrszE5d1LT9AEHgxBEDKZjL+N3c4VZ8MloTwXjJs+wtCMub5BKhMUxuMHJypLq1vpjdAaCIKgKAoKw4pA0zRBEBiGBSjzDlpCkqTnnQsFsUVwOBwEQSgUCiiILQJBEARBWK1W+NwToVVP9i56NpsNRavg4cXHZrORJAlvW3EIggiQWxUE4Dldsdls8M71CwpiA5bb7S4tLRWypUwmy8rKEtgtRVGbNm1av359QUFBfX19RkZG165db7nllqlTp8pkISRIiE/Hjx//3//+t2PHjvPnz6tUqtzc3BEjRtx3330dO4abtVsEu92+cuXKt99++4EHHnjiiZDvA66trW1oaAi+XQvS09PV6ggkbHc4HLE9TSUIAsdxv2OYMmXKb7/9Fv0h8bXTn478r3C5XD58+PANGzaE0+GyZcv+/rvp3vnc3Nxrr722pS21Wu3NN9+8cuVKhBBBEI8//niASrwXpcbGxgCP7t271/MDKYIIgnA6nfyyARGkRasRw536EOgGq6MbQhF+CuGodx9yuLmy5+nSCciRbBM8QuHBiVOOEorh7ui/VNk7/D8lRdOlNi4Y0FebHk6fF6zc/15nfYLNZnvhhRcCbP/EE084nU4nr0wFTTNWB/fnTlTKAo/Hc4mTvw0//kzTtPCnI/H+tK6urEswCPqOTEznqmJUna2J+Pur9QjoXaEAACAASURBVHj+99rcVKp4wP5rwQ9+EUiStNlsUqnU5XIF3xp4czgcngslEJwQwWaz2e12m80GVzlFaNWTvYseBCfC4fnQg9MVcWw2G8MwUIhRBJIkPV8Z8M71C87iAOuLL76YPn26kC0feOCB999/X8iWv/322+zZs0+dOuVpSqVSk8n0119/bdiwISMj46OPPrrmmmvEjzimTCbT3LlzP//8c88PSRzH3W73mTNnfvvtt1deeeWBBx5YunSpkKtDEWGz2VatWrV06dKKigqEkN1uF9HJxIkTDx48KHoMmzZtmjJliujdWZ5fSeH3I5onONF8DAzD7Nu3z+8uHtGJ9cJPR4QQyszMDGd3giCWLVvGNidPnhz4BOvGG2/0BCcQQps3b87Pz7/88svDGUDbkpjYlAlHLpf36dOH/5Ber3/ooYdSU1Mje0SFQuFwOCLeLUII0Q1Y7XdcU2JQJS9QYfH1w/hM9R+8FtYnbZZWFsJLIZPJKIpKSUkJumV+hdcn2tCMISmK5JY2FuiMtdbNcLd+90nLDufvaOF9qmYkJv35558BPoV79eo1c+ZMnytETu98SkkJ+sDjqa+vl8lk/G0UCu73g1QqE/50OuV04DcxWi5w35weWXs3HmoaT2WDXpugULWN3zAMwyiVSr1eH+uBtD2eCRM6nS4id3m0NyRJSqXSpKQk+LUvgsPhkMvlycnJEJwQgaZpkiRTU1MhOCFCK57stQOeC+sGgyHWA2mTMAyTy+VwuiIOTdMajUar1cZ6IG0PSZI1NTUpKSnwzvULZk4AD7fb/corrwjZEsfxOXPmBN2MYZjFixcvWLCApmmZTPbUU0/Nnj07MzOzoqJi3bp1ixYtqqiouPbaa5944oklS5a0ucjrkSNHJk+efO7cOYTQyJEjX3nllWHDhjkcjoMHDz7//PO7d+9+5513fv/9902bNuXk5LTqSKxW68cff7x48eIwk9wcOXIknMgEhmF9+0YmI3pCQkJsT1Pr6+txHPc7hg8//PC9997ziekeOXLEc2dtdH4Uw09HhBBKSEgIvlHLVq1aVVNTwzavvvrqwNtffvnlcrmc/b588803YxicyMrKWrx4sWe5d+/e0Tx0RkbGoUOHonAgyb8i3jNDrEEMV/8Z09yN4ZqIHyUcLtp2gfidbSYrL9UrskPqQfird8pWzC4nyZOMqgh88pYR9fxmri5Z9N/RzTBW3klqkkr14tPPBNh+0aJFzS+uUbTXfegymTTweJq/elKcW3bTtPCnk5Lm9aO3vlZo3o+OXbioBsMw1aWm7J5hhWOjpvXeue0BvHqiSXhiPZa2B169cMCrFw546cLhed3g1RMH/vfCAa+eaPCVERi8LMDj66+/PnHihJAtp06dKiTj+qOPPvrOO+8ghGQy2XfffTdx4kTP+oyMjEceeeSqq64aMWKEyWR67bXXaJp+/fXXwxl8lO3bt2/8+PGetD+33HLLF1984bl3QaPRjB49eseOHbfffvs333xz9OjR8ePH//HHH2lpaa0xDIvFsmLFiiVLltTX1wffOhiBU2Factlll0UqDINhWGw/lwJ8ZUybNm3atGk+Kw0GQ0T+BALBRzZCCIWZEu6TTz7hNwcMGBB4e41Gw9/mu+++48c2oqxDhw7z/jVp0qRYDaNNYuyI+JxrYlqkuiN2o/Gv3Pqzm3GwzWxdiwnHwkQzdIn1DNvspotMJZWzVq8Czjla8VMxLA4HzUtxU158av/+/S1tPGDAgKlTpzZf7/IuCiQLfQo/zgtOUO4Q6gEYUnX8Zm11oPRofBldvE4aLpSEdesBAAAAAAAAAAAQ52iafvXVVwVu/PjjjwfdZtmyZZ7IBELoueeeYyMTrG7durFXw9944402FJw4ffr0lClTPJGJvLy8jz/+2CddIY7jq1atys7ORggVFxdfffXVrZGk6OWXX87MzPzkk0+GDh2anBxuHo7Gxsa1a9eG08NNN90U5hiAQDBzAqHwZqkcP3788OHDbDMjI8NoNAbdq0+fPmw+GYqiNm7ceN9994keA4gN4gtE8wKJ6mlIEncTuksbt7LLOCbP0o5vpQOVEefsbi4DYJ42MsGJUmsdu6zCZalK8ZO+6x0OfnPbxk0BNl60aJHfOZgu73CCDA85vus1cyKU4ERyqg7DMLaEQJ1JaHCiQ5d0frOipEr4QQEAAAAAAAAAgDZn3bp1x44dUyqVI0aMCLxl586dhw4dGnibw4cPz5s3z7OcnZ09f/58v5vddNNNgwcP9qQSevrpp0eOHDlkyJDQxx5VNE3fdddd1dXVnuYbb7yh0fjJCKLT6RYsWDBr1iyE0JEjR+bMmcPmq4+UPn367N27t1evXgih6urq/v37e6pNiPP555+zJW/T09P79euXnJxsMBgCpz4+ceLEpk2bEEIYhv3nP/8RfXQQEghOIBRecOK7777jNzt37ixkrx49evCbP/30UzsMTpSXlwt5uSQSyb333iskjt0S8l+ie/CDIaXW/3FXrzEFJb+NibPUloT7gslxhG2mq0YxlIJEoQ2SJEmKooK+escbvCZL5iqzI/KCn7Zwk4pytAYXKb6yWXWjhd88c/x4S1sOGTJk/PjxfsdP2L0iHBLEBH6aJEkyjNc2/JkTJBn8heXTJags5qY0YqaqBoH76lI0CrXCSTSV9T536nxbycFKkqREImkro40rnsz1ntoJsR5L29MqXxntBvvqeQqfgJCwX7iQjEIEeOeGw/O6wasnDrx64SBJUiaTwasnAvuVAa+eX/CyAIZhXn75ZYTQrFmz3n777TB7c7vdM2fOpKimCpSPPfZYgPwrDz/88F133YUQoijqnnvuOXr0aJz/KFuxYkV+fr5nuWfPngFSqtx5551PPfWUJ9vPRx99dPvtt48ePTqCI5k8eTK7bDQab731Vn5931B9+OGHCKHc3Nzly5dfd911AkuAPProo56FIUOGeGaKRISQq2qtiiRJHMefffbZtWvXMgwTdPuGhoYojIoV1++QNmHPnj38psDa2l26dOE3d+/ezTBMm6uWIw6btoyiqDNnzgTe2GPBggVXXXWV6N/qNpvN6XSaTCZxu/uVot7eUc9dN6+xjq24UI1QdQQPEb46+XdIwX3oMLW9i6qKQu3EarVSFMVG0VvyJ8XNH5JjMssZSxEK+VjNlTRwx01yS4uKxPd5rNbrH4BueRLijBkzWjrQBQvBb1ZXVhYVBboAV1ZWhuO43c7NKXHYuR6sVltIz0itlVnMTctnT58Xvm9SB31lSdO/a/Ffp8N5GaOprq5OoVD4vWsDBMYwTH19vVqtViqVsR5L20NRlMVi0ev1cf4rIj6RJGm1Wqurq/HQs96Buro6k8mE43g7OSGMrNY42Ws/LBYLQghKOotjNptlMhmcrohTV1enUqlUKlWsB9L2UBR1+vRpgiDgneuXT2VX0A5t2LDhr7/+kslk4dznylq7du2ff/7pWZZIJLfcckuAjW+44Yb777/fcxGgqKho1apVs2fPDn8MrYQgiBdffJFt3nLLLQFORBUKxY033rhq1SpPc+7cuQUFBa134irw5m+/9u7de/To0TFjxmzatEn45yRN0+vXr/csRzanU1lZWWyvw5SVldntdoH14fmiE1OBH95hYRhm7969/DVZWVlCdvRJ/VRTU1NeXi5w37ZORPnxSZMmhfOp1NjY6HQ6U1JSRPfQjFvn3Ia4y/5SpeGBnOQOAXaIBabCfAj9WyJBLknq0fEaDAv5apHFYqEoymAwBN6s6nQ1+vcqfWd1bueOuaEeqDknTdWd4S7rd0vuGE4xokI3xW+6bYTfzYYPHx7gVMNd7VURqEN6Wk5OoFg6RVEymYwfb9do/0GoKVeVVCYP6RmlZSRVljeFr0mCEb5vZl4GG5ywVFkjVdOptWm1WoVCodPpgm8KvNE0rdVqtVot/NoXgSTJhoaGhISEcGZVtltOp9NisSQlJUFoRwSNRiOXy7Ozs2HmhAitcLLXjpjNZoRQYmJirAfSJtXV1clkMjhdEUej0ajVagjtiECSpMPhyMzMhHeuXzBzop1jGMZTbeKee+4J/+Z3hmEWL17MNgcNGtShQ6CLPxqNZvjw4b/++qun+dprr82aNStub9xZtWoVvwjuddddF3j7CRMmsMGJw4cP//TTT1dffXUrjS09PT34Ri348MMP+/fvv3nz5pC+Yvbs2XP+/HnUCjmd0tLSYnsdhqIoiUQyevTonTt3hrRjdH4Uw0/HsFRVVfncoiVw5kTzuvZFRUXtJDjB/uTOzMzctWtX0O01Gk3zlyvUIzocjkiet9m/ZxznuKZqsj6hR8tbx4bJcZhwc+n5cvSTkpJEFhSiKCrwq2dy1tZTZrbZM7FHRF7tfxqq+JPNuqVkhNOt0zueTxP+gxOvvPJKgKMoGp38ZqJeF3hIer1eJpPxt1EqFOwyw4R2IcDYwYDQWc+yuc4mfN/s7lmHth31LFeX1ep1ekno1TKijyRJpVIJt4OJQNO0y+XS6XSB82kCvzzZ2BITEyE4IYLD4UAIJSYmQnBCBKfTabPZEhMTITghQuRP9toTTx42ePXEoShKLpfD6Yo4TqdTo9FoteKryrVbJElqtVq9Xg/vXL8gONHOfffddwUFBTKZjK0SEY7ffvvt2LFjbHP48OFBdxkzZgwbnDh9+vQPP/wQ9KJ/rLAlvhFCGo2mb9++gbe/4oor+LUw33333dYLTih4F09CUl9f//333x84cCDU4Pe6des8C8OGDevUqZO4o/ul0Whi+3Gt1+txHN+xY0dZWRmboCyAAQMGRDOzE/x0DEvzrEQCgxPNZw94onPtilQqDWc+ROwwjI1f9keCaWbGbCwtK23cwm9m61rMGxi+k9ZT/GaeLjLVsM9aa/nNXK3I4IpHg5MrF8HQNO1dH9tj/PjxV1xxRYBOXJSb35SFfvuDVMpdcqJCKYiNEEo2cjfl1ZtsNE0LvICV0ZkL71EkVXOuNi0nNaRDAwAAAAAAAAAAcY5hmJdeegkhdMcdd+TmRiCjw5dffslv9u/fP+guAwcO5De/+uqr+AxO7N+/v7i4mG327ds36BUGo9GYlZVVVlbmaf7888+1tbXJyWFdq2mJ6HvF1Gr1zz//3LVr15D2YhimlXI6xRWBQZco3ywFd2aF5ezZsz5rBIbCmucB98ynBm2A81dE8Yo/KycgaWSuxUeQmyHLrb+yTb28S4I8r/UOd7KR+z7DMUkXTQTOABBCpd7BiZzwghP1vMIPNEEgfyWAnn766cCduNzewQlp6MEJXjzDHWJwwpDKBSdomjbXtlg2w0eHLl7TIStKKkM6LgAAAAAAAAAAEP+2bt1aUFCAEPr888/79+8/e/bs1atXV1RUBN3RL5fLtWHDBv6aHj2Cp83o2bMnv7llyxYh96pH3zfffMNvCnlqyPvZuVyuH374IcLD+pfo4IRCoRg0aFCoe+3Zs6e8vBwhhGHYjTfeKO7QQBwIToSltrbWZ43AHBrNZydFuRI6EI2xfsRvYpr7YjWSACpsO1x0I9vM0U1u1cPxZ050Umcp8cjU4D1rrWOXE+WqBHlY2fPNvKkStL+CE4MGDRozZkzgTlze4QRZ6MmRpLj4mROGFK90xrU1jS1t6SOji1ditIqSqpCOCwAAAAAAAAAAxL//+7//8yxQFHXkyJEPP/zwnnvu6dSp0zXXXPP11187nc7Au/s4evSoz53EQvKxZ2Vl8RMKNTY2svW044pP+QGBqea7d+/ObwrJ1i5OlG/e//bbbz0LI0aMaCdZ9+MHBCfCYufdi+0hsPoojuM+Fe1h5kTbQO5BLt6XimIkkvWJ3WhaVNq4lV3GMLyTbmLrHcvutp+3c7chRCqnE/JO6xTmtAnkE5zwV3BCSD5Kn7ROchEzJ/hpnSjxaZ0QQnWCgxNpOUacN9QLp2HmBAAAAAAAAACAi8q2bdsOHDjQfL3b7d62bdutt97atWvXzz77jPGXR8Gv/Px8flMulxuNxqB7YRjmU8x53759Ao8YNVar9a+//uKvEZimPiMjg9/cu3dvJIcVIwzDbNy40bN8Eed0ilsQnAgL0ewSp8DghMvl8vk0tFqtERsWaDWM9UN+E9PMjtVIAnC466rs3DdfmmqoEm+VDIAep6wlNMNdZM/TxmlwosbKXcp3E74JkTp37jx16tSgnfimdRJRc8Jr5oQ7wJbNJad61VqsrbEIPagMT83iXkCYOQEAAAAAAAAA4CLDTptoSXl5+fTp08eOHdu8gqxfhw4d4jczMjIE3s6fluaVveDvv/8Wslc0HTlyxCfZlMDpAj7hmVOnTl0EJej37t3rKaQhkUhuuOGGWA+n3YHgRIQJD074rBFdhh5Ej+svRO7hmrJ+SH5Z7EbTorLGrQzDXfXO1l3bqoc72ehVDburtktEurW4HPUkF/wLPzhxnpeErXlapyeffBIXEGloltYp5OAEHk5ap1Qdf8ZVXbXQmRMIoQxe2QmoOQEAAAAAAAAA4GLy888/C7yLf+fOnYMHD/7999+Dbnn69Gl+U+DcAoRQSkoKv3nq1KmWtowVn6eGBD+71NRUftPlcjUvx9vmrFu3zrMwYsSIjh07xnYw7ZA01gNo27Rarc8amhZ0tbF5XFFgsQoQQ4ztA34T0z4Yq5EExs/pJJNoMzRXtOrh+AUnUhUpBnlSRLo9410NO1trCKc3giBsbjf69x4Hn7RORqNx+vTpQvpxed9ZIJOGVXMi1ILYUhmuS1RZ6psGLzytE0Ioo0van780LVcUQ3ACAAAAAAAAAPxzOV1Oos3fDN7maBLUmAQLvl0LJkyYYLPZzGZzZWVlSUnJiRMn9u/fn5+fX19f33zj2traq6666osvvgh8m7zPZXefZE0B+Ny47HcMsdV87ojPbI+WNL8nOw6fXUgYhmHLnkNOp5iA4ERY9Hq9z5rmVSj8al6EB4IT8Y4qQY5fuaa0O1K07kV/cczOEw0kFy3I0k7AsVaclONm3CVW7istgjmdSr2DE2HOnPjgo4+QTMY23d4zJx555BGhc57Cnjkh5dV+CLXmBEIoOVXPBieEp3VCCHXozJ1F2a0Oc3VDojEh1KMDAAAAAAAAwEXMWm97+8GPdm/YT5FU8K1BRCWk6G556vr/PH6dT4lW4dRqtVqtzsjIGDBggGeNy+Xavn37ihUrtm7d6pNc3eFw3HHHHb///vvgwYP99kbTdGWl1419Aq8boGbJUeKwyuz58+d91gi8LNk870scPruQ7N+/v7S0FEFOp9iBtE5h0el0PmscvKK7ATQ0NPis6dChQ2TGBFoHY1uBEHcpGdPORkh8SL/1lFq38putndPpLFFG0twdJXm6rpHqudRaxy5jCGVrxM+coCjq7Y9W8tfwZ05oNJrZs4XWDvEpiB1mWqdQZ04g75rYtaGldfK6CQLKTgAAAAAAAACAj4U3vrZjbT5EJmKiwdS48qk1m97ZFsE+ZTLZNddcs3nz5oKCguHDh/s86nA4pk6dWlNT43dfu93ukxxF+F3F8R+csNm8KnFiGKZUKoXsKJfLfdY0v8LZtnz77beehVGjRvmU+wbRAcGJsOTm5vqsEThzovmkp+zs7MiMCbQGdzmyb+GaeCekvDp2o2kRw7jPNf7INjWyjsnKS1v1iD4FJ/J0rVIN26jSqaW+33/Cff311xfq6vhraN7X8H333ZecLHRahm9BbGlUC2IjhAwpXHCiziQ+OHEByk4AAAAAAAAAAM/pv0qP7oy7wsXtzaZ3IxmcYPXv33/37t1Lly71KTZ5/vz5lspoE4RvrUrhMyfc3j/2LRaLz7yNmPO5eqlUKgVOWGmezT4OQy/CMQyzfv16zzLkdIoVCE6EpWfPnj7v3qoqQfcjNw9O5OTkRGpUIOIY20cIcV8tmPZ+hEK+Kh0FlfY9Djd3TT9bd11rT+/gByfUuLqjKmJBZn7NiTBzOr3xxhsSjYa/xv3vSYZMJnv00UeFd+Wb1in0mhP8mRMMg2g6tBOUZCOXSq6+1ip87kWHLun8DyuYOQEAAAAAAAAAfPWVbfga60Wj9f4KEonkySef3LBhg88UgQ8//LB5AQbkLx+78OCEy+XiN+MtMoGaPTvhk0J8nhqKy2cn3IEDB9icTlOnTo31cNopCE6ERafTZWVl8deUl5cL2bG6uprf1Gg0eXl5kRwZiCDahOwbuCaejpRx+oFV2sib3oGwbO01rX3EYmsJu3yJrisWuVhIGS+tU7ZGfHDixx9/PHz4sMT7i5b+t+bEbbfdFtKkpfDTOkm94xmhTp7gz5xgaMZcaxW4o0qrTOQFNipOw8wJAAAAAAAAAOB07Z8rlUNl1hjrPiRi+Rj8mjx58meffSaRcD/MSZJcs2ZN8y2bX6+X8SpZBuZzBV/4vISo8Qm0SKVC//ObByfadA1dNqfT6NGjId9+rEBwIlwDBw7kN5uXlPHr7Nmz/ObgwYOFfxCAKGNsHyOGKyWCqe9FmNAvpGhy0dYLtt1sM0XVXyPr2KpHrHJUm11cbsE8bcQKTtQ4rFaKC+PnaMUXnFi6dClCCPcNTjSldZozZ05IvfFnTuASiST00wupdzwj1JrY/JoTCKHampAyO3E1sS/AzAkAAAAAAAAA4ElI1c989Y5Yj6Jd0yZqZr9+V2sf5aabbvK5FLB58+bmm4muMouaXcGPw8v3Ps+u+TSRlpAk6bMmDp+dcBs3bvQsQE6nGIIL4uG67rrr2H9lhNCpU6cCbMzymTI2cuTICA8LRArdgIivuKYkEalvjt1oAjln/cnNcF8n2dpJrX3Ek9ZifrOVCk6gMNI6HTp0aMeOHQghv2mdrrnmmn79+oXUIb/mhIicTsi75gQKvSa2IVXPb9ZVN6JeQvft0CXt7z0nPMsVUHMCAAAAAAAAALzdOOfaLn1zdnydbzXbgm8NIiqjS9p1s68ydkqJwrEWLVq0fv169r7hgoICgiB8LrLLZDKlUskPSAgPTlitXkkOkpKSwhpuK/AJToh+aigun51ABw4cOH36NEIIx/Ebbrgh1sNpvyA4Ea5JkybhOM7WuikoKBCyV3Gx11VdeA/EL2INYriTEkw9A2FxGhMubdzKLuOYPFN7ZWsf8RSv4ASO4Z01OZHqOVLBiTfffNOzwE/rxFAUQ5IIoSeffDLUDvlpnUTkdEJ+0jqFGpzQ8pu1NRbh+2Z05mZO1Fc1EI12tU5oxkwAAAAAAAAAaA/6je3db2zvWI8CtC61Wv3EE0889NBDnibDMJWVlZ07d/bZLDU19dy5c2xT+BV8n0KzIWWTjo7U1FR+0+l0MgwjJPdU8xq6nTp1iuTIomjdunWehTFjxhiNxtgOpj2DtE7hMhqN/HkPZ8+era2tDbA9Qsjtdh85coRtduvWLdTbt0GUMHaG4GUexDRIHadzPK2uc7WOv9hmhmasTOI7AzHiTli54ESuJlsukUeq51JewQkcwzI1YuLwJpNp/fr1TZ1ouOCEp+DE4MGDR48eHWqf/LRO4oITuCTM4IQOk3CnC3WhpXVK4zcrT0NmJwAAAAAAAAAA7dH06dMVCgXbrKry8wO5R48e/KbZLLRYt88V/Di8fN+zZ09+k2EYgc/OZzOJRBKHz06gDRua6stCTqfYguBEBMydO5ff/OOPPwJvX1RUxJ8GNXv27FYZFgiffT2iuavkSH07kiTEbjSBlDX+gBDDNrN1rZ7TyUrZLti51ECXRK7gBPKeOdFRnSiXiAkDrFq1ik2byJ854SZsCKF58+aJ6NMrrRMuKq2Tz8wJKrSC2FIpnpDIPZeQak504NWcQAhVQNkJAAAAAAAAAADtklarHTJkCNvE/d192KuXVxplgVVmEUJ1dXX8Zvfu3UMfYOvyeWpI8LPzeWq5ublyecRuVI2mQ4cOlZSUIISkUun1118f6+G0axCcQAghhmECNIO69tpre/fmJv2xkbeWeJLge6SkpMyaNSukw4GoYZz5XANTYJoZsRtLEDUOLp+YEk9JUw9t7SOet59neOGQCBacQAhVObhsReKmTdA0/dFHH7FNiVLJLjMOxyWXXCLuu8dNexXEFtGDXOaVTM9JUqH2YEjl5sTUVoeS1sln5sTZmlAPDQAAAAAAAAAAXBz69OnDLqek+Kl1wb/WhxAqLy8X0q3NZvO5gj9s2DBRA2xFXbt2VfKukyDBwYmysjJ+c+jQVr/61Eq+/fZbz8LYsWMhp1NsQXACoWZV6V0uV0i7Yxj23HPPsc0tW7YE7oFNNYMQWrBggca7VC+II9Rxblk+DElSW940xixkCbtsVA3CWv+tXUd6zVJMU0Tyo9zp5i7Za6SKAFu25KeffvLUNWqOYZgHH3zQ720RQcmlXGjBSYUcV0AI6bReX/+WRqE5K1nJvJrYdaYQZk4kGhMUau7FrCk3hXpoAAAAAAAAAADg4sAGJNRqdU5OTvMNxo0bxy/DcOHCBUrAdYCzZ8/yb3qWyWQD/5+9O49vos7/B/7Jfbdp2vRuoeW+ESoqsAoooAKCrOK967WrfL+667Guqz52Vdwvnqjsb1cQ0fVAQAQURVEQREGRS25oOQvl6JmmTTJJJsf8/pg6maRJmplcrX09/5pPMvOZT9M2Tec97/d75Mh415pocrk8pNJ1SNQhklOnTvGHnTDuEiPu2ixqOqUdghOEtAtO0DQtdIZZs2ZNnDiR3bZYLMuWLYu05/79+7ds2cJujxw5kmu/A50OYyO+84GhYmDkXdPM5Wt0+wJV/zKUiaywFEmzJ6jOYJbSmMDJaX+g2JG4mk4LFizgD/mfDGQy2R133CFuYWpe3oPbIyY4YQzuQW21OYXOkJ3HC07UCwhOEEJyikzcduPZDrrjAAAAAAAAAPxaORwOduOKK66QhiuNUFpaOmzYMG5I0/Thw4c7nDbk8v24ceO0vELTncd1113HH/Kb40bB/+okEsk111yT4GWlxO7dAsYSlgAAIABJREFUu7maTtOnT0/3cro7BCcIadepJiT9KkZvv/12dnY2uz137tywyRMMwzzyyCPsddKsrKwlS5aIu30bUsFTxe/iIJH3S+NaomvhpU0QQjKVvVJwUisdCE7IJXKdPJEJQB5ecEIhPDhRU1Pz5ZdfBj3EC07kmM0mkyn0mNjwgxNO4RWZCCGZGUHBiZZW4cEJXlkna7PD6xHQtcJcks1t19cgOAEAAAAAAADdVE1NDbsR5d75kCv4u3fvjrQnZ//+/fzhTTfdJGp1STdt2jR+XkgsX1pjY+P584G7eCsqKsrLy5OyuCTjajpdddVVZnPnrZLSTSA4QQghe/bs4Q9jjBaGKCkp+eijj1QqFSGkqqqqfUoEwzB//etfN27cSAjRarUff/xxJ2yJAwH8mk6EEPmANK2jY63u4/xhRkqCE/zMiSylUUIkUXYWivYHrvsrpfIoe4a1aNEiny/4kj0vOJGbmxd6QMxUvOCEz+/3+vxRdg4rJDhhtVFCZ+D3nGD8jKDKTrklgTKayJwAAAAAAACA7snn87EX6PLy8qLED+666y45r7zzzp07O5yZv49Op5s5c2Z8K02W4uJift7D/v37Oywks2PHDv5QdFGKtENNp06luwcnLBbL008/zdVZYv33v/9duHChzSasXgoh5Morr1y1apVeryeELFq06JZbbuG65ezbt+/yyy9/5ZVXCCH5+fnffvvtlVdemYivAJKF8VYFBhI1kZemby0daPUEmivIpVqdojAFJ+VnTmQpxfSsjoKOI3PC6/W+8847oY/yghNavfgkD3VwO2uX8MpOGpVCpQxMEmfPCUKIpUHAO1VOcSBlxFJrFZR1AQAAAAAAAPDr8NlnnzU2NhJC5s6dG6XsUs+ePW+55RZu+MUXX/CrRrfHMMxPP/3EDe+9996srARfMEmgv/3tb9y20+lkozVR8L+0nJycu+++O1krS6aff/75+PHjhBCFQjFjxox0Lwe6a3Bi5cqVw4cP79mzp9lsnjNnTsizNE3Pnj3bZDKVl5ePHDmS/ZGN0ZQpU7Zt2zZq1ChCyPLly0tKSkpKSnr06DF8+PCtW7fK5fI//vGPhw4dYneATs3Dy5yQ9yWk8xbgaqEDP6IZynKS0CSGSIIyJxSJbDhBgss6KQWWPvv000/5aYbt+aN+kohOFRycENd2gp88YRVe1smUa+APm4S0nTAXBco6+X1+y4XmKDsDAAAAAAAA/Po4nc4nn3ySEHLxxRffeeed0Xf+61//ynWkOHPmTPTyRzt37qytrWW3NRrNX/7ylwQsN2l+85vfjBkzhhuuXr06+v6ff/45t/3QQw/pdIms7x0ipFp+aHmMOHA1nSZOnCi66DckkOB6Kb8Ow4YNe+qpp2LcOScnp+OdeAYPHrxt27Z169Z9+OGHP/30U21trUajGTVq1KRJk+69994ePXoIXy+knp94jwVG8s5cgItppQOZE5kp6YZNCLHSLdx2Yrthk+CyTgqJsOBESCtsFsPw6i+Jj00QjTIkcyJMa5kOGQ2a+l9qMbWIaIgdnDnR1NAa+7HmkqB3s4aaxtxSYe9vAAAAAAAAAJ3NwYMHd+/eXV5ePnbsWH4rhfYYhrnnnnsqKyvNZvPy5cvDtsLmGzx48D333PPWW2+xww8//LCioiLSzu+++y63/dRTTxUXF0fa8+TJk3/961+3bNlC0/SkSZPmzp3bq1cqanSHePXVVy+77DK/308I+fTTT+fPnx8pj2Tv3r1cGfy+ffs++uijUaalaXrevHnr1683GAz33ntvSOuOWLjdbv4wbGdfcVauXMluoKZTJ9FNgxN9+vTp06dP8uaXSqVTpkyZMmVK8k4ByeU9TZjAVWOJovN2w3Z4znv9gb4FqWk44fBSbn/g74QxoZkTDGG8/kAsQSkT8DZ1/Pjxb7/9NswTfoa3mbDMCRFlnUho5oTgnhNZOTqpVOr/5SUSVNbJXBx0U0DDWYvQswMAAAAAAAB0KsuXL7/99tvZm+vHjBnzxhtvDB06NOyeLpfr7rvvXrZsmVqtXr16dYz9nF944YV169axldvfeuutJ598MmwX5Zqamvfee4/dHjFixGOPPRZpwvPnz19yySVsXSlCyIoVKzZs2PDNN9+MGDEilvUk0KhRo/70pz+9/vrrhJDGxsZFixY99NBDYff85z//yW7I5fK33npLrVZHmfbWW2/l+jp8/vnn77777u9//3tBC3M6g27lpCjBF0/C2rt3L1fTSUTIBJKhm5Z1AuiAtzJo2Im7YfNrOhFCMlMSnLDyajqRRGdOePxBXaaVQnpOvPHGG9HrP5L4ghNqhYI/dNFighNGQyA40SK8rJNUKs3KCeROCivr1C5zQujZAQAAAAAAADqVRYsWcWV/fvjhh5EjRz788MNceSWWz+f77LPPLrroomXLluXl5W3cuHHs2LExzm8ymZYtW6ZUKgkhDocjbNIATdN33XUXew29oKBgzZo17P5hvfbaa1xkgtXc3HzDDTeEXJFPjRdffPGSSy5ht+fOnXv69On2+yxZsoQLNvzrX/+6/PLLo0x4+PBhbmfWs88+K3RVJ0+e5A/DrkoErqbTpEmTUNOpk0BwAiAMJjQ40TdNC+lYK32CP8xISVmnZjo4OKFIZH8nfk0nIqQhttPp5G5SCMULSMRR1Sm0IbbYnhOBHEmr8LJOJLiyk0VIWSeDSa/RB+5uaDjXJOLsAAAAAAAAAJ1H795BV0K8Xu/rr7/eo0ePCRMm/OlPf3rooYdmzZpVUFAwffr0ysrK3/zmNzt27Bg9erSgU4wdO3bp0qVyuZwQ8sEHHzzxxBP8QkPV1dVTpkxhG0qXlZVt3LgxSkEnQkjY7ranTp1aunSpoFUlhFKpXLt27eDBgwkhDQ0N1113XXV1Nfes1+t96aWX2N7XMpnstddemz17dvQJ2RSTkEf8wfehRmez2T788EP+I+vXr6+srIy0f+y4vhqo6dR5dNOyTgAd8FQFtmWFRJqZvqV0gB+cUMmMall2lJ0TpdkT1Eg50ZkTQW2OYs+c+OijjyyWCHWKmM5U1skQCA84KLfX55fLhMWJTbkGcqhtW1DmBCEkp8hUU9XWMLyhBsEJAAAAAAAA6NqeeeYZruwSh6bpb7/9ll/5uaSk5IUXXrjllluiN6WI5Le//e3XX3998803NzQ0vPDCC59//vm0adNKS0sPHDjw/vvvOxwOQsgNN9zwxhtvhC36xBcSTeGsX7/+nnvuEbG2OOXk5GzZsuW222778ssv9+/fP2jQoFtvvXXIkCGtra3Lly8/dOgQIaRnz54LFy6cPHlyh7MNGTJEqVTSNM09UlFR0WFvj8bGxi+//NJqtR47duyzzz47c+YM/1mHw3HxxRdPmzZtxIgR2dnZ48aNKysrE/pl7tu3j41wKJVK1HTqPBCcAAiHnznRqbthkxZecCI1DSdIu8yJxPacoH1BwQmFNNa3qYULF0Z6KjibMo6yTqENscUFJwJlnRiGtNic2UZdlP3b42dOCGqITQjJKc7mghONZxGcAAAAAAAAgK6tsLDwp59+evzxx1etWuVyuUKeNRgMEydOvPXWW6dPn86mPog2YcKEysrK//u//3vnnXcOHTrEXrUnhEil0smTJz/++OPjx4+PZZ5HHnlk6dKl58+3/W/eu3fv06dPezyekCvyqWQ0Gr/44ovly5e/+OKLe/fuXbx4MfdUjx49HnzwwdmzZ0fqlR2ioKDgxRdffPTRR9lsCZPJ9O9//7vDo+rq6j744AN2u2/fvn37hilh0tDQ8PXXXxNC8vPzRQQnuJpOkydPzspKZAkQiAeCEwDtMDbiOx8YKjpvcIJhfDZPoO5epjKJbd75mnk9JzQyjVqmSuDkIWWdYsyc2Ldv3/bt2yM9W15Wxv2Fj6/nRAKCE0ZeQ2xCSEur8OBEroHbtrU4abdHqVJE2Z/PXBLIralH5gQAAAAAAAB0fUVFRUuWLFm4cOHevXurq6spipJIJDk5OX369OnXr59CEeu/zB0ymUzz5s2bO3furl27Tpw44Xa78/PzR48enZ0toI5FQUHBoUOHVqxY0dDQcPnll48dO/b2229funRph+kFyXbzzTfffPPNJ06c2LNnj8Vi0ev1Q4YMGTJkiNB5HnroobFjx27YsCEjI2PmzJkFBQUdHjJo0KANGzaIWnWsiouLH3/8cULI1KlTk3oiEATBCYB2PFX8m+slnThzwuap9jOBRLkMZXlqzmvlZU4ktqYTaVfWKcaeEwsWLIj0lFQq7d2r15lzbQmeCW2I7Ym0ZxT8nhOEkBbhbSf4mROEkKYGW0FxrH2czMWBD0zNdVYv7ZUr8YcAAAAAAAAAujy9Xj927NjYO12LplKpxowZM2bMGNEzGI3GP/7xj9wwIyODEFJaWpqAxcWtV69evXrFW5mjoqKioqIiIetJlPvvvz/dS4Aw0BAboB3vkaBhJw5OtAR3w85MSTdsEpw5kZXQmk6EEDq050THl849Hs9HH30U6dnJkycb9HpumPaG2EZDUOaEtVVwcMLEy5wghDTVC6jsZC7O4bYZP9N0oTnKzgAAAAAAAACQbPv27SOETJgwId0LAUg1BCcAQjFeXjdsiZrIO0XgOqzW4OBEyjInmunAFW1jJ8ic2Lx5s9VqjfTs/fffz+92FVfmRHCSgVNcz4l2ZZ2EzhCaOSGkJ7Y5OMcCPbEBAAAAAAAA0ujYsWM7duwwGo2zZs1K91oAUg3BCYB2PLzMCXlfQmIqK5QW/OCEVp6nkBqi7JwoDGFaPIFb9U2KBDcREtFz4pNPPon0VGlp6ZQpUyQkEJxg4ghOqJKROSGirFNo5oSQ4ERJDn/YUNMo9OwAAAAAAAAAkCiPP/64z+f7+9//npmZme61AKQaghMAIfzEeyww6sQ1nUhwWaeMVNV0avW0+phAcoNRmeC/nUIzJxiGWbNmTaRnb7nlFplMJpXw9xe/NqlEopQH1iOuIbZCIdNqlNywVXhwIsOoVfByOCyNgjIngpp0NZy1CD07AAAAAAAAACTE66+//sknn1xzzTUPPfRQutcCkAYITgAE854mTOBisUTRL41ric7HuB2es9wwdQ0n6KACSsZk95yQddBzYvv27efPn4/07PXXX08ISVRZJxKcPCEuc4IQkslLnhDRc0IikWTlBLpoWIT0nNBn6TR6NTdsPIeyTgAAAAAAAACpxjDM3LlzH3nkkYkTJ65atUoqxUVa6I467jQLkCROp/Obb77hPyKTyS677DK1Wh3pkFTwVgYN5QPStI6OtdInGOLnhqlrOOEJCk6YlMkt66SQdJA58emnn0Z6qrCwcNSoUYQQKT84EVdLbKJRKGxON7vtoj3iJjFmaC7Ut7DbLcIzJwgh2eaM+vNt34imBgGZE4SQnOLsmspz7HY9yjoBAAAAAAAApNZ333335JNP7tq165lnnnnqqadkss5bURx+xRwOx/bt2/1+P/9Bj0fkxS5xEJyAVPN62y4919XVTZw4MeTZq666Kkr/AHHsdjtN03a7PZadFfR+JW/ocBcxdEwHpl696zB/qPAWxvg1CuJwOLxeLz9iVGurCzovrUjseW2Ugz/0ut3R51+9enWkp6699lqHw0F4P3WEEL+fiWfBClngXga70xV9KoqiFIowr49eF/gps1gdItaTaQrkXjTUWgXNkF1o5IITdacbkvFjkxAURXm9Xtw8IoLf76coSiKRhHzCgFjQNM3+5iqVyo73hmAul4uiKJVKJZfjE6ZgFEVRFGW32/G+J4KgD3sQgv2whDc9cRwOB03T+LUVh6KoeLrBdWfsxxWHw4Hf3LBomk73EgA6cNttt61atermm29esmRJWVlZupcDyeVydXDtKNkoipLJZGHXMGHChJ07d0Y6MDV/pvGvI6QaRVFRnj18+HD0HURwuVzs5ZJYds7wBzInfCTP4ZQTkuD1JEqz+yi3LSFSqSeX8iR+qU6n0+v18l+9RmfgXnsJkSi9CsqbyPPanUGZBD63h5JEnP/o0aPHjh2L9OykSZPYlfuCghP+eH7GFLJAEobD5Y4+lcvlCnn1WDp14L3X2kqJWE+GMRAusjTYBM2QmZfBbTeebUr4b1yiUBTl9/txiVMEhmEoisKFEnE8Hg9FUUqlkh/UhBi53W6KotRqNe78EoGiKJfL5XQ6+aUIIUaCPuxBCKfTSQhRqVTpXkiX5HQ6fT4fPq6Iw95LgU8sIng8HvZPBn5zw0rxPb8AIvzud7/7f//v/5lMpnQvBFIh7R9TXS6XTCZrvwaGYaqqqqIcmJq3U3yKglTLyGi7MKrRaMaMGcN/ymAwPPDAA7m5uYk9o1qtdrlcMU7LNJwiv7Q8kKkG5WYleDEJdPTCBfLLHSF6RUl+bnEyzsJeocvJyeEeoR2B9ya9XF+QW5DYM2qc5/jDfHNuriYj0s6LFy+O9FRmZub06dPZm4l0Wi33uEQqiednzKDVENJWkYlIZdGnslqtCoWi/T55uYFaWDaHW8R6inrkcdsup8egy9ToYv3PpKRPEbfd0mDLysxSqBRCF5AaarWae8eA2LEJEwaDQcv7yYcY0TQtl8uzsrJwK6IILpdLqVRmZ2fjOp0IDMN4PB6z2YzrdCII+rAHIdhfWFwfEUcqlSqVSnxcEYdhGJ1Op9frO94VgtE03dDQkJOTg9/csJA5AZ3f5MmT070ESB2j0Zjej6lWq1UmC3/9aunSpQsXLnS5XPwHv/vuOzYskZp/ivGvI6RNXl7ehg0b0r2KYP5W4uO1Vlb0T99SOtZCn+C2M5S9UnZefs+JhDecIITQvqC7lZXSaLffRmk4MXXqVO5tVJqchtiuRDTEdro8tMerVAh7N842G/jDpgZbcczBCXNRNrfNMEzT+eb8MlzNAQAAAAAAAADoRqZMmTJlypSQB00mU3Nzc8rWgDuzAHi8VYTXLVki77zBCY/f5vTWc8NMZe+UnbqZDrxDGZXGhM/v8fv4Q0Xk4MS5c+d27doV6dkZM2Zw2/wCGXEGJ9T84ITYhtj84AQhxNoquCd2dm7QDXpN9a2xH2suyeEPG842CT07AAAAAAAAAABAnBCcAODxngwayvulaR0ds9Gn+XGUVGZOtHgC18GNisyEz+9hYg1OfPLJJ5Ga86hUKn6apCRxmRMaZaACkpMWmTlhzAgKTrSICE60y5yI/VhzcVD2dyOCEwAAAAAAAAAAkHIITgDwBV+2lnbe+qd+JqiMpkqW+AyGyKf2c9sKSeJLwymlQXOGJFLwRanpNGnSJIMhcPk+g9cprtXt9vr94Q6KiVEXiCs0tDrETZKdFfSjVd8kILTQNkNecOZEnYDMiezCoOBE0wVrpD0BAAAAAAAAAACSBMEJAB5JcNV+xp2mdXSMCYmjBBUuSi6pJPC+4Sfir/JHopMH9duxe8J/F6xW6/fffx9pEn5NJ0KIWavjtv0MY3EKzlTg5GUG4gqtTpdTVGWnvOygvIeGJrvQGXR6tUYbeKEahZR10mfplOpA/kdzXeoqCQIAAAAAAAAAALAQnADgkaiDhowrwn7dmowfnIivRFJYenlQiMjhDR+c+Oyzzzye8IEBmUw2bdo0/iM5Wi1/2EhRopfHD04QQupbBMcVCCE5Jr1MFngZ65oEhBY4JnMgeUJQzwmJRJKVF0i1sdQicwIAAAAAAAAAAFINwQkAntDMCQQnwuBnTviYiDWXRNOFBifosLtFqek0ZswYs9nMf6RdcEJkOSZCSJ4xKDhRKyo4IZVKso2BZI76RsFlnQghObzKTo1CyjoRQrLyA8GJZgQnAAAAAAAAAAAg5RJfLx6gCwvNnOi8ZZ1C2mNIUlnWiQQ6VCelrJMiqKxT2MwJp9O5fv36SDOE1HQiwWWdCCENcWRO5CYic4IQYs7Wc60m6kQFJ7JzRWZOEEJMvOAEek4AAAAAAABAt+J2ux9//HGn00kIueOOO8aOHZvuFXUuPp/vu+++27p1a21trcFgKCsrmzBhQt++fdO1noMHDy5evHjWrFmjR49O1xogSRCcAODrMpkT7XpOpI5UEgiE8JtjJ0osmRMbN250OCJmP7QPTiQwcyLfGNQuos4qJq5ACMnLyTh09AK73SC8ITYhJDs3sBJLg83v90ulsSbDmYIyJ9BzAgAAAAAAALqRp556av78+ex2RUWFiOAERVFXX301FcO9j0ajcd26dQqFosM9OwOGYd59993nnnvu1KlT/MclEslVV101d+7cioqKVK7nwIEDL7/88tKlS30+37Bhw0QEJ2677baqqirRC/jggw8GDBgg+nDoEIITADwhmROkM2dOBJOkLnNCJuFlTiQlONFx5sS2bdsiHT5s2LCysrKQBw0qlVoud3m97DCenhM6lVKvVtpdbSET0ZkTubye2PVNdoYR/D3M4WVO+Hz+FguVlaOPsj8fv+dEa5PdS3vlSvw5AAAAAAAAgF+/LVu2vPbaa3FOsmDBgi1btsSy59/+9reuEplobm6+5ZZbvv76a0JIdnb27NmzR40a1dTU9MMPP7z33nsbNmz47rvvnn/++YcffliS/MtQe/funTt37sqVK5k42p0eOHBg6dKlog+XSCQ6na7j/SAOuBoFwNOVGmKHvDWnsKxTintOeMJkThw6dCjS4e3TJljZGu05W1vto4bIWRexyM3U210WdltczwlCSG5OIDhBe7wtNsqYoY2yf3v8sk6EkMb61tiDE/zMCYZhmutbzMXZgs4OAAAAAAAA0OW0tLTcfvvtfn9ct1q6XK5XX301lj1VKtWDDz4Yz7lSpqamZuLEiWySwYgRI7788su8vDz2qTvvvPPBBx+cOHFifX39o48+euHChZdffjl5K/nhhx9eeOGFL774Ip6wBOvNN9+M5/BRo0aVlpbGuQaIDg2xAXhCG2J35syJ9JV14r1v+JOwjFgyJ6IEJyIlY5p5se54MicIIXmZgbhCnTUBmRNEVNsJfkNsQkiTkJ7YpoIs/tByAZWdAAAAAAAA4Ndv9uzZZ86ciXOSN9988/z587HsefvttxcWFsZ5uhRobW2dMmUKG5kwm81ffPEFF5lgDR06dPny5Ww16VdeeeXFF19MxjK2bt06bdq0sWPHrl27Nv7IBEVRH374YTwz3HjjjXGuATqE4AQAT2hwojNnTgRJaUNsXuaEPwmZEwqpTCENVI5q33PC5XKFlD7kGzRoUNjH+W0n4mmITQjJMwYSFESXdcrLCQpO1AsPTrTPnIj9WH7mBCGkuRY9sQEAAAAAAOBXbunSpcuWLYtzErfbHWPegEQieeSRR+I8XWrcc889Bw4cYLdff/31/Pz89vuMHz9+1qxZ7PYTTzyxfv36hC9j4cKF48ePP3r0KEVRCxYsiLN41LJly6zWoMsdOp2upKSkPCqz2czuLJFIbrjhhngWALFAWScAnq5T1ilteROEyIKCE4nvOUEI0ctVzXRb/KB95sSRI0d8vvBBkaysrIKCgrBPmbWBzImGOBpiE0LyMgPBCYud8vh8Cpksyv5hhWRO1AvviW0yG6RSKZeL2iQkOJEVHJywIDgBAAAAAAAAv2o1NTX/+7//SwgpKSmpqakRPc/ixYvPnTuXlZV14MABrTZafWaJRGI0GqPs0EmsXr165cqV7HavXr1uuummSHs+9thjy5cvJ4QwDHPXXXdVVlYaDIZIO4uwZMkSbvv+++//+OOPN23aJHq2hQsXEkIUCsXs2bPvuOOOoUOHKpXKDo/685///K9//YsQcskll/To0UP02SFGyJwA4OuyDbFTiF/WyZec4AS/spO9XXAiSk2nSGkTJDhzwup0euOoL5mbEQhO+BmmoUVMqMOUpZPLAq+kiOCETCbNNAW+qEZBZZ3yjfwbEBCcAAAAAAAAgF8xv99/5513Wq3W8vLyp59+WvQ8NE2zaRMPPfRQUVFRVlRdIjJB0/TDDz/MDe+66y5Z5PsvR4wYMWTIEHb7/Pnzzz//fFLXNmzYMNHH7t69e9euXaWlpTt27Jg/f35FRUUskQm/379q1Sp2GzWdUgPBCQAeiYKQwFsw04kzJ0ho6b1UlnXivUQkOcEJRaC+VvuG2PEHJxhCmpziKzvxyzoRQupEVXaSSiQ5Jl55KOFlnQghObzKToIyJxQqhc4YeEGa6xCcAAAAAAAAgF+tV199ddOmTXK5/MMPP4znZv+333779OnTGRkZXaXNdYc++OADfhOO6dOnR99/6tSp3Pb8+fObmpqStTJC4mnXsXDhwsLCwq1btw4fPjz2o7Zt23bu3DlCiEQiQXAiNRCcAAgm4cVR0RA7HH7PiRRkTrQv6yQuOGEOzrWMpyc2vyE2IaSuRUxcgRCSy2s7IaIhNiEkm9cTW1DPCUJINq8nNjInAAAAAAAA4Nfq0KFDf//73wkh//jHPy699FLR83g8npdeeokQ8uCDD2ZlZXW4f5cwb948bjs3N3fw4MHR9x8/fjy3TVHU4sWLk7UyQnQ6Xcc7hdPa2rpixYpVq1aVlJQIOvDjjz9mNy699FKhx4I4CE4ABOP3xO7MmRPBUtkQOwU9J3RyXuZEu4bYIoMTwX/SGhzi206EZk5YRfbE5redEFHWiYRkTggp60SC206gITYAAAAAAAD8Krnd7ltvvdXlco0ePfrJJ5+MZ6p33323urpap9P9+c9/TtTy0mvnzp1HjhzhhrEkGVx22WX8MtHvv/9+UlZGCCFEoVCIO7ChoeG5554TGohiGIar6cS1/oZkQ3ACIBi/J3Ynzpxg0pg5QfjBifCNqeMUJXOCoqjq6upIB8ZY1onElzlh1GpUcjk3FFfWiQQHJxotdn9oqa6OZfOCEw67y0mFBnKiMPGCE00XmoWeGgAAAAAAAKDze+KJJ/bv36/X6999990o3RQ65PF42BYLer3+pZdeWrlyJb8aUhe1bNky/nDo0KEdHqLX6/ltog/ASNLJAAAgAElEQVQfPnz48OHEr4wQQkgsXSLC6tWr15/+9CehR/34449nz54lhEgkkt/+9rfiTg1CITgBEIIfnOgymROp7TnBC04kqedE5MyJI0eO+CP0ss7Ozs7Ly4s0p1kbnDlBic+ckEhIbiavXUSryOBEHq+sk8fra24RHC/J4ZV1IoRYGoT1xA4ciOAEAAAAAAAA/Op8//338+fPJ4T85z//6dOnTzxTLVmy5NSpU4SQurq6V1555cYbb+zRo0efPn2ee+6506dPJ2a5KffVV1/xh/yoQxQDBgzgDzdt2pTINfHIeTeGpgBX02ns2LGo6ZQyCE4ABONnTpDOmzkR2nNCkp7gROp7Toir6UQI0SmVGt5ftXgyJ0hwZSfRZZ3M2UG9K0T0xOZnThBCGoVUdsrKC9THpF0eh/DQCAAAAAAAAECnZbVa77jjDr/fP3PmzN/97nfxTOX1eufOndv+8ePHj//jH/8oLy+/9tpro1yv6JyampoqKyv5jxQXF8dyYEgMY8uWLYlcVpowDPPJJ5+w22iFnUopDUAB8J05c8ZkMvEfkclkf/nLXx599NHEnsj7i1h2lhIld5mf8Tt9sR2Vej6fL2QY4xcoVPtXj1/WyedPynk10kBVQcpLe7werqnGgQMHIh01YMCA6IvJ1mjP2tou3zc4HPGs3JwRyMOoa7FFmsrr9UokkkjP5mQFVZq6UGft0zNH0DKysoPSQeovNMf+RWWag0IjDeeaVDqR+ZJJIug3F/j8fj9ePdG4l04qxQ0cguEHLx742YsHfvbiwb5uePXEYX9n8eqJg99c0bw86V5LZ4SXBTizZ88+c+ZMUVHRW2+9FedUS5cuPX78eKRn/X7/unXrNmzYcP/998+ZM6er9Mrevn07E1xfOsbgRG5uLn8Y5UJNF7Jt2za2TpdUKp05c2YCZ07eJbsYeb1ehmHCruHZZ59dsGBBSIUSqzWlfUkRnIBUs1gs7Ibf729uDi0m8/LLL995552JPaPNZnO73TEWFjQyMu4CrYe2WZuaEruYRLH5gu6yb21p8UuTstSWlhb2Cjv3iMftCWx7PU1JeIkknsA7po9hLjTUq6Rtb1Z79+6NdFTPnj2jL8aoVJ79ZftCS0s8K89QBK4c1bc4GhoapdIwyStWq1WhUEQ6kVwS9IfhVE3doN4CP8HIPfxRzem62L8ouS7o4ld11WlNducKTjQ3N6tUKo/H0/GuEIx9d6Vp2ul0pnstXQ9N0y0tLX6/X3R50+7M5XLZbDaS8vzrX4fm5uaWlpampiYEJ0QQ9GEPQrAfyBnhva+AEGKxWJRKJT6uiNPc3Ox2u93uzpyt3kmxH1csFgt+c8PCrySwPvzww+XLl0ul0vfffz/k1lihfD5f2LSJEF6v99///veXX365du3akMJHndPRo0dDHomxllFIcOLYsWMej0d08+pOgl/TqaioKIEz22y2ZFw6i53VapXJZO3XwDDMSy+9RNMR25dGeSqB8K8jpFqUALJUKr3nnnsSHmGWyWQulyvGaWU2Hfnlk4xC7s/K6KThbtqlI7yrjgaDwahMylLZG//5r566VU1+qQAkkUmScUdAdmsmf6jQa7NUbSkCx44di3TUyJEjoy8mPyPjYFMju22l6XhWXpoXSHHw+f2MUp1l0LbfLSMjQ6FQRDqR0UgUCpnH05YE43D6hC4pK4totEquDzbV6ol9htLeQTdEeByCz55sHo9HrVZnZGR0vCsEYzMnDAaDVhvmxxKiYz9+ZWVlITghgsvlkkqlWVlZCE6IQNM0+3EFwQkRBH3YgxDsxU28euL4fD6lUomPK+LQNK3T6fR6fce7QjCapjMzM41GI35zw0rN1TTo5M6ePfvggw8SQh599NEJEybEOZvD4Xj22WetVmtdXV11dfXx48f37Nljt4ev8Hzy5MkxY8Z8/PHHV155ZZznTbbq6mr+UKFQhEQdIjEYgioxeL3e5ubmGI/tnBiGWb16Nbud8JpOer0+vW/XGRkZMpks7BruvvvuN998M1KoOzX/FONfR0g17h780tLSkLvgtVqtSqUKd1BclEpl7PfAMjItF5yQELrTXpySe4N+eRUKZZKWqlQqpVIpf3K5LHBqP0nKzcVGdVC1IlrCsGehKKqmpibSUcOGDYu+mFzefz5NTiqelRdmG/lDC+UOeYSlVCoVCkWUE5lN+vN1Lex2Y7OYJZnMGedOt0Vcmpscsc+QWxL0ucHWaO9sP+3KX6R7IV0P+46HV080vHqicT97CE6IwL5u7J/ddK+l6xH0YQ9CsK8bXj1x8CcjHnj14sH+ycCrlwxb1h/cvG4/ZUdOT6rlFWVdf/voHr0TcIHb7/f/7ne/a25uvuiii/75z3/GP2FGRsZNN93Ef8Tn8+3du3f16tVLlixhawHxNTc3T5s27fvvv6+oqIj/7MkT0sdbp9NJYmto2v7andVq7dLBie3btyepphP55R07sXMKolQqZTJZ2DUsWLBg3rx5IVmM5eXlqazshH8dIW3YmyvTvYr2eO+wjCt9y+hQSFQzdQ2xZbyG2P7kN8QmvJ7Yhw8fDimEx8nJyenwD2EO7y5yq8vl8fkUYus/5GYG3eFVZ7UNLskTMU9eTgYXnKhvFNDOmpOTFwhONNULmCEjWy9Xyr10W2kpS11KSwoCAAAAAAB0Nu//e+PSN79N9yq6r2+/2Pf8W3cNHF4a5zzz5s379ttv1Wr1e++9l6SLwjKZbOTIkSNHjnzmmWc++OCDZ599NiRE4XQ6r7/++p07d+bn5ydjAQnR2hp0DUGj0cR4YPtXtaWlJTFrShOuptPll19eWFiY3sWkmFarDSm6EGOMKlFwZxZAMImaN+jEwYn0VRflN8T2kyQFJ4KC8A5vW1rukSNHIh0yaNCgDqfN0QYSMhhCmuIox58fHJyobwmfztkhc3ZgnromW5Q9I8nODZQRaKoXMINEIsnKDZTPaq5FcAIAAAAAALqvpnrb8re+S/cqujW3y/P2q1/HOcmhQ4f+8Y9/EELmzZs3ZMiQRKwrGoVCcffddx88ePD+++8Peers2bOPPPJIshcQD4qi+MPYgxPtL16nuIVyYjEMs2rVKnY74TWdoEMITgAE4wcnOnXmRBBJCjMnpJJAtkGKMycaGxsjHRJLsylzcCi4gXKIWh0hhOQYdDJe2Y06scGJvOxAaKHRYvf7BceccnjBCUuDLVJmSVimgkDqkgXBCQAAAAAA6Maqj9cJ+n8KkuFE5YV4Dne73bfeeqvL5Zo8efLs2bMTtaoOGQyGBQsWvPPOOyFNoZcvX7579+6ULUMoZ/Atm7EHJ9q3nXfGcfdn2u3YsYOtcCWVSq+//vp0L6fbQXACIJgkpKxT1/howoRWeUoiflknH+NLxil0iqDMCZunLTjR/u8fJ5Y+hPzMCUJIg0N8cEIqleTwOmDXWsUkPRBCcnMCXaT8fqbRIjjIkZ0X+MJ9Pn9zo4AvKis/0CfDcqFZ6KkBAAAAAAB+Ncz5mR3vBEmWWxDXd+Fvf/vb/v37zWbzu+++m+LSNISQu+6665133uGfl2GYV199NcXLiF1IKEWtVkfaM0T7izMhdYG6Fq6m07hx4woKCtK7mG4IwQmAIBJpdmDAuInnYPrWEo1cGnSd3emtS9mpNbJALN3hpZy+xIfHs1VBX91xWwO74fV6Ix0ii6F7RKHBwB8eaWwQtbo2RabAZ6aq8yKnKsgNiqkcPy14npCPbjWn6mM/1lxs4rbPHa9lhOdtAAAAAAAA/DqUlpsvHdc/3avo7m68+zeij/3mm2/+9a9/EULefvvtdHV6uP3225944gn+I+vWrYtyKSO9DMEXSaLcDxqCpumQR7pucAI1ndIOwQmAYMrR/BHj3pSuhUSXqezNH1rdVSk7dbGmiNtmCFNDnU34KTIU6hJdoOLQfkvbKaL8RZfL5R1OW2gwmHnJE3tra+NYIxnE64B9ss5id4X+bY5F3/KgNtpVJwUHmXr2CZrhZJWAGUr7F3Pbbsp9QUhgAwAAAAAA4FfmiZdvuu6WSzOMXfUya5dW3DPn0X/OnDh9hLjDrVbrPffc4/f7Z8+ePW3atMSuTZCnn36a3xSzubl5+/btaVxPFCHBidhLM7XfU6/Xh92z89u5c2d1dTUhRCaTzZw5M93L6Y46vpwH0L0oBhJZEfGdaxu6NxH9Q2ldUHhKWaZWnkf9kjBhpY+m7NSl2hL+8IzzbF9Dn4SfZWhWUY2jrdDQ/uZzfoaRSiQ+X8QqUrFkThBChuXnf3PyBLu9pzauWpaDecEJP8McOVd/ca/iKPuHlW3U5Zj0XDWnyhOC4yX5RVlavYqyt1W+OnVUwBfVc1DQt7L64JnCXnmRdgYAAAAAAPh1U6kV//Pk1P95cmq6FwKCzZ49+8yZM717937ppZfSuxKlUjl37tzp06dzj1RXV48ZMyaNS4rEaDTyhy5XrI1X27e/Li4WfD2kk+BqOo0fPz43Nze9i+meEJwAaEd1OaGWtW17jhDfOSIrinpAemSq+gWCEynMnMhX5ymlStrflihwhqpJxlmGmYq/ONtWU8vhpU/aG3sbzFGCE7FkThBChvOCE00Udba1tTiGZhVhDS4NyhI9cKZWRHCCENKvPI8XnBCcOSGRSMr65B/ac5odnjwqILxRNrQHf1h9sGb09IuFLgAAAAAAAAAgjZYsWbJ8+XJCyB/+8Ieffvqpw/0PHDjAHx45cuSbb77hhoWFhQMHDoxnPVOnTi0vLz958iQ7rI2vbEPy9OkTdKep3R5rF8zm5qCmlQaDwWQyRdq5k1u9ejW7gZpO6YLgBEAoiWoCwwUnCCHu74j21vQtJyKjsu8Fx/fsNuW9QPtblVKR19kFkUqkRZrCU45qdpis4ERWUEBov+Vcb4M5zrJOhJDh+UGtjfbUXhAdnCjJNhp1aquj7c6CQ2dEftro3yvvh11t8ZJGi72p2ZGdpYt+SIiyfoHgxJkTDV6vTy6PKY8kM8eQac5oaWhlh9WHk/KtBAAAAAAAAEgettUEIeTxxx8Xcfhrr7322muvccN77rln8eLF8axHKpVec801//nPf9hh7OWSUoxffooQYrVanU6nRqOJtD8nJDhRXl6e4JWlys6dO9kYklwunzFjRrqX002h5wRAO8rRRBIoMdlp204YVX35wxZ3eio7naXOMSTxjZQHGAuU0sAV9n3NZ0ncDbEJIcPz8mUSCTfcG0dlJ4mEDC4JJE8cqBEdnAjKwBBR2am8b2AGD+09W90Y+7Flg0u57dOHEJwAAAAAAACALoZhEn9RIk6XXHIJtx1SPanzCAlOMAxz7ty5SDvznT9/nj/kf7FdC1fTacKECajplC4ITgC0I1EGtcWmtxGGSt9qIspU9uMPU1nZiR+ccPvdda7EN1JWSmX9MwPX3PdZOghOxJg5oVMqe5myuWE8wQkSXNnpQrOtodUhYpJ2wQnBlZ3K+wXNcLJKQHij5+DAt/JM5TmvJ2LhLAAAAAAAAACIRX5+4P/0kOpJnUfv3r1DrsjHGJxgO0hzum5wAjWdOgOUdQIIQ6KewLh/KTjI0IT+kaiuSuuKwtArihRSvcffVhMwnT2xqZp8deIbKQ81Fe1vbvu7eKy1nvLS8fecIIRclJ9/tKktt+BgfT3t8yljy7poj98TmxBysKZ2/KBeQicxGbVmk77hl7YTVScFByd69smTSCWMv+1WkVNHa8mUYTEe22Ng4Fvppb3nj9eWDuiMHVYAAAAAAAAAwurfv7+g5Inm5mauIQQhpEePHjk5Ofxh/EviqjvIZLKKior4J0wGqVQ6derUd955h3vk8OHDV1xxRfSjGIbhByckEsn48eOTtMKk2rVr14kTJwghcrmc38AcUgzBCYBwVBMIkRLiZ0eMa5Ok8wUnCJFkKvs0uvawA2tKyzoVS4iEq+Z0hqoZZUr839phWcVLyA5228cwh6wX4s+cIIQMzy/46FBbq23a5zvS0DAsPz/6IZEMLQ3qYHGopk5EcIIQ0r93fsOO4+x25XHBZZ3UGmVhienc6SZ2KCxzYlBQnKn64BkEJwAAAAAAAKAL+eCDDwTtv2LFiptuuokbPvXUU3/4wx8SuySuCfaYMWOys7Oj75xG1113HT84sXv37g4PqampoahAfZGKioqysrKkLC7JVq5cyW5cddVVZrM5vYvpzhCcgLRpaGiYNWsW/xGZTHbfffeNGzcuTSvikWYTxWDi2d82dG8ixN8Jy6AZVf244ITNc9LP0FKJMgXn1cq0JmVWE21hh8nqiW0K7ondfC7+nhOEkIuCe2LvrbsgOjiRpdcUmjLOW9oaSh8Q2xO7X3nell+CE01WR6PFnmPSC5qhrG8+LzghoFZV2ZBSiUTC3WNSfajm8hsvE3RqAAAAAAAAAOD78ccf2Y377rsvvSuJbtKkSTk5OY2NbeUlfv755w4P2blzJ3948803J2Vlybdq1Sp2ozvXdFq3bt17773n9/v5DzocYoqWi4bgBKRaa2vblVyHw8F1nuFs2bIllrdCQex2u8vlEnqUjrlES34JTvibmuu3eMiAxC4sflJP4Kq6n/FW1+7Wy8TcuR9Fa2ur1+sNeZ8ihOTJcptIW3DilK26vj7xbSdUhMmUq1u8bd+7HRdORHl/pCgqxjVkMoxOoXB4POzwp+rqawrE5wr0zcvighP7T1+oq6vn9dsmFotFLpfrdLrok+Rnq/jDHXuOVgwpFrSMvGIDt93caD9+9HSGURPjsVn5mZYLVna76ufjyfhWitPY2KhWq0X88gLDMI2NjS6XS6OJ9ccAOB6Px2q1er1ehUKR7rV0PW63u7W11e/3xx4wBk5jY6PFYmloaJDw/5BAbMR92AOW1WolUTt7QRQWi0WpVOLHT5zGxkan08m//RZi5PF4LBaLVqvFb25Ynl/+1wNIF5qm16xZQwgZPnw4P0WjE9JoNA888MAzzzzDDvfv319fXx+9NfSOHTu47YyMjLvvvjupK0ySn3/++fjx44QQhUIxY8aMpJ7LarWm90qLxWKRyWQGgyHkcYZhbr75Zu46bXs0TSd5aYQgOAGpp9Vqozzbr1+/6DuI4PV6pVKp0GklviuJ8y1uqJX/5FGOTOzC4pftGUh4/wp5FGe16iGJPYXH4/F6ve1fvR660sPOSnbb6mshKolWlvjLoIONBT80nmK3Kx0NUWIIWq029m/xoBzzjgvn2e1DlqZ4fuQGl+RvPnKa3ba7aIvLU5KdyT2rVqsVCkWH8w8dEFRb6fT51ssvEbak3sG1mOrP2fILY80b7TGohAtOnDtam/BfQNG0Wq1Sqew86+lC/H6/VqvVaDR49USgaZqmaY1Go1SmIhHtV0YqlXq9Xo1GE3upPeBotVq1Wq3RaKTSTpep2fmJ+7AHLLfbTTr6iA6ROJ3OWD7sQVjs+x5ePRFommb/ZODVCys1V9MAoli4cOHZs2cJIfPnz+/8d+08+OCDr7zyit1uJ4T4fL41a9ZEL3L19ddfc9uzZ882Go3JW1vInbLtb5wVjbtbeuLEiSaTKVHThpX2P3ZqtVomk4VdQ58+faLU8krNHXv41xFSjbtgYTab//Of//Cf0uv148aNS/itvn6/3+Vy6fXC6uQQMpKhi4ivrSGz0r9VpX88sQuLn5YZIm2W+5m2+2Vc5LTwL7MDXq/X6/W2n7Y33Ys0BoYWqSVX3y+xpyaEXGTuwQUn6ly2XE3Et0WdThf71z6yqJgLTpxtbfXIZFlif+oq+vQg67dzwxONrQN6BOIEWq1WoVB0uDC9Xp+bbahvsrHDkzUWod/HgcN68ocXzlhHj491hl7Deu755kDbgSfqFDKlStMprslSFKVWqxP+I90d+P1+p9Op1+vx/6oINE17PB69Xo/ghAhyudzn8+n1egQnRHA4HFqtVq/XIzghgtgPe0DIL1fx8OqJ43K5lEolXj1xHA6HoM/wwKFpWqvV4tWLBMEJSAaKolQqVSyRhv379z/11FOEkAcffPDyyy+PvrPH4/nvf/+7c+dOqVQ6ffr0a6+9NjHLFcJkMj3yyCNz5sxhhytXrowSnDhy5Mi+ffvY7by8vMcf7+BC2c6dO3/44Qez2Tx9+nQRb1khuYkJzIviGk6koKZT2q9saLVamUwWdg2bN2/evHmz0+nkP3jXXXexlUtSk9KNfx0hbXQ6XWcv66a6glBL27a9lcR3jsg6V69gqURpUPRsodvaFVjpVPbEDrrZ/wxV09+Q+ODEsKygF7w1M2JwQtCFsOG8JhMMIXtqL0woKxexPELIoOI8mVTq+yV6f7CmbupIMeW/+vfK44ITlScE967ILTDqDWq7re3P9qmjdbEf23Ng4Fvp9/nPHT1fHhzqAAAAAAAAAOieKIq66aab1q5dq9Vqb7311hdeeCFKg+uDBw9OnTrVbrdfffXVr776avSZ7Xb7FVdcwdU2X7Ro0axZsz744IPU3yb1xBNPLFu27NixY4SQDRs27N+/f+jQoWH35H9Rr7/+elZWVpRpn3nmmTlz5rBNLnv16vXtt9+WlJRE2b89Nr8z0lC0PXv2cDWdrrvuuoTM2UXp9fqpU6eGPHjfffelsu0E7swCiEiimhA0dm9OzzqiMqoCIQGru5IQJjXnzVPnqmWBTglJ6ok9NKuIH6V1mFSR9hQUnBhZUMgf7q0V2ciaEKJWynvlBRIAxffE7hWIl1isVIPFLuhwiUTSs09gBkE9sXsMCvpwcOpgUr6VAAAAAAAAAF3OokWL1q5dSwihKGrx4sX9+/d/++2329cX8vl8ixYtGj16dE1NzdVXX71ixYoOL1PMmTMnpOvqihUrHnroocSuPxZqtXr58uVqtZoQwjDMU089xUYUQvz444///e9/2e0HHnggeivsAwcOPPfcc9w8J06ceOyxx4QurDb4ck1dnYAbMaPgajpNnjw52TWdoEMITgBEpryMSAKtjBn3t2lcSySZyr7ctsfvcHjOp+a8EiIp1gTSGpIUnMhUakr1gb8TVHbEGjWCKg9ma7VFhgxuuLdWwKX89oaUBqIClefqaa9PxCT9y/P4w8rjgoMc5f0CyzhzssHriXUZPQeVSKSBGNDpwwhOAAAAAAAAABDS7mpDY2Pjvffe279//zlz5nz11Vfbtm379NNPn3jiiQEDBtx33312u/2RRx5Zu3Zt++bD7W3durX9g2+++WZlZWXCVh+zESNGvP/++2zdqrVr1z777LMhO2zbtm3GjBk+n48QctNNN7322mvRJ9y1a1fIS/fTTz8JWhLDMJs3b+Y/smnTprBRE6FWr17NbnT2gi7dA4ITAJFJlEQ1OjCktxEmdWlNMTKq+vKHqazsVMKr7FRDnfMxCWtMxDcsq5jbduVoJbLw71pss6nY8Ss77a2r9cfx520wLzhBe33HLjRG2TmSAb3z+cOqk4JvByjrG5jB6/HVnGqI8UC1TpXXw8wNkTkBAAAAAAAAwLrjjjvy8/NDHjx27NjTTz99zTXXjB49+vrrr3/hhReOHTs2fPjw77//ft68eTE2wc7MzGz/oN/v5y6dp9iNN964YsUKnU5HCHn22WenTZu2cePG2traPXv2/O///u/YsWMbGhrkcvnf//73ZcuWdZgXUlhYGPJIcXFx2D1DtLa2nj59+ssvv7zhhhtC4jfbt2+fNm3a559/Xl1d3draKuSLC9i7d29VVRUhRKlUTps2TdwkkEAITgBEI1GNDwwYmrh/TN9awjMqgzo9tLjT03bCy3jrXIlJrwsxzBTIz/DLpcpic9jdqqurBU07PL+A27a53Sebm0WtjhBCBpcEfUwRV9kpM0OTlxNI5qg8IfjF5GdOEEJOVglYRs/Bpdz26UMITgAAAAAAAAAQQojZbN64ceOQIUMi7SCVSsePH//RRx/t2rVr7Nixsc/8+9//Puzjhw4dErzKBJk5c+bu3bsnT55MCFm7du1VV11VUFAwYsSIN954g2GYyZMn79q1a86cObH0Sb7yyisrKiq4oUQiefLJJzs86qOPPsrMzOzZs+eUKVPCBmm++OKL6667rqysLDMz86uvvhLyxbXhajpdffXV0XtmQGqgITZAVKoJhEgJacsJYNybJOqJ6V1RCKUsUyvPo7xt17LT2xO7UFMQaWfRhmYFhdbVfYrcp8NcuBcanLioIGipe2sv9BZbZ7BPQbZGqXDSHnZ4sEZkkKZ/r7y6xrbI/xHhZZ3K+uZJpVIua/LUUQEzlA0u+enzXex27al6yubUGjRCFwAAAAAAAADQ+c2YMcNisXBDrTZiBWnWwIED9+7du3nz5m+//fbEiRNNTU1+v99kMvXs2XPYsGETJ040m8PfRhndzTff7PP53nnnHZvNNnHixNtuu2369OnHjx93Op0iZkuUfv36ffXVVwcPHlyzZs3+/fstFktOTs7w4cOnTZs2cODA2OeRy+UbNmx4+umnt27dajabH3nkkUmTJnV41PXXX8//1kSn1+tjXw/n559/Li8vJ4TcfvvtIg6HhENwAiAqaTZRDCae/W1D97eE+DtbylGmql8gOOGuStl5SzXFEiJhfmnBfYaquTR7VMLPMiAzXy2Tu3xedqjpW9zyzc/tdxManBicm6uQyTy+tsYMe2sv3DBwkLgVyqTS/kXmPafaun0cFN8TO++77cfYbWsrVd9ky83uuEglR6lSFJSYzp1uKyolKHOix8BAnIlhmJrKc/0u7h374QAAAAAAAABdhVKpVCqVgg6RSqUTJkyYMGFCYldy22233Xbbbdxw6NChx48fz83NTexZRBg8ePDgwYPjnMRoNM6fP1/QISK+NUKtW7cuqfODUJ3rGitAJyRRXRkY+JuI50D61hJeFq+yE+W9QPtaUnNetUxtVuVwwyT1xJZLpf0yAwWL1H2Kwu526tQpQdOqZPL+OYHF760VGVFg8Ss7naq32F20iEn69wqqyxRnZacTlQK6fP5Dy5UAACAASURBVPccFJQEU422EwAAAAAAAACpxV7ZuOSSS9K9EIDUQXACoCPqoMA4496UroVEkhncE7uFPpayU/MrO51xJuuK9nBToLKTqjRXqlW136e1tbVZYN+Ii3htJyobGyiPR/QK+T2x/Qxz6KyYyk79y/P4w6oTguMl/OBES7Ojucke44GlA4pk8kDDrurDCE4AAAAAAAAApE5NTc2+fft0Oh26NEO3grJOkDYOh4PrQsPS6/Xjxo3TaDpZsXt5fyIrIr5zbUPXJqJ/OK0LChXSE9vqrjJrKiLtnFil2pJdzW1Flpppa6unNUOREf0QEYZm8bIlJBJ1eSF1MEyeRHV1taBeRsPz89/f17btY5iD9XWjioqjHhHRkNKguMKhM7WX9C6JtHMkmRmafHNGbUNb24nKk4IjHGV9Q3tijxwdU3UmhUpR2CuvpqqtMhUyJwAAAAAAAABSae7cuX6//4EHHsjhlXkASCq73b558+aQNic0LaYciGgITkCqeb1tzQMaGhpmzZoV8uyECRPWrFmT2DPa7Xaapu32WO8ib08pHaPwrWgbeCsp2zG/JPGdn+OQIZfovIyDHTRShwvk4r/YEA6Hw+v1qtXqsM+apUF/Mo9ajvfX9Q27Zzz6qINaVav7FoUNTlRWVvbp0yf2aftlZPKHO86cGZhpFLfCLJXcqFNbHS52uPfUObt9ACGEoiiFQhH7z16vHtlccOLwsQtCf2jzioN6VFQdON1vaH6knUMU9y/kBSfOxPP7kigURXm9XqkUGX6C+f1+iqIkEgnXIB1iR9M0+5ub7FKnv0oul4uiKJVKJZfjE6ZgFEVRFGW32/G+J0L8H/a6M4fDQQjBm544DoeDpmn82opDURTDMOleRZfEflxxOBz4zQ0rxZfVABLiq6++WrRo0aBBg5555pl0rwUSzOVypfdjKkVRMpks7BrGjRu3e/fuSAem5s80/nWEVKMoKsqzVVVV0XcQweVysZdLRM/gZUZlkhXc0EdtdEpmJmJpCaOTlbd425phWN2JfA2dTqfX6400YTYTFDaotlWXSkQmH0RhJPIshabZ0xbI1fQJf4rjx48L+sKz5YpMlarF7WaHey6cn9VLfBfovnmmHSd/6YldU8euxOVyRXn12isrMv6wq2271eY6c64hJ0sX+xp0GQqdQe2wtcVIjldeiP3UBb0DHbcaz1kazjfqjNrYT50MFEX5/X5c4hSBYRiKonChRByPx0NRlFKp5ELpEDu3201RlFqtlslkHe8NwSiKcrlcTqdTIpGkey1dT/wf9roz9l45lSpM2UzokNPp9Pl8+LgiDnsvBT6xiODxeNg/GfjNDcsTR8FegLTYtGnTjTfe2KNHj3Xr1kW6NxS6rrR/THW5XDKZrP0aGIY5dixaZfjUvJ3iUxSkWkZGW9kfnU537bXX8p+SyWT33Xdfbm5uuOPEU6vVLpcrrmmZq5n6fxCm7ddYr9hmMN2fmMUliLlxUEtLW3DCydRkmzNlksR8TmWv0EVKKjQTs+aCxulrCxs0SZsT/u1jDcsu2Vx7lN1W9y0iEkLahW8bGxuFnv2igsLN1W1JGIebLfEsfmTvUi440WCjiFqbm6G3Wq0KhSL2aUcO67VkzR5u2NDsHdhP2JLK+xUc2NX2FZ2vFvDtGDSq/2ryJTe01znL+vYUdOpkUKvV3DsGxI5NmDAYDFptmiNMXRFN03K5PCsrC7ciiuByuZRKZXZ2Nq7TicAwjMfjMZvNuE4nQgI+7HVj7C+syWTqcE9oTyqVKpVKfFwRh2EYnU6n1+vTvZCuh6bphoaGnJwc/OaGhcwJ6EJsNtvzzz//8ssvjx8//v3338/Pj7X4AXQhRqMxvR9TrVarTCYLu4bly5e/9957IUUX1qxZw76RpuafYvzrCGljNptXrFjR8X6dgURFVGOIa0PbkP6ReH4mihFpXVMQoyrQdsLPeM/ZN5Yaro2yf6JIiKREW3zU1hZo3Wvd72W8ckni31iGmYq44IQ8y6AZ0MN5+HTIPtXV1UKnvSi/gAtO1Nrtuy+cH1lQKG6FQ0qDPkN8s//4rWOHC52kX3meREK4tLnN249ecamAQlWEkPJ++Vxw4vSJ+gs1loKSmP5j6Tm4lD/c9vmuIb8ZIOjUAAAAAAAAABCjOXPmzJ8/PyMj45133rnttttwhwqk3jXXXHPNNdeEPGgymVIZ5cXPPUBMJOoZ/CFjm5eulYSVp7lUIgnU0DjRujJlpx6aOZjbtnvtPzfvTcZZrsgLukafOeGi9vuICE6M71nGH358+JDQGTgjy4u1KgU3XLPzsIhJMg2aAb0D7Uy+337cQQn7e1AxJvBCMQyz8fNYvx0l/Qvzepi54cYPt/i8PkGnBgAAAAAAAIAYWSyWt9566+jRo3fccQciE9Bt4UcfIDbqiUQxNDCkdxD31vStJpRGnluovYIbNrn2Wd2VqTn1b3LGSCWBd5LvG5Lysgw0FgzIDKQmGEYPlGpC61adOhWmS3Z0Q/Ly+ucErsh/XlVJiS2op1UpJg4NBAYOn607eqFRxDzXjBvEbbvcnk0/Vgk6fMTo3lk5gdT4DWv2xNi/SCKRTPxd4EfIcqF519f7BJ0aAAAAAAAAAGL0+uuvz5w5U6FQdLwrwK8XghPdkc/n27x58/PPP//www8/+uijr7zyyvbt20Pqi0E7Eon+z/wxY58Xpu9B+vTKvIE/PNm6KjXnNSmzBmUM5Ib7Ww420ZZknOj6HoEqSVK10jBmUMgONpvNYhF86t8OCCye8ni+PhGtF1B011UM5A8/3yUmeWLS5QNUykBdrC83HxR0uEwmHX9NIIpWd7750J7Q+leRTL5zPL8L6/r3Nws6NQAAAAAAAAAAQOwQnOh2Pv744759+44fP/7JJ598/fXXX3311ccee+zSSy8dOHDg119/ne7VdW6qy4ny0sDQczDQhaITyNWMMih6cMPTti9pf2tqTn25eQy3zRDmh8ZtyTjLdSVDldJA6arMCWE6Ooio7HR9/wFyXvrkx4fEV3a6uFdJcXYmN/x89xGfX3D4Sq9VjanoxQ33Hzl35rywiMukmSP5w28+i7WyU35Z7uCx/bnhj2t2tjTaBJ0aAAAAAAAAAAAgRghOdCMMw/zlL3+ZNWvWyZMn2z9bVVV17bXXLl68OPUL60Ik+of4Q8b+CiGdpy6/pDzjt9zAx7jO2L5MzYkrskYY5IFSQt81bGGSkFNiVGomFAT6fmv6lyqLzSH7iAhOZGu1E8rKueFPZ2tOt1jFrVAiIdNGBppIN9moPTX1Iua5dnxQUsjX3wnLwOjZO6+8X6AE1vdfH3C7Yq1VNen347htL+397qMfBJ0aAAAAAAAAAAAgRghOdCP//Oc/582bRwjp37//DTfc8Ic//OHKK69UqQKF+/1+//333//DD7gcGZlyJFGNCwy9p4hzTdoW007PjOvkUg03PNm6MjWFp+QS+WXZl3DDendDlU18caQoZvYI6oOdOX5YyA4HDhwQMe2NAwPBAIaQ1UfElGNizbh4EK8wEtlcdVbEJJcML8vNNnDDL7895BeYgXHVdYEXirK7t206EuOBV8wardGrueH6978TdF4AAAAAAAAAAIAYITjRXWzduvWZZ54ZOnToxo0bjxw58vHHHy9atOibb745ceLE1KlTud18Pt+jjz6amiU5HI6Pg61evbqlpSU1ZxdNYvgL/xeHsf+LMHQa18OnkBpK9JO5YSt9qsH5c2pOPc58OX+YpLbYY3N7FWgyuGHG+OESmYy/w/r160VMO65nmVmr44YrDh3yxdZEur1CU8aIsiJuuPN0fatL8I+HVCqZ+JtABkZ9k+3nQzWCZpgwdbhMFvgp/ebzPTEeqNGrx84MxJmqdh4/deCMoFMDAAAAAAAAAEDn19TUtGrVqpDLszSd0uuc8o53ga7P7/f/z//8z9VXX/3RRx/p9Xr+U0VFRWvWrJkxY8bnn3/OPrJ9+/bq6uqePXsmaTHcj3hDQ8OsWbNCnh09evS6desSe0abzeZ2u9Vqdce7xqRALbtK4fvlIrjvnKv5fVoe+oWkS75syinyKTesbFqqyugTz4Q2m83n8ymVyui7ZZKMYlXRWfc5dri9aecM01S1NFGvecDVef3/W72D3ZYb9boRve07q7hnt2/ffubMGaPRKHTaa8t7vXdwP7tda7dtOlp1SUGhuBVOGly++2Tb6+D1+785cKKsqEDoJOMu6fnhpzu44Wfr9/TtIeCLksrJ0FE992xrK+C2+8fj1SfOm8z66Eexxt4wagMvYeKLtzf8bs6NsZ86gex2u8cTa0Eq4PP7/Xa7nWEYr9eb7rV0PTRN2+12mUzW4fsetOdyuex2u0KhkMvxCVMwu91ut9tbW1ulUtw8JFiiP+x1LzabjRCCX1tx2De9dK+iq7Lb7X6/3+/3p3shXQ/7ccVms+E3N6wUX1YDAIiOoqjW1hQ1hQ2L/Q837BquuOKKQ5F7rzJi79wVBH/JuoXVq1d7vd72kQmWVCpdsGDB+vXr3W43+0hVVVXyghPcWcI6e/Zswj9JeDwemqYTOK1Pcq+RbOS6TSjoxQ7/1QzpFP8Pq0hphqxfq6/ten09vcXmOq+S5oie0OPxeL3eWF69UYYKLjhBM/SO5l2XGkaJPm8k1+b2f7d6B/fumDlhOD844fP5Nm7cOG3aNMHT9uzJBScIIZ9UVV6ULfJF+02f4teVcifddlH4u+Pnfy/8Zy/XpO1bZj56qoEdbtl58p5ZF+s0Ai6Vjp3UnwtOMH7mu3X7p9xcEcuBfS4py+2RU3+6kR1uXvbDDY9PlStk0Y9KBpqmpVIp/rUQwe/30zStVCrx6onA/slAYEwc7tXDlSYRaJpm/+AiOCFCwj/sdSvsOx5ePXHY1w2vnjg0TcvlckR3RGD/R2Pf+tK9ls4ILwsAdCoxXlVLHvYftPZrYBjmwoULUQ5Mzf2OCE50CxUVFZ999lnYyASrqKho7NixGzduZIfZ2dnJW4zB0FZMX6fTXXvttfyn9Hr9/fffn5Mj/kp6WEql0uVyJXTaHKblt8S5gh1ISVO25guiuy9x88elr+qWXfXPsNsM42tVbB2Qda/o2eRyudfrjeXVm2i88rOmL7xM2zvXz859U8uujX6ICDkkpyKnx87G0+xQV9FPbtR7rXZuhx9//PGuu+4SPG1OzrD8/H21texw05kzL0w2ZPA6sggycWjfz3a1Na441WSzeEjfAsE/ftOuGjbvrW/YbdrjO3C0aeqVQwSsYZrxv69usttc7PDHjUd//8DVMR476ffjlsxZyW63NNiqd5+9dOrI2E+dKH6/X61WZ2RkdLwrBPP7/QzDGAwGrVab7rV0Peyl4aysLGROiOByueRyeXZ2Nm7kFMHn87nd7pycHAQnREjCh71uhP2RM5lM6V5IV6VUKvFxRRyfz6fT6aL8lwqR0DRtNBpNJhN+c8NCcAJitG7dOrvdTggZOXJkeXm5uElaW1sPHjxIUVRhYWFZWZlGo+n4mC7C7/dXVlaeP3/eYDCUlZXl5uamdzEbN27s06dP8u6lTp6MjIz0fky1WCwymSzsGj755JO3337b6XTyH1yzZg37RpqaGwjwr2O3EMuvbp8+fdjghFqtHjBgQIf7x89sNq9YsSIFJ0oGif5PjOszwrRd+WUciySam4k0M72rYpXoJ+1veo32tXXvONm6sp/x/7N33wFNXH8AwF82IxA2KFNw4EZRcSDuUQcoClp33btW/SnWqtVa21pHtdaFdWGdKGKt4sQBKCguVJyICrJHEkYSkrvfHxcvMUK4HAlB/X7+yve89+4lJuFy33vfN4HJMPiHnc8297Vuk1h4iwifl7x4V55V31TnikbVGubehkxOMFhMy4BWhacSyH+NiYnBcZyhviw1NSHNWpDJCalCfvrZ01EtW9EbYWD7ZmRyAiH07+3HCwYHaNm/Un0Dmm7Zd0X6fgbGmdhHOiUnuDx2QL+WZyKV/x2vX+S+SH3XsCmlWlX9xvf456fj5PS9C/uvGCU5AQAAAAAAAAAAGMLJkyeHDh1KPN65cyeN5ERMTMz69euvXLlC3l3O5XKDg4PnzJnTuXNnfY611mVkZKxbty4iIqKwsJDc2KpVqxkzZowfP76WEzAYhh0/fvzHH398/Pjx7t27adyNeujQoTdv6K+mOX78eCcnJ9rN67iAgICAAM0LVjY2NrWZ5YXkBFCSSJTX2cePH29ubq59Z4BYjshsJCrdqwwxEV62m8H/zphDeo/F4HlYDH5WfIAIy+V5WWXXnc171MKhA+z9yeQEQuhafvxI1+F6P0p/5+Y/3f2vFFMWXbHs5aOenMjIyHj8+HHz5s117TawcZOfr10pf39WcezxI9rJiQ5eri62gowCZX7o3+TUeQP9WTreCcs343Vp53U5QVm06n5qxpt3hW71dbg3qlegD5mcQAhdPHWXYnLCqYFDi65NU64p8ysJp24L88UCOwvqhwYAAAAAAAAAAOqmd+/eTZ5Mv8JEYWHh5MmTo6KiEEJcLrdfv37169dPS0tLSEg4fPjwkSNH5syZs3btWh7dYgzGtWPHjv/973/EklTNmzdv165dUVHRrVu3Hjx4MGPGjL/++uvIkSPNmjWrhZFUVFQcOnRozZo1T58+rX7vKhQUFEycOJG85knDgAEDPuPkRF0A08aB0qtXrxBClpaWixcvNvZYPg0M85mIoZbFKd2DsHzjDecDnpYhDLVPd5rwWO0ct6WguS1XdfU8Lj9egSv0fhQTFnugm2oOAc/VwaSxi/oOMTExNLq14PH6ejUkw3vZWU/zaf6HMhhokK9q+lGBuCz+6Wsa/Qzo8UGK5fy1VJ2aN2/j7uKhmrUX+98DuZzqf0ffcd3Ix3KZ/MrheJ0ODQAAAAAAAAAA1EE4jk+ZMqWgoIBe86dPn3bs2JHITHTp0uXZs2cxMTG7d+++cuXKo0eP/P39cRzfvHlzt27djLsGMg1yuXzGjBnTp08Xi8V8Pv/IkSMPHz7cu3dvdHT0q1evVq9ezWAwHj582L59+/Pnzxt0JDKZbP/+/c2bNx8/fnxNMhMIoT179tQkM+Hi4kLj5legE0hOAIQQysnJSUhIQAht27atQYMGxh7OJ4JpjcwnqEK8HC/ZbrTBfIjPcXEw8yPDnPIkcQWdi+O6YiCGv51q9qKwQnS/OMUQBwp2b6MeCnr6qIfnzp2j121Isxbq4fHUx1XtWa0h7ZupV5aKvkWnKz+fBnY2qiK8/11+iGG4lv0/1nNQa/KxsKj09vXnFBt2C+1sylet8X5+/xWdjgsAAAAAAAAAANRBW7ZsOXPmDL22GRkZvXr1ev78OUKoTZs2586dc3d3J/+1UaNGZ8+eJWYVJCYmDhkypCaXxWvfrFmztm/fjhBiMpknT54MDQ0l/4nH4y1duvSnn35CCJWVlQUHBycmJhpiDFKpdOfOnV5eXuPHjyde55rAcTw8PLwmPYSEhMCCcIYGry9ACKG1a9dWVFT88ssvo0aNMvZYPiUM80mIaaWKyw8iRYbxhvMBL0v1ekr4K9GJ2jluN/uuDKS6Kn8tP84QR/GxcXHAVRMkLf1bMnmqVXquXbtWWlpKo9tOrq7OFqr1DKOePJZjGL0ROtsI2jZwJsPYhy+LSsu17F8pJpPRL0A1WTK3QHzn0Vudeug9uA2DqfrvuPjvXYoNTfkm/sGq/Naz2y/THtRGfgsAAAAAAAAAADCQ1NRU2vVCpFLp4MGDMzMzEUJcLjciIuLjouh8Pp+8Gh4bGzt16tSajLY2/fHHHzt37iQeL1iwoFevXh/vExYW5uPjgxAqLS0dOHBgRob+r4B17Nhx//79s2fPPnDgwIABA2rY2+XLl589e1aTHkJCQmo4BlAtSE4AFBkZuXHjxg0bNoSFhdXmceVyedqH8ulW0TEahgXDfIoqxCvwkq3GG80H6pkHmLFVi1G/EkUr8NrI2Nvz7LwtG5PhveL7wgqhIQ4U2rA9+ZhpxuN3VF3El0qlV69epdEnk8EYplY5Mb+s7Gp6Ou0RBrVXTf2rUChi7tH5i6hR2els7EOdmjvUt2rR1oMMb155Iioqo9i27/ju6uHFA9d0OjQAAAAAAAAAAFB3yGSyMWPGlJeXc7lcGs1/+umne/fuEY9HjRpVVbWfzp079+7dm3gcERFx+PBheqOtTc+ePfv++++Jx3w+v6rLgywWa+nSpcTjgoKCCRMm4Lhu1R2qFRsbGxcXt3jx4tGjR0dHRzdq1Kgmve3YsYN40KBBgyVLlhw6dCgmJiYpKem2VtOmTSNaubq6duzYsaZPqc7LzMzUuDyL0b1Plx5YEPuLplAoVq1atXr1ahzH9+3b5+7uHhwcbOiDkm/xjIwMLy8vjX+dMmXK5s2b9XtEyXv67VaJGcpl7mdgOcqw/ISUPQZneRrkWDpyNRv0VKTM2Fdg4rSi065mg3TtRCKRyOVynV69TgK/VJGyJqACx67mxPW1qyTlXkPBHm22PL+G3k+vE/TyEV29T/7rmTNnevbsSaPbQK9GW5ISsfd/Xw+n3O9Sn9Ii0h/r1sTNhMOSVCiXeTiZmDLUt4munTjZmXt7OT55qXyDxd54NmNMF76ZDstqdR/QIuX2K+KxvEJx6fSdr0LaUWnYpKOXUwOH7Fe5RHhh/5VRy4LZHJYuw68R4l1H76zxC4dhmEQi4XA4MP+UBplMRvzJqOUTss8D+QeXzYYzTJ1JJBLi7QefXBoMe7L3uSNeN3j16CH+XsDpCj0SiYTFYsGfDBpkMhl5xmLssdRFMpnM2EMAddSKFSvu3LljYmKycOHC1atX69Q2NTV17dq1ZDh37lwtO0+ePPnixYvE4/nz5w8aNIjP52vZ3+hmzpxZXq4s9jBmzBgbG5uq9gwKCrK3t8/Ly0MIXbp06ciRIyNHjtTjSKysVOVJ2Gw2WUSLhuzs7JMnT7JYrBUrVoSFhXE4nOrbIIQQmj59OvEgJCSEoV6wmy7iG7vm/dRkACwWq9IxjB8//ujRo7U/JHVwHlC3YBj2+DH9MvcamjVrVtXvW7FYfPTo0d9++438kN+/f3/YsGHDhw/fu3fvxxPT9Ego1HYffVRUFFHDTo/EYrFUKuXxdLieqxMzNIaP1r+PFJh4k4ixykDH0okV3p2B9uBIToQvRUctK7rq2olIJJLL5dS/xBFCjRhepkzTckz5h+1q7nU/DqWr4TphIeRUjGXbKN/hZs09OE42FdmFRBgTE7Ns2TIa3fIR8rF3uJP7Phnw5nVaTratiSm9QfrUs775Rjkf6HFm3r0XrxvYW2lv8rGA9h5kckIqk5+/+rBX54bam6hr0d7ZxJQjKa8gwov/3u3cl+qtB52D251Yr6zFWZwriou+2aZPC+1N9EgsFstkMr3fiPElwDBMLBZjGFZRUWHssXx6ZDKZWCxmMplwpYkGiUQiFovZbDZcaaJBLBaLxWKhUAjJCRoMfbL3eSOW62Sxau/+g8+JSCTicrlwukKPWCxWKBQKhcLYA/n0EKcrIpEIPrmVgnNgUKn4+Pjff/8dIfT77787ODjo2vyXX34h31oeHh5t2rTRsvPgwYN5PJ5UKkUIZWVlbdq0iZxwUAfFx8dfunSJDIcOHaplZw6HExQUtGvXLiJcunRpSEiI4b6LnJ2dq9+pCrt378Yw7PDhw8OHD69+7/devXqVnJxMPNZXTaeysjLt10INjfh78fEYcByPjo7W0rB2cr3w07FuEQqFLVu21FdvYrG40tzs2LFjDx06VOlZYGRkZE5OzoULFwz3687a2pp4wGazXV1d1f+JxWItXLjQ1tZWv0fkcDgSiUTv3aqZgBceZWDKxQBMUCxXkIOzm2lvUytsnVGPjNILRFCieMmyyLHi6jYwFosll8t1ffU6lLW7mn+deJwrzxOaiDzN9b/QeqhX+81F7xdRYDAEPVrnH4olopcvX4pEInqru49s2erOJeWLpsCw+Py8b1prO+3Qok9zDzI5gRCKS8tu5605W6hagX3a7D2eLKtQJpmu334TOthPexMNnXo0jT3zgHj8MjWnXIy7eNhROvS0/lEbzpK/txNP3u09sptOh64JhUJhYmJiaWlZ/a7gQxiGYRhmYWFhZmZm7LF8emQyGZPJtLa2huQEDcScCVtbW0hO0EDMU7S1tYXkBA2GP9n7nBG3BGq5RxJogeM4l8uF0xV65HK5ubl5Hb+buG6SyWQCgcDGxgY+uZWCmRPgYyUlJRMmTFAoFH379p01a9axY8d0ap6enn7o0CEy/Oqrr7Tvb2Zm5ufnd+2asjbyli1bFi5cWGfvovjll1/Ix6ampt27d9e+f48ePcjkRFpaWlRUlE5X/3VC+1sOw7Dw8PDff/9d17FFRkYS10Dc3d39/HS79lIVCwsL456mFhQUsFisSsewZs2arVu3apQNeP36NbGldn4Uw0/HuoXD4dCrRVOpqi4NRERE7Nq1KzMz8+LFi4cPH46NjVX/1+vXr3///ffr16+vtK0eubi4pKWlGfooCCH2e4Y7ArKYgwsXvQ9xZvmfDOtwgx1OB16CEDI5gRBKL4lq59BKpx6I103XV6+7QwCZnEAIxRfdaCyoUaHASk3pOuCPiDimQDnRR9CzTf6Rq+j9V+rFixdnzJhBo9vB3k1/irsmlkqJMDI1dYpve+1NqtLa1dHR0jxHpFyd+/SdJ98N6srS8aqTtRXfv73X5QRlpawHTzLf5Yrc6uvwF7p3UFsyOYEQunImZcLcPlQaOjes1zKg6YOryulcN08nlxaXC+wsqB+6Jgz/yf1sYRgGrx5t8OrVBFuNscfy6SFfOkhO0ABvvJqgd7IHCPDeqwl49WiD0xXtoDgn+NisWbNevHhhZ2e3d+9eGoV69u/fL5fLydDX17faJt26dSOTE9nZ2adPnx42bJiux60F7969i4mJIcOWLVtWez263+V0aAAAIABJREFUW7cP7lkMDw83XHJCpzIe6h48eODp6Tlv3jxdG5KJK33VdEIIGb2GIZvNrmoM8+fPnz9/vsZGGxuboqKiWhkaQpCcqGv4fL76XCrD4fF4np6eU6dOnTp1akJCwpw5c+7cuUP+659//vntt9+6ubnVwkg+E6ZBqHQ3kj9RhtIrSJaIuPpJsdaEvamvgNtQKHtBhG9LzrWyncdlCQx93IZ8T2fT+pnl74jwRkHSaLeRXKaeM64cFrtetjTnfXKCbWtp3sqz9J7yyZ47d45ecsKEzR7QqPGRhylE+KwgPyU3p6WDI42uGAzUvYnLkVvKvEKBuCzh6euuTXWezzGgR3MyOYEQOn8tdfLILtSbt+3oZe8kyMtWzuC7EH133OxeFC9+9R3XnUxOyGXy2ENxQ+ZUc5MIAAAAAAAAAABQR0RFRe3fvx8h9Pfff9erV49GDwcPHlQPfXx8qm3SqtUHN4YePXq0biYnDh8+rF5YRXu5KoKzs7ONjU1hobKq9uXLl/Py8uzt7Q0xPNrJCR8fHxrXV9PT02/fvk08Dg0NpXdooCu4Mwugzp07JyQkqH/qKioqDhw4YMQhfYKYDP4c9Rgv2WisoWjwtFT9/VPg0nTxv7Vz3AA7f/JxuaL8VmGyIY4yxKUVUivyK+ilOkW4fPky7fm8Ic2aq4eRjx/R6wch1Lupm3quPfo2nUVl/Hwa2NmoJrz/d/khhulQ2pjBZPQY0JoMC3JFD269oti2W2hnU74JGZ7ff4X6cQEAAAAAAAAAACN69+7dlClTEELTpk0LDAyk0cPjx4+fPn2qvsXLq/pyzc2afVBS+/z583VzTk9UVJR6SOWpoQ+fnVwuJ1f/1rtarrV77NgxoqZTgwYN2rXT/+KpoFKQnAAIIcTj8fbt26f+HRQXF2fE8XySTPoijlryXJaMpFeNNxoVd4tBHKZqhfM00TEc1cZfxC52nVgM1ZpI1/IN8o76uvfA8mcZZMj3a8qyVBbZF4vFx48fp9etb736XtaquklRT1IlalM4deJoad6mgWoFp8spL4tLJbp2wmQy+gWo/vbnFojvPHqrUw+9gz64/eHiqXsUG5qY87oO60iGz5PT0h681unQAAAAAAAAAABA7cNxfPLkyQUFBQ0bNly3bh29TuLj49VDCwsLKyuralt5eXmpFwUqLi5+8OCBlv2NQiqVkhMFCC4uLlQaNmzYUD28fv16VXt+WiIjI4kHoaGh+qrpBKoFyQmgZGJisnz5cjJ8+1a3S580YBhW9CGRSGTogxoUw+KDYna4eB2qlTSAdmymmStfVYenpCIjtyypFo4r4Fi2tlJNY0wVPc2V5ur9KE5OTpbPC8iQwWZZ+quWlK/J0inD1G4EEEulF9Ne0u4qqJ2qqwqFIubeUy07V2VAjw8mc5yNfahTczdP+8bNVTmSuAuPykulFNv2GfdBQckLEXUi6wYAAAAAAAAAAGixefPms2fPstnsAwcO8Pn86htURiM54erqSqUVj8cTCD4oqa1eTb2OSE5Olkg+uHuS4rNzdPyg8HUdfGo0vH379tatW8TjkJAQ4w6mNgmFQo3LsziuQ62OmoM1J4BKcHDwjBkzysrKEEIVFRUGOgr5Fn/z5o2NjeaivjNmzNiwYYN+jyh5T7/dVsaXw/ZjyhOVkfxJhThawTF+gX4Xk8FpokgyfF58WMCsvkIiQSKRyOVyeq9eJ8sOd4ruEo9xhF/OujrEaTCNfrTrbd/oP4mMaaKc6yfo1abojPK/IDk5+dy5cxqLNVE00NNrfUK84v3b9VDKg95u7rp2IpPJcBzv5u1myuWUy5SfqROJKUN8m+jalZOdubeX45OXOUR45ebzGWOEfDMe9R66DWjx7FEm8VhSLos9e6/noNbamxCadPRy9LDPSc8jwosRV0cvC2ZzDf7ng3jX1fIszs8DhmESiYTD4cCyujTIZDLiT0bdnHZdx5F/cGF9ThokEgnx9oNPLg21eLL3GSJeN3j16CH+XsDpCj0SicToa4R+omQyGXnGYuyx1EW0q/uCz0xqauqSJUsQQqtWrfLzo78m6MOHH9waSHFuAULI0dGxuLiYDB8/plPk2aA0nhqinJxwcHBQDx89eoTj+Kc+1eDo0aPEFUtPT8+2bdvqsWfiG1uPHdIYAIvFqnQMkyZN0lhSpfbBeUDlMjIyMAzT14rQGIZlZGQIhUIXFxdra2u99GkIfD7fz88vNjYWIWSgpWwQQupfzR87duzYihUr9HtEsVgslUp5PB0u49LGQROtUSIZMkvXFDOaYaj6GX8GZi9gNRcqlAsnZJfHvS28Yclqpr0NQSQSyeVyemsQueGuFiwLsUJMhJfzr3Tg+Zqr1ZjSiyFfDTx8/A9BD2W6hdfAie/nXZKoXJx83bp1VNaq+hgPIT+neglZ79f0znh7/eWLVna6fS5EIhGHw7GysvJv5HLhkXKZh9TMvAt3Uzt41td1SAHt3cnkhERaEXH85qhAHZ6aT0c3FpupkCuvtx79+3rrTq5sNkt7K0KXYe1PrD9DPC7OFR3fdLr/1B66jJ0OsVhMZHcMfaDPD4ZhYrEYwzDDpZk/YzKZTCwWM5lMuNJEg0QiEYvFbDYbrjTRIBaLxWKxUCiE5AQNtXmy9/kh5i6zWJROCYAGkUjE5XLhdIUesVisUCjUF2IFFBGnKyKRCD65lYJzYIAQqqioGD9+fHl5ub+//6JFi2rSVXp6unpIPTmhUf2pFiqU6Or16w+KNjOZTIoLhmtc2ywpKSkuLq7LFzypOHbsGPFgxIgR+k20lJWVCYVCPXaoK+LvxcdjwHFcezn02sn1wk9HTS9fvly7du3u3bsnT568bdu2Gvb24MGDjRs3/vvvvwUFysoz9vb2o0ePnjFjRuPGjWs8WP0j8zGNGjUy0CHIbysmk6kxx43P54eFhdna2ur3iBwORyKR6L3bKgTgop4M2WUiYKJiW+5mzGJTrRxam0alI27nk2W78NeKXd0c9jAoFHZjsVhyuZz2qxcg7fJfTgzxuByTxJZfH+82ml5XVenSpUuTPVuy1bbYj+ldevs5rlAghC5dupSbm9u0aVMaPY/2aUMmJ3CEdjxKORys28y+goICDodja2sb6t+GTE4ghP6+/qCfbwsmU7e/doF92u6PuiuRKk+1T8c+GRHYwcHWgmJzW1vUqYd33AXlzRrZGcVJl18N/prS/SOB0/qf/CMGUygTG9GbzgVO629hQ3NWLEUKhcLExMTS0tKgR/ksYRiGYZiFhYWZmZmxx/LpkclkTCbT2toakhM0EHMmbG1tITlBAzFP0dbWFpITNNTuyd7nhvj5/fGEZkAFjuNcLhdOV+iRy+Xm5ua0C618yWQymUAgsLGxgU9upWp4NU0oLk+8l55XIIa0Y23icFju9W06+Hjo+jO5KsuWLbt165ZAIIiIiKhJGk8sFpMX9AhUFpwgmJiYqIfab9U1ilevXqmH5ubmFH8EfXxHyKeenHj79m1SkrIEut5rOllYWBj3NLWgoIDFYlU6hlWrVm3atKm8vFx9Y3FxMXHjRe38KIafjioPHz5cu3btwYMH9XLvhkQiCQsL27JlC9FbixYtnJyc0tPTX758+ccff2zZsmXlypVhYWF17fcnmRvs3bu3oY/l5uam8T1oIOz3auFYCCEkWI7nJyK8lIgY0vNs0xhkMqiWjl4Fd8FXL8WHi6TKC9PFsieZ5Wc9LIKqbUi8brRfvcHOA68WxJXIS4jwWkFcX6dermZUbzSgaOnoqRPj9pv7KFdk4jrbCfr6Fp9NQgjhOL558+bw8HAa3X7VuEnL5NspucrJCslZWZdep/fzaqi9lTryvdexsXvHxm43n70htr/MKTx992mwXwudxmNtxR8xyHff8ZtEKJFW7DmWuHR2f+o9jJvd58blJ4r3OYZ/tl/pHdjWQmBabUPnhvUGTO51escFIhQXlhz5LXr6+vE6jV9Xtf3J/YxgGAavHm3w6tUEW42xx/LpIV+6unZy+EmAN15N1PBk7wsH772agFePNjhd0a4mxTlvp7xZuja6pIzq+nxAv5p4OW74YZiVZU1vsYqLiyOWv966dauHh0dNusrLy9PYQv0OMI0Lu3UwOZGfn68emppWf3GA8HFywrgzA2ru2LFjxOV4Ly+vNm3a6Ldzo9cwZLPZVY1h0aJFH08tsrGxKSoqqpWhIQQLYhMePHgwbty41q1bR0RE6CUzkZOT07Nnz02bNikUCm9v78TExJSUlAsXLjx//jwhIaFly5ZyuXzp0qWDBg2qazUinzx5ghCytrYePFj/awN8KVjODIvF6htw0UqEaf49q2UMxPSxW4iQ6h6ElIItFViJoY9rzjYLqj+QDDEc++fNYb0fpU+fPraJb5HaOajdiG5MM+VNChEREVlZWTS6ZSC0pGuA+pbf4q/L6Z7pLhgUwFSbGPhXzA1yFQrqxgb72Vqp6mLFXHn09H2hJyrcPO37DFFVTiwRlR/dfY1i2/ErR5hZqs5UoreczXxO51UFAAAAAAAAgDpIKpP/uPE0ZCaM6OnLnC37rtawE6FQOHbsWIVCMXr06FGjRtWwN407ypEuV/A16mPXwcv3Gs+O9lNDdTL1ohOyptPIkSONO5Iv0JeenLh7925oaKiPj09ERIS+lr4sLi7u1avXjRs3EEINGjS4evVqhw4dyH/t2LHj5cuXGzRogBA6e/bsqFGj6k6RzbS0NGJh+m+//dbCgmqtGFAJs5GIp3ZRGyvGhT8YbzRKtiatXfl9yFCqKHxStLsWjtvHsZeTiSMZPhKl3hem6P0o80dNFMbeJ0OWpbnN0C7EY6lUunXrVnrddnJxDXD3IMNXRUVHHmkuGEWRt7N9/zaqdbBzRSUR1+7o2ompCeeb0E5kiOH4lv26nbqNn9Pb1Fx1j0NURELW20IqDa0cBCMXDSFDeYVi15J/dDo0AAAAAAAAANRZj59nFQnLjD2KL13c7Zc17GHOnDnp6ekuLi5//vlnzcdTk+SExvInxCJPdUpZ2QdveNpPDSEkFov1MyZjyMjISExULh+r95pOoFpfdHJiwYIFvXv3trCw+PXXX4cOHaqXPjEMCwkJefToEUKIyWTu379fYwl7hJCdnd3OnTuJx1FRUd99951eDl1DOI7Pnz9foVD4+PiEhYUZezifOgbDcg1iqhWflV5G5SeNNx6lVrbz2EzVH5vnwoPiitda9tcLFoM10vWDL/eDb44ocD3n5L7++mvu1SeYRFVd1CawE8dOuajJ1q1bS0poThNZ4t9VfcbDxpsJpXRrmH77VReu2gLUf1++VSDW+dw3qE/rBq52ZHjn4Zubd3Qoj2Ztyx82rgsZyisU+7dcoth22PzBju6qJcHjTiTeu0wzVQMAAAAAAAAAdQoLKivWAWxWjf4XTpw4ERERwWQyIyIi9LIEwsf3MVMv66RxBb8Ormmn8eyoJyc+Xtnl47kUnxCyplPjxo1bt25t7OF8cb7oAoXz5s37+eefyQVqBg4ceObMmRr2+eeff168eJF4PHjwYH9//0p36927d9euXa9fv44Q2rJlS79+/QYOHFjpnnrxxx9/rF692tLSctiwYQsWLHByctLYAcfxRYsWRUdHOzk5HT169OPicXqEv19VKj09ncH4YKUjFov1v//9b+XKlfo9ouw9/XZbHWum6QJW6QoyxkWr5Iy2OFPzxa9NLGTtxR/1VPQ3EWJ4xf28jR3s1mppIpPJ5HJ5DV+9lubNm/K9U0ueEOG78qwLWZd72nWrSZ8fmz5q/IZ/L9iGKLtlcNh2o3pmbY5CCBUWFv79998zZsyg0a2npSCwcZOTT5WDLygr23E7aXa7DtpbEWQyGY7j5KtnxzcJ6djyn7h7RFgmrdh6LmFxYEDVHVRu8ohOS9f9S4ab98a2blqPRfkcbshYv7PHbxXkKu9ruHL2wVchbb1buVbfkonG/hiy7hvVNJTtC/dtSljN0NOSZRqIdYlr/ZP7OcAwjPjSgzLENBjpT8Zngnz19DUb9YtC/sGFNSdogE9uTRCvG7x69MCrVxMymYzD4cCrRwP5JwNevUrRflmaNa5Xz0GQlVvnau98UXr7e9Nu++7du6lTpyKEwsLCunfvrpfx8Pl8jS045aXSNd6K1LMatUbj2dF+agghc3PzSvf8JJA1nUaMGGGI/mt+Va2GZDIZi8WqdAzffffd9u3bjfvz7Yu+bOHq+sHFuKFDh9YwOZGRkfHDD6rqPdqnREydOpVITuA4Pnv27F69epFpEv2SSCQLFy5UKBQFBQXr1q3bsmXL2LFj58yZ07JlS2KHpKSkZcuWnT9/3tvbOzo6ulGjRoYYBknLmioKhSI8PHzevHn6PaJYLJZKpcbI4vYSoBgeuqGMcDFWHFbM2KC+8EPts0OD0xn/SvFcIswuv/4y74INu11V+wuFQrlczmKxqtqBoq8s+jwtfYbhyu+7qHfRTRiNzJhU0/JUhISE/LZxvbx3W7a1siiZZbdWRf8lSl6+Qwht2LAhJCSE3hOZ2KRpzIvnkvcV2HbdvdPf2cXWpPrBi0QiDoej/p4P8W146vZj8fsZHscTH/Vv5u5ma1lFB5Vr6mnVqonTg6fZRPg6s/DE2eTeXXRYqTtoTPvdGy4Tj3Ec/3vDue83DqPSsHW/po3bez67lUaEL++ln9513j+EUqpGV0KhUCKR1J3Cd58QDMOIT65UCgVzdSaTyYhqsHXwzqa6TyKRiMViJpMJiTEahEKhUCgsKiqC5AQNxjvZ+xwQRaI17hkCFBUXF3O5XDhdoUcoFFZUVHxcGwRUizhd4fP58MmtFO03FZvF/GVR0JK10ZCfMJYu7bymje5Kry2O45MnTy4oKGjbtu2KFSuqb0CNpaXmr/WPCz1Vpe4nJzSeHfVlcT++zE191kVdk5GRcfPmTeKxgWo6lZSU1Ob60h8TiUQsFuvjMeA4vmvXLi2ZidrJqcBPRxUXF5ca9rBu3TqydIyDg0PXrtq+UocMGcLlcon/5vT09L/++mvBggU1HEClTExM/Pz8EhISiFAikYSHh4eHh5uZmbm4uOTn5xcWFpqbm4eFhf3www+1kOq0sbGp6p/4fP6CBQtsbW31e0QOhyORSPTeLSXYr6g4EGHKMxsuumXPv4bxgo0wEjUtTWbfzl9Ohm8Uu70cejEZlX8bsFgsuVxe81fPFtl2kXW8XqB8H5Zh5QmymyOch9ew2w8OYWs7YdSYfUeuOk4fpNzEYNiP7/t2+V6E0Js3b+Li4oKD6bz4tra2Y1q13nVXuUREuVz+z4vnK7v1qLZhQUEBh8NRf/VsEZrUs/0fZ+KJUIFhB5Oe/D7mK12HNHdir6lhB7H39zUc/u/+4D5tzEypXksdOrrrlTOP054o0xtPU949T8nr2J3SLSrT109Y0G0FeUtF5G+n+4/ryTPT/3QrhUJhYmLy8bkgqBaGYRiGWVhY1MHT37qPuG/d2toakhM0SCQSNptta2sLyQka5HI5cboCyQkajHmy9+kjLm5qOUUHWuA4zuVy4XSFHrlcbm5u/vFdyaBaMplMIBDY2NjAJ7dSNbma1qiBw6E/Jz56llVYXKrHIYFqmZpwnOwt1SsY62rTpk1nz541MzM7ePCgHs/kP16QlfoVfI0VsD+uYmJ0Gs+O9lNDdfLZURQZGUlc32jSpAl5G7d+WVhYGPc0taCggMViVTqGhQsXbty4saqUW+38KIafjip2dvS/BBFCeXl54eHhZNi/f3/tvy35fL6fnx8xeQIhtGnTpm+//dZAP+ZPnz49f/78kydPEjdGEcrKyvLz83v16tW3b98hQ4bU8OnT4OHh8eqVDrXyaWO/VwvH+kh9ZPE9LlxMxoySX9gm/ohV3xiDUfIQDEwvPZlfrrzULq5If1N2sqFgZKU7E6+bXl69EW4ht4vvliuUX3kXc2N7OfZQXyu75hYuXLi14XbpwA48V+VaL2YtPMzbNiq98xwhtG7dutDQUHo9z/HrdDz1cdH7P9VHHj/6po1vw+p+DFT63hvX3Tcy8WFGgfJv+cWUFylvc9s00O0t0bRhvd5dvc9fSyXCwuKyY2fuTRrRmXoPE7/t98OMfWS4d9PFjt2bstnVzyxp6d/UP9jv+nHlnQX5mYUnN8eM/oHSxAudGPWT+2nDMAxePdrg1asJthpjj+XTQ750kJygAd54NaHHk70vELz3agJePdrgdEW7GtYn4bBZPs1qeusqqGWPHz/+/vvvEUIbN25s0qSJHnsWCAQCgUD9Wjz1K/gaN6q7u7vrcWB64ebmph5SnxSi8dQ4HE79+sa8zFUTZE2nkSMrvyxWcywWy7hf12w2u6ox/Pzzzz///LPGRhsbm9qc6gE/flRqOBP8n3/+UV/mvn379tU26dZNVXP/7du3//33X00GoIW1tfWePXuKioqKioqeP39+586dN2/elJWVFRQUHD16dPLkybWfmfiCmAYjk76qEC/BhUsQolrIz0B8bBcy1D7+jwt3SBXFWvbXCwHHckC9fmQox+VHM47r9xAuLi7Dg4PzIy6qb3SY0JfBYiKEbt26FR8fT69nSx5vRns/MlRg2PobNLvisFiz+nVS37Lu32uUSzuqzBgTYMJTfWsdjL5VUKTD3T3t/Bv5dlZVgspIzz977DbFtlN+G8NRO/SRtScLs4w5RREAAAAAAAAAwBdr3rx5xIX1sLAwGwomTpyo0Vz9X+fOnav+r82bN1cPc3JyqAwJx3H1+4NRnUxOaDy1goICioUKNZ6aq6vrJ3p7TWZmpqFrOoFqfZJvHQOp4VyVgwcPqodt2rSptonGEvBHjx6tyQCosLKyatiwYZs2bVxdXT/denCfHIblj4hppYplCajsiPGGgxBCVrwm7haDyVCGiR4X7aiF4w5w6mfHU80ju1WY/ET8TL+HWLBgQcntZ2UP0sgtXBd7y57Kz+P69etp9zyhtY+bQECGMS+e3373jl5XA9s2beaimjLy4HXW5YcvdO3EwdZi2Feq7xmJtGLXEd3yJZMXfDDB68C2y6UllO4BqefpGDRLlWcqL5Hs+9HgX18AAAAAAAAAAMDHyLu8i6gpLf3gxr6ysjL1f1W/8xh9dAU/MzOT4pDkcrn6Fh8fHzrPzZA0nppcLs/OzqbSMC8vTz2sg0+NouPHjxNzrby9vTVeDVBrYA6gSk1mTrx58+bWrVvqWxo2rH5x2qZNm6qHZ8+exTDsE0020pCTk9OnT59qdzMzM5s4cWJQUFAtDMlQmPYMy+V48XxyAy5ew+B1Riw3LY0MraXt7MzSSxWYcpWUNGGkp2WwgGvY5dC5TG6IS/C2l6oCaAdeH/qpxXKG/hYJ9/X17dGjR8K+8x7rpqH3C8TZj+opjnuIlUujo6OfPHni7U1pcQUNHBbru46dvzt3ltyy5vrV4yO+pjF0BgMtDAyYuPUYuWXjf3HdmnmyWbp9/McF+52+nCIUKadenr6UMvyrtl7uVCdCNWjs1CeozbmoZCIUFpUe/fv6N99W/6lECI3+YfiF/VeF+WIijNl9ecjsrxq0NOZbGgAAAAAAAAAA0C+Nm48zMjKotEpPT1cPmUymn59fFfsaTbNmzXg8nlQqJbdkZmY6OztX21Dj2XXq1KmKHeu6WqjpVHccPnx4//79FRUV1e5JLqhcOyA5ocJg0L88GhcXpx7yeDwHB4dqWzVs2JDBYJDryhYVFaWkpGhMp/j8iEQi4kF5efnFixe170w4f/58YmIi7bRNSUmJTCbLzc2l11xPGrhadrbkKpeDRnh5ybt56cKVSH8X5WmwYg/I4yhveMcRlvB6lat0scY+IpEIwzArK6uPWtNkgcydmfUzMeWcg9dlbw7fO9aS3Uxf/SOEhg8fHjtrluhaimW3VsQWlsDcJrBT/pErGIatWLFi2bJl9Hr2QqihheULsfI9fDc7a1fs5U72VX7Y09PTORyOxk0ZBFOEfFzs7mXkE+HrvKLNJ871beqq65D6d/E4cla58gSG4b9tOz13TDvqzTv0dok9c18mVd7QcWJ/XMNWltb25lTa9pzUJeq3GOWhFdjvU7fMDB+ny9irUVhYyOVyYY1EGjAMKyoqMjc3NzExMfZYPj1yuVwoFAoEAijiTINMJhOLxfDq0VNQUJCXl8dkMr+c+1T0qG6c7H2qiJNzWNKZnuLiYjabDacr9BQUFJiampqZmRl7IJ8euVz+4sWLsrIy+ORWisqlNwCoGzhwoPq1u7S0NBzHq72EqHH5vkWLFgK1Sgx1hJmZWc+ePc+eVd2C+fLlyw4dOlTbUGMFWX9/f/0PzvCys7MTEpSX6Qxa0+n169cPHz40XP/VSk9Pl8lkY8eO1ZjNUy2ZTGagIamDn476oVHI3sXFhUqqg8fjWVtbFxYWkluSk5M/++QEjbPPhg0b2tvb0z4il8uVSqWVrkpfmyRoCR+NZyLlf7c5J8XN7lopHmzEIdmgUSXl8eW4ck5iKfMxsnpmy/og481msxUKhU11Kz/rZKhs8F85O/H3C2/EKW50dvDjMmpUV03dkCFDNm3alHbgIr9jU+b7pRFshnYpvnhHXiA6ceLElClTaM/Xm+fbbvaVy2QY8epl/8ZN2FVcSCouLuZwOFW992b0ajcj4hyGKV+HEw9eBbZvbs7TbQrX0P7W125nZOUpZzA8ep6fmVfRytuJYnNbW/RVSJvoA8qJXxUyReypZ1MW9abSNnBmv6Soe5nPlLM+nye+yrif07qn3vJMOI7zeDwLCwt9dfjlIOal8vl8KN9Hg0wmYzKZAoGghsUev0wSiYTNZltbW0NyggYMw2Qyma2tLSQnaKgjJ3ufKBaLhRDS450oXxQGg8HhcOB0hR4Mw8zMzMzNKd0WA9TJZDKBQGBtbQ2f3EpBcuILdPLkSfXb/6t15syZOXPmkOGaNWtGjBhBhhrf6m5ubq1bt7537x4RikSiFy8RrxYBAAAgAElEQVReNGpUTdmJFy8+KN0cHGzMiz9aBAYGqicnkpOTv/76a+1NhEJhfn4+GTo7O1PJZ9RBx44dI347t2jRolkzfd4yq8HCwsK4p6nFxcUMBsPV1VUjq1StGi7PTBH8dNSP+/fvq4dU5kARHB0d1ZMTjx490uew6iTygoWjo+OBAweq3Z/JZLZv374mZ/zm5uYSiYTKXBYDq4ekP+NFM8jYgrHD0n4gYnkYb0gIlS5IyFbVm3qL7W3qPIillicwNTWVy+X6XTK9Hqp3q+JOYqHygrhIIUrG7wXX12flrkWLFk2ePLn4TKLNUGUCn8Hl2I3onr31lFwuX7p0aUJCAvFTXFcD69U7+irt2ut0InwrFl8rLBjdslWlO4vFYg6HU69evUr/tV69eoHt3p5MUn7qhWXSmCcZs/t31nVIsyf0WPr7KTI8ePpBn+4+TMpTwSbM+er6uSeF79MbNy49Gzm5Z+PmlL7Epv42bsXQtWR4bM2/fUZ0Z7HpvLAfY7FYJiYmcDsYDRiGsdlsCwsLuBWRBplMZmJiYm1tDckJGiQSiZmZma2tLSQnaGAymRiG1atXD5ITNNSZk71PEo/HQwjp906ULweHw+FyuXC6Qg+TyTQ3N4d5JzTIZLKioiJHR0f45Faqdm71BXUK9atwBI1zBjs7O09PTy37BwcHk8kJhFBycnK1yYnk5GT1UD35UacEBgbOmTOHvKH+zp071TbReGohISGf6OkrWdPJ0Eth29jYVHVdqHaIxWIWi3Xnzp3k5GRyDpAWQ4cOJSo71aTIEHXw01E/NKZrubpSrc1ibW2tpZ/Pm6mpae/elG7Q/nzweiOTgUjynzLEy/HixQzbgwjp52IuDfXNuzmZdc4uU05kK63IfF78j7f1N4Y+7kjX4XeK71Vgylta/suK6Wbf1Zart3PrMWPGLFu2LCfyuqBnG5ZAeTeWoKdP0X+J0tc5SUlJW7duVb9RQidL/LvGvXmNvf9C33gzYUgTb3Na1zHn9O8cc++pRKY8D9h7JTmkUytHgW6/0Lp3bNyqqfODVOUMmBfpeeeuPv6qO9WpIaZm3DEze25eGU2EOI6Hr4v5fc8kKm07B7Vv27vVnYsPiPBNaubZXZcGTe+r0/gBAAAAAAAAAIA6a9q0ab/++iu5UHZ8fHy1SxQkJSWRjwMCAuitfFkL6tevHxoaevDgQSK8ffu2VColblyoivpTYzKZkydPNuwQDaPWajrVHVZWVr169aKyZ+1MmCB9kqmtukYmk2VlZalvoT5bR+MDLxQK9TYsUCcxLH9ETLUSVRV3UOl+4w0HIYRa2c5nMlR5yifFu8vleYY+qB3Prp+jKjUlw2SRGVF67J/H482aNQsrlxZEXlNtZTLtxyoPunTpUorLWH3M285+iLdqNfuCsrJdd5O17K+Fg4A/pmtbMpRWyLefv0mjnznju6vns3f8c10i1WEuc/9gX4+GjmSYcvvVzStPKLadunYsg6k69t4VR0qFZdQPDQAAAAAAAAAA1GUODg4TJ04kw+joaO23n79580b95uMlS5YYbmw1t3jxYvIGebFYXO3qsFevXiUfBwYG0i6abVyRkZEKhQIh1KpVq6ZNm1a7PzAcSE7oQV5eHlGkjES9zLfGaqXFxcV6Gxaom5hWDMFq9Q14yXokf1HV7rXAktvA03I4GcqxsoeFW2rhuEH1Bwk4qvWg4vNvpJXqVvxOu7lz5zo7OxfH3JZlFZAbzds2Mm/thRASi8WzZ8+m3fn/OvubqhUt2Zl8O6+sklWvqZjcq72thar2zomkhy+yC7TsX6lmjer16NSEDPMKS46c1iFfwmQyJ83vp75l1/oYuVxBpa2Xj0efsd3IUJgnOvybPvNMAAAAAAAAAACAcS1cuJC8gvf27dtbt25p2fn48ePkY39///79+2vZOSsr6+zZs+fOnSNnZtSyVq1aBQWp6mxHRWn7RV9UVHT5snIZTjab/eOPP2rvHMfx169fEzWCaJBIJOqhHleUqbWaTqBakJzQg4+/PqgnJzRmykBy4ovA64lM1dZXwKW4cAlClC4EG0gzm2k8lmottdfi/wqlBl/+xIRlEuyseh1whB94fZhcJbvmLCwsNm/ejCsU+QcuqW+3H98HMRgIoejoaO1/dLVw4vPHtW5DhmUVFZsT6cx4QAiZ87hTeqkWj8Iw/I//4mj0M3NsAIejqg8WcSKxoFiHfEn7ro3bdmpIhhnp+THHqaY3vln9tYm5ahLYiT/+y0k3+OQbAAAAAAAAAACgdri7u6tPgNi5c2dVe+I4Tv4rl8vdvn27lm5//PFHd3f3AQMG9O/f38XF5dChQ/oasE42bdpkbq4siH3kyBH19a417Nq1i1zWZd68ea1bt9bS7dWrVxs0aODh4SEQCGbMmEFjPRiNdc71taJMdnZ2fHw88Xj48OHadwaGBskJPSgvL9fYQj05Qa45QxCJRPoZE6jbGBbLEctJFVfcQ6W7jTccxGVaNrOerrYBv5f/O9JfnqAq3e27upq5kOHzkhe3C6tffIm64ODgIUOGiG88Lk99Q27keTgJuiv/fM6aNYt2RnBm+w7WajOfDqU8eKG2uL1ORnRu7W6nSg5dfZyW+PyNlv0rVc9BENzfhwzLJRV7j93QqYfJC/qrF2iK+OtSWYlUy/4kO2eb4QsGk6FMUvH30oM6HRoAAAAAAAAAAKjLwsLCOnRQ3lm4f//+V68qr/2wc+fOJ0+UdZJ/++03LVWP9u7du3LlSnI2QFFR0ejRow8fPqzXUVPi5ua2bt064nFJScmmTZsq3S0/P3/t2rXE47Zt265cuVJLn7m5ucHBwa9fv0YIYRi2ffv2NWvW6Dowjer3+rql+/jx40RNJx8fnzq7HMiXA5ITeqCRYEAImZmZVbrnxzRmJLHZsET5l4FpybD8SX0DXvIHkj8z1nAQQp6CYQJuIzIslKS8EZ819EGZDOYYtw9WkTr09qgc1/xA1cRff/0lEAhy951HahUh7Ub3ZPI4CKGsrKxly5bR69mSx5vR3o8MFTi+/kY8va7YLObcAV3Ut6z/9zqmtYRlpb4Z3klgocqMnjx//9XbKu93+JhnE6feg1XpDWFR6bE91ym2HbloiL2raq2dK4fjH8VTXbUCAAAAAAAAAACo47hc7tGjR52dnRFCFRUVI0eO/Phm5fj4+AULFhCPZ86cOW/ePC0dfjxPAsfx6dOnG2U92unTp0+aNIl4vHbtWvWFJQhlZWWhoaHEpAo3N7dTp05pv/h5+fLlwg/v4Dx69Kiuo0pJSVEPHz58qGsPlYKaTnUKJCf0gM/n026rMSOJelYDfPJ43ZHpMFWIy3DhIoT0eV1eJwzEbG23QH1LSuGfcszgFQ+bWTZtbdWKDPOk+eezL2nZX1f169dftWqV5FmG+MZjciPbxtJ6UEfi8datW2/c0G2GAWlCax93gWrGQ8yL57ffZdLrqm/rxj4e9ckwNTP33D2dk1UWfJOxwap8CYbh2/+hml0gTJjbh2eiqjV3fF98bhalGxN4ZrxxK0LJEMfxHf+L0L5EGAAAAAAAAAAA8Alxd3e/cOGCm5sbQigpKalfv36pqanEP5WVlS1btqxnz56lpaUMBmPFihVbtlSznGeli0wIhUIaF/H1YseOHePGjUMIyWSyIUOG7N69m/xRf+HChdatW8fGxiKEfH19b9y4QSRptCAX2SYxmTpchZbL5QcOHNB4KSIjI//+++8aFnfKycmJi1MW04bkRF0AyQk9sLCw0NiisWCLFhozJyA58UVhWC5FLNX1aFTxCJWGG284yMG0vbN5DzIsl+c+Ld5XC8cd5RbKYqgWS4h6d0pYoc/6ZrNnz+7UqVNexEW8QpX7sQn2Z1vxEUIYhk2bNo3eqkocFmtex07qW36+fo329fiFgwPU/3ZvOhMvo7YktbrhA9o4O6nyJXG3Xt5O0aFClK2DZfA41RwOmbQi4i+quaJ+E3o08vUkw9Sbz65H0lyHAwAAAAAAAAAAqIOaNm2alJQUGBiIELp+/Xrz5s09PT27dOni6Oi4evVqmUzWvHnz2NjYH3/88eOr8xq6d+9e6fbExES9D5sKFou1b9++TZs2WVhYFBcXT5o0ycbGplOnTp6enn379n3x4oWZmdmqVavi4+Pr169fbW89e/a0sbFR3xIaGlrVzqSEhIQ+ffr4+vpaW1uPHTtWo1aNQqGYPHmytbW1r69vnz597t27p+tzRGo1ndq2bduoUaNq9weGBkWE9KAmyQmNcmkODg76GRP4JDAsGIJf8MIJ5OoOeMmfDF4PxDZawbtWtt9ll8UrcGUW+lnxfhtBdw6yN+hB65vU6+nQ7ULOZSKUKCQnM0+N9xijr/6ZTOb27dvbtWtXfO42OWGCacqzDQnICT+DEEpJSdmwYcPixYtpdB7k3XT33TspuTlEeC876/zLF/28GmpvVanWHvW6N/eKffiSCDMLhYcT7o8LaKtTJxw2a+rX/is2nia3/LXvyt+/j2VWd1ZECp0UEHPidlF+CRFe/Pde4KhOjZpVf+bBYDKmrh37v16qopPhYQc6Bbbj8DhaWgEAAAAAAAAAALWpXbt2O3bsIMOuXbvq1NzR0TE6OvratWvh4eGxsbGvXr169eqVra1t3759x4wZExQURHGKQFhYWGpq6vHjxxFC3t7eY8aMWbduXXFxcUFBgU7j0a+5c+eGhobu3Lnz1KlT9+/fv3nzJpfL7dChQ2Bg4LRp0+zs7Cj2Y29vf+LEiXHjxr1584bJZE6dOlV9RfGqODo6Up/NYGtrW/1OH4mMjCQewLSJOgKSE3rA5/OtrKzU0wy0kxPE1DDwBeF2RmahqOyIMsQrcOFihk0kYhjneq45x7mR1egnRXuIUIHLXpSHNzX53tDHHeocFJ9/s0yhnNIYm3e1t2NPZ9PqL4hT1KpVq3nz5m3Y/pdl99YsvnJVBkFf36IzSbLMfITQypUrhw8f7uXlpWvPDIQWd+k6JiqS3LI2/nqvBp5sXaYrkr4b6H/t8SsFhhFh+MXEoe2bW5jydOqkVxfvI6eTHz/PIsJnr3Ivxj3p27UpxeamZtzR03tuWX2KCHEM/3vDuV93fUOlrU+PFh0H+d48nUyE2a9yT/55NmRhoE7jBwAAAAAAAAAADMfT03Pq1Kk17CQgICAgIAAhJJPJFAqFqalptU00mJubR0ZGFhcXl5SUuLi4IISSkpJOnTplaWlZw7HVkJOT0/Lly5cvX44QEgqFAoGAXj/dunVLT09//fq1nZ0dxZL4Xl5eNK7M6GTDhg3EzAmYNlFHQFkn/WjWrJl6mJeXR7GhRnLC3d1db2MCnwiGxVLEUktKVTzGxb8abzjI22qiKVs1VSJHejW3QnMdJL2zYPOHOA8mQwWO7UjbpcB1LmqkxY8//uhu71R4XLUGA4PFcpoViJhMhFB5efnMmTPp9dzFzS3A3YMM04qKdibfptdVAwebYR1bkGFxqWTDad0WjUAIMRjo2296qM+U2LL3iriEasYUITQgpJ17Q9UsrnuJL6/GpGjZX93U38exOaoiXQd+iszLMOZNHwAAAAAAAAAAgOFwuVwamQmSlZUVkZlACInFYvTRNUbjop2ZIDAYDA8Pj5os1qt3Pj4+vr6+vr6+Rk8CAQIkJ/SjefPm6mFmJqVFccvKyjRWv2nVqlVVO4PPFsOUIfgJIbVryWX7keR01Q0Mi800a2EzW33L8/I/y+W5hj5uH8eejiaqC+KvSl9HZZ7SY/9mZmZbt24tOpNUkavKCJp6u1kPVK4gff78+YMHD9LrPMy/q3rdpM2JN18UFtLrakbfjmZqdZCOJ6bcfKbDohGEFk3qB3RQ3QJQUFy6ZZ8OGSYmk/nNt33Vt2z75bSomNLq6K5N6g+Y2ocMy8Tlf83dTf3QAAAAAAAAAADAF6i8vDwpKYnBYAwaNMjYYwGg9kByQj98fHzUw4yMDCqt0tPTNbZ06tSpsh3B547bGZmNU9+AC5ci+UtjDcfdYqC9qS8ZVuDiW7krcIQZ9KBsBnuc+2iGWpLm36wzz0pe6PEQ/fr1GzFseO7uGPWN9qN7cp2VNRO//fbb/Px8Gj03tbMf2aIlGUoV8sUXz2E4nbWx7SzMp/X2I0McRyuOXSiT6rxe96xx3UzUkhz/xabcuv+aevOO3b3b+avSG8WFpeHrzlJsO25FqMBOtRJP/Mmk+Kgk6ocGAAAAAAAAAAC+NHv27CktLR0wYIDGDdAAfN4gOaEfX331lXqYnp6OU7guqZGc8PT0dHJy0u/AwKeCYRmGuO1UMV6GF89AeImxhtPB4ScuUzXBLbc86XkxzVkF1LUStOjl2IMMMRzb/jK8XFGux0P88ccfnOc5oqv3yS0MLqfed8MYLBZCKD8/n96y2AihJf4B9SxUV+TvZGXtuXeHXlcTurdr4epIhu8KRX/8p3NxJ2cnq8kju5AhjqNft50rl+iQ5Ji7LMjUjEuGF6LvJidQyhUJ7Cym/v5Bsm3z7F2lQkoTLwAAAAAAAAAAgC9NZmbmsmXL+Hz+pk2bjD0WAGoVJCf0o0GDBi1bqu6bFgqFL19Wf9t7WlqaejhkyBD9jwx8MtgMq82IqVrsAclf4cKlxhqNKduxrf0HR39Y+JdQ9szQxx3lGupq5kKGedL8/a/1mRRxdHRcu3ZtTvhZeb6Q3GjiWc9mSGfi8Z49ey5fvkyjZz6Xu6Znb/Ut6xPi35WW0uiKyWT8/HV/HptNbjmS8OD2S0rzsdSNGOzbsolqUfHsPNGOgzokORzqW42b/cEz2rTyZHmZjErbvuO7t+2tKlJXmFW0d/lh6ocGAAAAAAAAAAC+EEVFRYMGDRKLxQcOHDD0ctAA1DWQnNAbjdRCcnJytU3u3PngxuoRI0boeUzg08K0Z1htQEi1mDCSnEFl+401HBd+bze+akoQhssSc5YqcKlBD8phcqZ5TmIzVNfl4/ITbhbosyjQpEmTunfsnP3XKaQ2vcl2ZHcTr/oIIRzHR40a9fbtWxo9d/doENxUtW5VuVy+8eEDOqWdEPJ0tJncqz0ZYjj+w+HzuhZ3YjIYYTP7cdSWpz5+5u6DVEor4hCGjO7UzEe1Wnvuu+KIvy5RbPvt1ik8U9XEi+i/Yh7fMHhyCwAAAAAAAAAA+IQkJSV16NAhPT09MjIyKCjI2MMBoLZBckJvpk2bxuPxyPDGjRvVNklKUl1ybdmyZfv27bXsDL4I3I4M/lz1DbjoFyS7bazhtLEPM2WqSo2JZGkpBZsNfVB3M7fhLh+k+vakRxTIaK4v/TEGg7Ft2zbF00zhRVV2kMFiOc0KZLBZCKGcnJygoCCNxeopWtGthxOfT4YPCgv+TX9Fb5xTendo5qIq7pRZKPzrXPXfKho8XGzHBatWsMBw/Jet52QVcorNGUzG3OVBbLX0RtSBhNT7lBbort/QadT3w8gQx/A/pu+QVygoHhoAAAAAAAAAAPiMJSQkjBw5slOnTi1atLh3715gYKCxRwSAEUByokpUFo1Q5+zsPG6cqsx6dHS09h7y8/NTU1PJMCwsjMFgaNkffCn4M5BJH7VYjhfPRVieUcbCYfJbWHzPUPuieCE8klUWZ+jjDqjXv5llUzIsU5RtfxmO4Xpbkbtx48aLFy/O3XOuIluV8+B5ONmGBBCP7969O3PmTBo9W/J4q3t8UApp5+OH78RiGl2xmMxVI/qwWaoX/8C1O3de6TDvgTB+WMfGDRzI8M27wj3HdEhyeDRyDJ0YQIY4hm9aGS2XU8oxjFgc5Nnagwxfpbw5vuFf6ocGAAAAAAAAAAA+V3PmzGGz2QkJCVFRUe7u7sYeDgDGAckJFan0g3o1cjnVm4tJ//vf/zgcDvE4PT397t27WnaOjo7GMOXF1ubNm0NNJ/Aeg2H5C2K5qjZgeXjxfISMc8u5gN3czSRUbQN+O3elRKG3eQyVYiDGdM9JfLY5ueWJ+FlM9gU9HmLJkiVNGnhl/XlSvbiTTXBXk0bOxON9+/bRW4eql6fngEaNybBMLl904Ry94k5N6ttP7PFBcacVRy9IdfxqYrGYi6b3ZTJVuc9/Tt56+jKHeg9fT+3m5qVKb6Q/zzm2m9LaFSw267vtUxlqh45YdeydLocGAAAAAAAAAAA+S/Hx8QcOHPDz86t+VwA+X5CcUNFITshklNZ9VdeoUaP58+eT4a5du7TsvGPHDuIBg8HYvn07i8XSsjP4sjAFDOutiGGi2iK7iZcYvJ5SVTy442xMWpChVFF4J+9nQx/Umms90WO8+pZjGSdel1EqKEQFj8fbtm2b9GlG0RlVdTUGi1lv7lAGV5liXLhwYWxsLI3OV/foZWtmRobxb9+cSH1Mb5zT+/o1dLIlw/Tcom3nburaSdOGTiMHtyNDhQJbszVGrqA6E4XDZc9fNVQ9x3Bwx5U3L3OptPX2azRommomkLRctnHqdl3npQEAAAAAAAAAAJ8ZExOT6ncC4HMHyQkV8YelV0QiEY1Oli9f3qKF8jLu7t27MzMrr8ESFRV169Yt4vHChQv9/f1pHAt8ztjeDIsfPthSsg1J9Dl1gDoGg9XBYTWbqbra/q70yivRSUMft72Nbxe7TmQox+VbX+6UYTpnDavSrVu377//Pv/ARdm7AnIj19nO7useyiPK5aGhoenp6br2bG1q+kPXbupbVl6NzS4poTFIDou1asQH8x72Xkl++FbnyQeTR3ZxrWdNhi/S8w5F36Le3LuV68DQDmRYIZNvXHESxyjlGCb/MsbO2YYM78U+vHzQ4JXBAAAAAAAAAAAAAEAdB8kJlSdPnqiHT58+pdGJmZnZsWPHbGxsEEJSqXT8+PEVFRUa+zx79mz69OnE46CgoF9//ZXWeMHnzmwEMh2mFuO4aAlSvDXKWPgc11a289S33C9YJ654bejjTnAf62iiKij0rjzryNtIPfa/cuXKgX37Z2+OQphqGoFNYCfTZspqj/n5+UOGDCktLdW15yHeTft6NSRDsVT6Q+xFeoNs6eY0vpsvGSowbOmhGBm1VR9IPC578Yy+6uva/H00IT2joOoWmiZ+29feSUCGqfffnImklN4wszSdsfEb9S3bvtsjzKezDgcAAAAAAAAAAAAA+GxAckLpxYsXv/32m/qWJ0+erF27FsN0XoPX29s7JibG1tYWIXTp0qXhw4e/e/eO+Cccx8PDwzt27Jibm4sQ+uabb44dO8Zkwv8CqBzDciXiNFfFmBAvmolwiVEG42k5rL65ajaAHCtPylmK4TovzaITExZvquckJkP1GbmQc/le8QN99c9kMv/5558GbMvC6ATVVgaj3pwhTBMuEd2/f3/cuHE0KhH91KMXn80hw0tpaaef0Ul5IoRm9+/s5agq7pSWUxh+KUnL/pVq09w1qG9rMqyoUKz5KwajNvsBIWTG581dHqS+5e+N5/JzKM0wCxjesVOgqq6UMF+8K+wAxeMCAAAAAAAAAAAAgM/SF31ZvKCgYNKkScHBwT4+Pk2aNElLS9PYYfHixQ4ODv379x8zZsy///5Lvef27dsnJSV16tQJIXTq1KlGjRr5+/sPGzbMy8tr6tSpRUVFTk5OBw4c2L17N7mANgCVYPAYVpsQ01K1Rf4EF6821nB87ZebsOzIsEiamloUbuiDNuY3HFxvABniCA9/tUdYQafqWqUsLCyioqLkMfekr1W1kjiO1vZje5PhiRMnfv/9d117djA3n+LdVH3L8iuXC8rKaAySy2atDO2jXtwp/GJSagalVR/UzRzTzcHOggwfPcs6EXOXevP2XRt369+SDMtKpJtXRVNsO3vzJDMLUzI8tyf27qUU6ocGAAAAAAAAAAAAAJ8ZtrEHYExsNrtx48YIIT8/v6+//lr7ztbW1tp30ODp6RkXFxcZGRkeHh4XFxcfH48QYrFYfn5+Y8aM+eabb8zNzWmPHHxBWO4Mwe940XSE3t/hXnYEcdp8WPGplvBYVu0dVl7Pmk0O5knRbgfTDvamvtob1tBQ56CHoscvS5TpQ1GFKDxt94Im3zIQQ3tDiho3bnwo4sDQWZNcf53IeL80vVX/9iW3npXee0GES5YsadGixYABA6ruphL9XN3icnNu5SrTHkXl5T9du/JHf906IbT2qDeqi8+B68pcggLDlh05f3jeKDZLhxyzuRl38bS+C34+Tm7ZduB6Z1+v+o4CLa3Uzfp+8L3ENGGRss5V0rWn188/7Nq3hfZWCCEHN7vxK0dsm7+XCHEc3zQzfOf99VwTSNACAAAAAAAAAAAAfIm+6OSEQCBYvHix4fpnMpmhoaGhoaEymSw7O7uioqJevXpmZmbVtwRAHa8nMp+CSneSG3DRCgbb+4OKT7XF0axjQ0HoC+ER5UgQdjtvZW+XQxymAZNtLAZzpteUpQ9XShTKklb3hSlXcq/1cOimvSF1/fr1+37C9E2Rl2xHdFduYjCcZgemz9umKClHCGEYNmbMmKSkpIYNG2rpRwMDofmtfSZfjS2VKdfxjn765KtGjft56dAJ6dsB/tdSX73JLybCp+/ydsfemtrbT6dOOrZt0Deg6flrqUQokVb8uu3cphWhDGqJHktrs8kL+q//QZXe2LrmtI+fl4XAVEsrwtC5A64cTUi9+YwIM59nHfr1xPgfR+g0fgAAAAAAAAAA4HMil8vFYrFAIKi1wu9yuZzJZEKdeVAXwLuwNnC5XDc3Ny8vL8hMAHoYFvMRt4sqxqV48SyECY0ymJa28wRc1bX10orMe/m/adlfLxx4DqNcQ9W3/PPmSJYkW4+HWLp0aU+Go+RFJrmFbWNpP74vGRYVFQ0ePFgk0q2ilKOp2aLO/upblsdeEkrpLBxiwmX/GNpHPYuw/Xzii+x8XfuZN7GnjZXquyg55c2Z2IfUm/cJauPbWfUGKCooCV93lkpDBpMxb/tUNodFbjn868nXjzOoHxoAAAAAACrUSuwAACAASURBVAAAANCVSCTSvqZsWVmZRGKEBT4zMzN/++23Bg0a2NjYvH37thaOKBKJRo8ezefzBQLBokWLFApFLRwUAC0gOQHAJ4HFsFqHWI6qDYpMXPg/Va2nWh0K189xDYvBJbe8Fv/3tuScoY/bw6FbBxvVospSTLrt5U65/lbkZjAYf4fvsoh5jFeo+hT0asP3U60b8eTJExqLY49p1bqDswsZ5paWrrl+jd4g23u5hHb6P3t3GRDF1gYAeGaLZYMOCQHBiw02imJwFa+KHdjX7lYQVFRsbEXFVuwEscACC2wxUVAQg85danu+H3Bnh9qdXRb41Pf5xXn3lCsxO2fOeQlJraXSFeduk09qXUKXqz1/oisxsutoZGZOAfke5q0cqM2SfwPcuvzq1eMvZBraOlgPnCs/1UoikmydHIipOH8AAAAAAAAAAECBzMzMgICAgQMHWlhYaGlp6erqUqlUU1PTHj16rFu37u3bt+Xq9+zZMyAgoNamJ5PJ7ty5M3z4cBsbG29v758/a++hvfnz558+fVooFBYUFGzevHnnzp21NjQAlYLFCQB+ERQjVC8AQQkH9AsjkcIaz0ddKR2GXVODGcTIq8wNRRJN7mOo1HibsXp0eXaEr4XfLierkKleKQ6Hc/XwyeKrz4lB06l9qBz5mUWhoaFr16qWk5yCohv/7smkyY/RO//h/YNvSepNclE/F0tD+Zvw7nta0P2Xqnbyd6fGXZ3+wosFRcLN+2+Tb25irjd21t/EyM5VocVFIjJtx/t5mNnKl9k+PokPO3yX/NAAAAAAAAAAAEBVCgsLPT09GzRoMHfu3NDQ0JSUFNF/xyxnZGTcvXt3+fLljo6Obdu2DQwM5PF4CILcuXPnyZMntTO9jIwMf3//hg0b9uzZ88KFCxKJxh64JOnatWvEYkhISC1PAIByYHECgF8HvRXKWUQMYPnbEFFUnczFXm+MiXY7vCiW5T9LX44hirZJVh+XxplqO4mYB/tKyvWP/DgNDmFjY3P438WCj9/xCE2fazKlTArrlStXXrp0qUJTRRro6y/o4EyMLL17B09EoRJtBr3c4U67w6MT0rNV7WfRlB5cDhMvRr1IiHwcT775oDHOTRyt8GJ6Su6pwAgyDbVYWnN2TyZGDnidyE7JJT80AAAAAAAAAABQUXx8vJOT05YtWwoLCxEEadCggY+PT3BwcERERHh4+J49e0aOHMnlchEEefny5cyZM42MjKytrXv16qX40CcNcnd3P3HihL29PZtdg5k7FdDT01NQBKD2weIEAL8U9kSE2ZtQlmJ5ixFpeu1PBEUo7UxWMyg6eCRLEBOfd7Kmx22h26ynqfxIIgzB9iceKpQUaXCInj16jGM1kgnkKwc6Li24zvL04xiGTZgw4cOHDyp1O7l1mzZm5ngxOZ+/KfqRejN0alh/YDv5fEQS6crzKh/uZKjPnj2uTEbxzQdu5/HJvpMoBZ23cgCNJk8gEXw8Ov5DsoImuHb/tOzmIV+qKeQV7Vt0jOS4AAAAAAAAAABARV++fHFxcSn5qE6j0TZt2hQXF7d+/fpBgwZ17969V69eM2fOPH36dHJy8qZNm3R0dBAEkUgk379/r7WVCQRB7t+///79+/Dw8IgIUo/3adySJUvwr6lU6uLFi+tkGgDgYHECgF8LiupuRGh28oAsC8ubg2Di2p+KNs2kjYkvMfIhZ0+uULVb9moYaTW8PkuewiFblHPi+2nNDrF6vpf1pzxixHRqX5oeBy/m5+cPGTIkN1eF5/0pKOrf002LKj/c6eTbN0+T1TxZ0mtA13p6XLz4Jin1TNRrVTvp69qivaMNXuTxi3cH3Sff3OYv02ETXfCiTCbbviJEIiGVTWvmjokcfflzIvfORT+5+oL80AAAAAAAAAAAAI7P5/fu3TsjIwNBECqVeu7cOU9PTzqdXrEml8v19PSMjY11dnau+GpN09YuPTW6ffv2DRs2rP0JTJo0KTQ0dNiwYWPGjHnw4EHXrl2VtwGgJsHiBAC/GpSF6u1CUHkWBEQcgxVsqZO5WLBdrbnueFGGSZ5nrJRighodlIbSZtpNpVPkFxlRWY8fZz/V7CiXl2ymfsvCi1QdlumMfsQKcXFxvXv3zs/PJ9+nnb7BzHbt8aIMwzxv3SwSq7OwxGFqrRhaJuvDjhuPvmflVVW/UiiKLJnhps2Uv5Nh9z48ep5AvodR07pZ2Zngxa/xaZeOkdoOom+qO3nDGGIkYM7h4oKa/c4BAAAAAAAAAPBbWrNmzZcvX0q+nj9//uDBgxXXt7CwuHv3rqurq+JqNcrCwqJOxu3fv//58+dPnDhRJ8szAJQDixMA/IJo9qju+jKRwqOIIKxO5tLKaAmHLs89wBd9fZu9s6YHtdS2GGoxiBg5lnQyS6hy3gUF2CzWMfcZGOFwJ067RjpdHYh1nj592rt375KzLEma2a59cxP53fwffN6OJ4/Vm6FLkwbubZrgRYFIsur8bUy1s52QesY6U0e5ECNbDtwuKBKSbE5n0Bb4DUQp8gwYJwMjvydmkmnbZ8rfLbs3x4sZ37OO+50nOS4AAAAAAAAAAFAiMzNz165dJV/TaDQvLy8yrZhM5qVLlywtLZVXrRmQ7wEABBYnAPhVMd0R1ihCGcN43ohEhWfeNYVGYbUzWYUSfpkk8C6kFj2s6XF7m7k105Hfmi+SFu1LPCTDNHlSZLuGTccaNidGTKf0oRnpEiNRUVFDhgwRCsnezadRKJt69qJR5G/X4ZiXL1JS1Juh98BuRlz54UjPE35eePxW1U6G9mnl0ET+vEZmTsH+Uyr89zVxtOozlJAaXSQJWB2KkVgkQVF07t4pdC35vo3gHdc/v0okPzQAAAAAAAAAAHDlyhWRqPTJQnt7exPCE4GK6enp7dixo8bmpQSNRlNeCYDfHSxOAPCrQnV8EXpreRkrwvLmIlhx7c/EkOnYWH8iIYC9yPATSDW5j6EiFEGn2U7i0OR5IOLy48PSbmp2lOVuI60F8rvnFBaz3qz+CFqmzs2bNz08PMSkT2dqYmQ8rY38br4Mw7zv3BJKJWpMT5fFXDGszOFOW64++JnNU6kTCor6zOzFoMuvii7ffPM6VoVkGJMW9DIyladGf/cyKewSqQQS9RuZeywZgBdlUtmO6Qdk0trLRQYAAAAAAAAA4Ff34MED/Gs2m62gZkWDBw9u0qSJ8no1ABYnAEBgcQKAXxkN1duBUPTlAUk8xluMICqe7KMJTfWnGmg1w4tCae6z9OUYRio3str0GfoTbMYSIxd+hsTlx2t2lOMD59DE8tvlbEc7/b4dytUJDQ0dOXKkREJ2gWGuU4eGBgZ4MSE3Z3NUlHrT697MrldLe7xYLBIvP3tTKlPt/r6VucH4YfJ/lAzD1gaE5ZPOAMHiaM1e1p8YObQ1PPkbqdWpUT6D6zcyx4vxLxLObAghOS4AAAAAAAAAAJCamop/HRcXR/7ZQQRBUBQdO3as8no1ABYnAEBgcQLUIYlEklhWVlaW8maAiGqG6m4p84MsuIUUHq79iaAotb3pWhqFhUcyip+9zanx5BPtDdq6GMkzOEkxacCXwBxRrgaHMNXmrmpT5s678b89tRtblat26dKlKVOmyMitCjCoVP8evSiofAvGkZiXYV8+qzfDpYO667PlCdJfJibvuE4qKzXR6IHt/2og3/qamsFbExBGPoNFh+6Nu/RqgReLCoTrFp0RCZVfEdK16PMCp6KEt+K43/l3D2LJDgwAAAAAAAAA4M9GPGmZz+efPHlSpeY9e/bU9IxIoVDgriyoe8nJyeVuz5K8taUpsEYHahv+Lf7z5087O7tyr06ZMgXPYqQpgv9ottv/G+2pzGk0QSBexvK3iGW2MrqzgjbkCQQCiURC5t2jISZNdea+zduIRz7nneKgdhasXhqZSVWGmQ7+xI/PFJWubPHE/O1xAV52C+gUuuKG5LlbNLv58/3DnKSSIkqlmi8emrRov5RXJhX2sWPHMAwLDAzEb7WLRCIMwyp995rq649r4XDs7ZuSIoYgXrdv2nK51roqZ8Ri0Sie/TovPXsbjwTdf9nUwrh70wYq9bNocvfZKy5I/jtVKepFwrELUSP7tyHZfOLCHjFPv+TnlR4slhiXFrD2yqxlfZU2bNTBruf4rreO3ispyqSydaN27Hq6XiAVIAjCYDBU+lcABEFkMplAIKDT6XCxqwaRSFTyJ6OWL8h+D/gfXHgKTA0CgaDk2w9+ctXwu1/s1ayS9w3ePfWU/L2AyxX1CAQCKpUKfzLUIBKJ8CuWup7L/yM89wD4c1hZlXl8cNGiRU5OTk2bNiXZ3MHBQUtLqwbmBQCC/PcZs24nQKVSK53Dv//+e/78+dqfEhFcB4DaxuMpOhA/JCRkzZo1mh0xPz9fKBT+1n9pRuoib7UQ/FwgKbVwMR89KEUsq981n8+XSCR0Oqkb/bpIl3r012nicDzyJncDIjTgUOwVtKq+cYajAtL2ibDSa9Ck4m+Hk4JGGg7T4BBLGnb/HHM+TVy6GkEz0DFfNPSn3wmsbIKEoKAgBoOBfw/z+Xw6nV7V9/zkxk1jUlPeZGaWFAtEolnhNw73/IdJpao6vfZWxu4t/7r2unTvBYYhKy/cMRr7j5WhjuKGRCb6jHGD2xy58ByPHDn/xMKE7djEjExzlIpMXdJz27KrmKx0w8XtyzE29kad3RorbeuxvP/7Rx9TPqeXFLNTcjf9GzB+x7CS1R3y/wRQQiaT5efny2QylbYzgxIikSg/P59CocCdJjUIBIL8/HwajQZ3mtSQn5+fn5/P4/FgcUINf8DFXg3i8/kIglBVv/wACILw+XwGgwGXK+rJz8+XSqVSac2eBPtbKrlc4fP58JNbKbgG/gM1atSIWMzNze3evfu1a9fatWtXVRMiBoPRsmVLNcYVCoWfP39OTU3Ny8vjcrmWlpZNmzathWu5xMTEr1+/8vl8ExMTe3t7Y2Nj/KXo6Ghzc3MbGxulnXz79u3Zs2fOzs4WFhZkBk1NTY2Pj8/OzjYyMrKxsSEuCL1//14mkzk4OKj+T/kjFBUVKb4XWtNK/l5UnAOGYaGhoQoa1s5aL3x0BLVNX780RwKNRqtfvz7xJSqVunjxYkNDQ82OSKfTBQKBxrv9/4LtxPI8UGlCSYmC5BtQlsr0ziEoR3E7pahUqkQiIf/u6WO+Uelp2cLXJUUZIo4Tbeha75gW1UBxw+owRAynak/ck7gf+y/fxsuCmMb6jXoYd9fcEMhe51EjHx4VykoTS7CaNzAc0T3r1N1yNQ8ePGhqarpy5UoEQbKzs+l0uoJ3L6C3+4ALZ3OLS3cbJOTlbX/7eksPNzVm6Dus59cs3oefGSXFYpFk3bXoE7OHazNU2EHy79BOP9MKbj38WFKUYdiu49EHN44yNiD1jdT9H8Pvn3MvHHmIR04E3G/V3t7KzlhBKwRBEENkxflF85yXC4tL//K9iYh9cu714AV9dHRUWF8BJWQymUwm43K5LBZLeW1QlkgkolAo+vr6sDihhpI9E4aGhrA4oYaSfYqGhoawOKGGP+Jir8aU7Pg0MKjBS7XfGIZhDAYDLlfUI5FI2Gw2h1PdDyx/IJFIpKura2BgAD+5larO3TShUBgZGRkbGwsrHLVPV1e3ffv2rVu3VqPtqFGjVqxYQVwqzsjIcHFx2bRp05w5c4jHCFdlw4YNKv1AhYWFHT16NDw8PD8/nxg3Njbu16/f0qVLK54UUn0CgSAwMDAgIODr1694EEXRJk2adOrUqWPHjiiKzpgxY+/evRMmTKiqE5lMFhERceDAgZCQEIlEEhwcPGjQIAWDymSy06dPb9269fXr18S4tbW1i4tLhw4d6tWrN3fu3FGjRm3evLn6/8bfEpfLrdvL1OzsbCqVWukc1q9fv3fv3nLHBnz79q0kUjsfiuGjI6gzlpaWiYmJtTAQ7T+1MFbd0UX0A7HsIQhW+ncRlSZSC5ehersRRPmfYQVK3jdV3j1aR7NNd3+OKZaU3iUvkqQ/y/Luar6fgmrsnKWKnIzafS1Oup4q37Rx9ud5K3b9pjrKH9snqamB+ZrW/bxeyNM1Gw7uLExIyX/ysVzNtWvXslgsHx8fpd979fX1A3r3/TfkkvS/q6jQuE8d61t5NGuu6vRoNNr28f09tp/KLfxvqSM9Z21wpP+YPir14zXdLf5rRtLP0nTWubyilduv71kzgk4j9VjWxHluX2JTYp6UrpMJikXrFp3bfW6GNlvJ06x2jg2mb/1358yDeOSi/zUHlybt3cieKwVwMpnsz/i9VyPg3asOGkFdz+XXg791sDihBvjGqw7VL/aAHHzvVQe8e2qDyxXF1DucE8OwnTt3rl27Njs7W+NTAuS1bNly165dLi4uKrWytbX9559/wsLCiEGhUDhv3rzLly/v27fP3l7JcQ7du5N9tDE+Pn7OnDm3bt1CEMTOzq5Lly58Pv/du3d5eXkIgmRmZh45cuTEiRPLly/39fUlsy5C0vfv3wcNGvTq1Ssmkzlq1KgWLVqYmJhkZWU9evQoLCwsNjb24MGDintIS0sLCgrat29fUlISyUH5fP7o0aOvXbtGoVDc3d3bt29vYWHB5/OfP38eGhp68uRJVdN7/Jnq/AxDGo1W1RwWLly4cOHCckEDA4PcXE0mc1UMPvwA8LugNUD1KibH3l/7E2FSDTuabqKg8vXVbMGbN9nbanpcj/pDHXXlOZmlmCzgS2CmUJNZ1vvXdxhq3UpeRtF6swbQ61XyeMXSpUu3bNlCps9O9a1mtnMiRlZGRrzPyFBjemb63E1j+lAo8qufGzFxZ6PeqNSJNpO+YckAlrb8v+9DfOr+Uw8VNCFCKajXxmEGxlw8kvwta4efon2COPfpbn+Pll+DSiXSbZP287PzFTQBAAAAAAAAgGqSSqUjRoxYsGABrEzUudevX7u6uh4/flzVhnv37tXV1a0Yj4yMdHR0XLVqVVFRUfWn9+jRow4dOty6dat9+/bR0dFfvny5du3agwcPUlJSdu3axWazS6qJxeKVK1eOGzdOU3nscnNze/Xq9erVK0tLyzdv3pw6dcrb23vixIleXl5Xrlz59OmTs7OitKORkZFDhw61srLy9vYmvzIhkUiGDRt27do1NpsdERFx9epVX1/fiRMnzp8//9SpU9++fRs2TJOHaYM/FixOAPAb0XJFOLOJASx/OyK8V/sTMWC2aGO8jBhJ4J3/yg+pqr5GoAg6w26qKdMEjxRICnZ+3iOSafKMPF/HPs305DkYKGymxRIPilYlm0K8vLzOnj1Lps/5HTq6WFnjRaFUMvvGNb5QqMb0OthbTetRZqnDP/RezNcUlTqxMjdYMr3M0VJnr76IfBxPsrm+Icfbfzjxyd/7YW9vEFJZKDAvcGr9RuZ4MTs5d9P43XCOMwAAAAAAAKDm+Pn51XlKWICTSCSTJk168eKFSq1sbGwOHDhQaSIWgUDg5+dnb28fFBRUndWC+/fvu7m55ebmDhky5MGDBx07dsRf0tbWnjNnzv3794lnQ508eVJTSVV9fHw+ffqEomhISEjFXSB2dna3b99WkGAjLCyMy+V6e3srXsMoJzAwsGSDyN69e7t27VruVUNDw3Pnznl4eJDvEIBKweIEAL8VlDMbYf5DCMiwvAWIJKH2Z2LNdbfTLbOKHpO1MUsQU6ODsmmshX/N1aZq45FvRd8Pfw3S4BBaVFqAk4ceQz6ElrWp6fR+FWtiGObn53f58mWlfVJQdHuv3vU48t0G33h5C2+FqXdLfrpbh86NbfCiRCrzOnkjt6BYpU56dG48sJcjXsQwZP2e8G/JOSSbO7RrMGZmmV2xgRuvf/mofI1Em8Ncfm4hgylf7Hl6/dXlXWEKmgAAAAAAAACA2tLS0jZt2lTXswBlSCQSLy8vVVsNHz789OnTdHrlB0onJyePHz++ffv29+/fV2NKmZmZo0aNKi4udnR0PHnypJZWJQcXt2nTptwJCqtXr3779q0aw5Ub+siRIwiC2Nratm3bttI6LBbr2LFjVf3bN23adPTo0dWrV9+9e9fc3LzSOuVgGObv71/y9fDhwyutg6Lovn37iOm4AVADLE4A8JtBUV1/hPaXPIAVYHkz8VwUtcnRcLGxtjxhgAyTPElbgueiqCHm2mZTbSeihEwb0dlPwtNuaXIIlu7GNgMphLMjdbo66PaoJG2XTCbz9PQ8d+6c0j4NWay9fd3phKc87iYmHnql2qMiJSgounF0bwsD+YbWtLx8z5M3ZDLVFjsWTPq7OWETQ1GxyHfrFYGQbF64kVO6te0s/z4UiyTrFp0tLBAobWjrYD154xhi5IDX8Y9PyO7bAAAAAAAAAADyLl68KFRr2zqoUZGRkcnJyaq2Gj58eHh4uKWlZVUVXr582a1btyFDhnz58kWlnmfOnJmSkoIgiL+/P5PJrKra+PHjLSws8KJMJlu3bp1KA1V08+bNkgztOTmKnhds2rTpiBEjFHfFZDI7d+5MZtDXr1/j77+CcfX09CpmLABAJbA4AcBvB2Wh+nsRio48IknE8rwQpLbPxqGgNCfTjSyaKR4RSLMfp3vJME2es1RRW/3W7ua9iZEzPy68473X4BDd6tlPsS/zF910Sh+mXSUPIEil0rFjx167dk1pn63qmXk5l+nTP+rRc9WvxhAE0WUxd4zvp0WXJzt6+vl74O0nKnVCo1JWL3TX1ZHvEUn4luUfSHaZB6WgSzYONzHXwyOpP3I2+1wkc0bToLl9Og+WH04lEUs3jNlVyNPACaEAAAAAAAAAQBQTU7P7+4Ha1PuvcXV1ffv27ahRoxTUCQ4Obtas2aJFi/h8Ppk+4+LigoODEQSxtLR0c3NTUBNF0XInIIWEhBQUFJAZpSoJCaWHYeTm5ip+T6ZNm6a0NzMzM6V1iIMiCBIREaGg5sSJE6vasQEAGbA4AcDviGqD6u5EEMJhi8I7SMHe2p8Ik2rgXG87FZU/VpAjePcys7oPDig1zHJwSz0HvCjDZHsTDmQIMzU4xLwm3TuZ2OFFlE4z9xpO5bIq1hSLxUOGDAkPD1fa56TWbXr/JT8+UiqTzbpxLaOwUI3pNbYw9uzfhRg5cPvpw49fVerE1EjHb4E7McP2rYcfr9wmuymVq6u9dPMIGl3+ffjk3qfLJx+Tabvo0AxjK0O8mJqYvm1KIMlxAQAAAAAAAICkQrU+cIFaoHYKa319/VOnTl2+fLlBgwZV1RGJRNu2bWvRosWdO3eUdrhr166SZBWurq4o4RCFStnY2BCLYrE4KiqK1LyrQPwWnTdvXnFxlYc2Ozs7Kz21SU9PT3GFioP6+vqmp6dXVdPExKRLly5VvQqAUrA4AcBvSqszyplLDGAFuxBhZO1PRE+rUbnk2N/yryXwL9booCiCTredUo8p37RRICnc+XmPUKax7boUFN3UdlA9bfkOFbqxntncgUhlVyoikWjo0KFKr0hQBNncw81OX55BK7OocF74DalaGaE9nB0HtGuGF2UY5n0q/Gc2T6VO2jlYjxtcJsP2tsN34xKqvC4pp7GD5fi5PYmRw9tufoj5prQhR48998AkGkO++ePBxSdXSe/bAAAAAAAAAAAy6tevX9dTAJWr5n/NgAEDPnz44Ofnx2JV8hBhie/fv7u5uc2cOVMkUnTAQ0hISMkXAoHggjIlpz8RffjwoTr/ECMjI/zrhw8furm5paWlVVoTRdFVq1Y1atRIQW8kdzkQB01KSurUqVNsbGxVlRcsWODk5FTVqwAoBosTAPy+ODMQZh9CuSQ5tmrnKmqEFbfPX7pl9lS+ydqcWfyyRgdl01gL7OcQk2N/L/qxP/EwprnjrQy12DvbD6NT5DsD2G3sDYe4VFq5sLCwV69eYWFKcjuzGYw9fdy1afKb8k9+/tjxJFq9GfoOcW1iYYIX+cWC+ceuCsUSlTqZNKKTU0sbvCgWS5duDuXlk82wPeTfTp16NMWLEol0o9d5fq7yR2BsW1qPWj6IGAlceOxLjGqbPwAAAAAAAABAgR49etT1FEAl9PX127Rpo7yeQtra2itWrIiNjR0yZEhVdTAMCwwMHDBgQFU7EhISElJTU0u+Pn/+/HBljh07Vq6HrKys6vwrOnXqRCw+evSoUaNGGzduFAgqyek4ZcoUZ2dnBb3RCHcbFHByciLWTEhIaNmy5fz58yvNP9G3b9+hQ4eS6RaAimBxAoDfGIrqbkBohDVzrLCukmM7GC0wZXXEizJM8jTdu0hC9gF89ZgzzabZTiImx36e8zIsVZNP3zsaWHo2L7MzwGhkd3bLhpVWLiws7N+//5EjRxT32cjIaP3fZfrc8+zp7cSEquoroEWnbRnXl8PUwiNxKZkbL99TqRMKiq5a4F7PWL5HJC2TvzYgTEZuPweKogtWDzazJGwHSeNtXnoRI5Ggu/+cXs4D2uFFsVC8xmNbEZ/suggAAAAAAAAAKNazZ88WLVrU9SxAebNnz2YwGBrpytra+uLFi5GRkS1btqyqTnh4+JAhQypNkfj4sfxo4tGjR59X3bBhw6ozf2dnZwcHB2KEz+f7+PjY29sHBAQoOOWpUuR3TpRbbxCLxTt37rSzs1u5cqXi1NwAqAQWJwD4raEsVH8/QtGXRyRfsTxPBJHV9kQQipPpejbdAo8IpDnRaQukWCVL/RrURr9Vf/O+xMjZHxfe8N5pcIhxdk4DrAgXCihqtnAI3aTyYxwlEsnkyZP9/f0V9zmwcROPZs3xIoYgnrdu/uCrdiJTCSsjvfWjehHPmrr45N3lZ6rtKtXhMNcs6kenyfeIRL9MPBXyjGRzDpfpu2MUQ0t+DfT8Ufz5Iw+UNkRR1PPILFNrYzyS8iVt+7R9pCcOAAAAAAAAAIpQKJRjx46x2ey6ngiQa9OmzdKlSzXbZ7du3V6+fBkUFFSvXr1KK4SFhR08wH/tKAAAIABJREFUeLBi/MePH/jXtra2w1TXqlWr6swcRdGjR49yudyKE5s7d66tre2WLVvI59xWmjMDt23bNisrq3LBvLy81atX29jYeHt7Z2RkkOwKAAVgcQKA3x3VAtXbXjY59l2sYHftT4RB0XGut4VGkZ+zlCeMq4Xk2EMsB7bSc8SLGIIFJhzIEGryj+hKx74NufIb6FSOtvnCoSjhVj4RhmHe3t6enp6VPpSB8+vu2txEfiITTyiYfeO6SCpVY3rdm9mN79aWGFl7KeLjT9XegaZ/mc0c15UYOXD60fM3yrNHlLBtVG/q4n+IkaCAuzFPlG8H4eizl52ZT8yqfe9cdNjhCJLjAgAAAAAAAIBirVu3Dg8Pr+qeNahl3bt3Dw8PZzKZGu+ZQqGMGzfu06dPU6dOrfQevZeXV35++aMmcnNz8a95PHUeGay+1q1b37p1y9LSsuJLaWlpnp6eDRs2DAoKUnyTQVVmZmb37t2rdLtJfn6+v7+/ra3txo0bFafrAEApWJwA4A/A6IRyF5aJFOxGBOG1PxFdhn07k9UI4Zyl7/k3PvNO1+igKILOtJtqoW2ORwolRTs0mhybRWPs7uDBoclPT2LaWxqPd1PQZMuWLePGjROLxVVV0KLSdvd252rJ+3ybnrb2wT31Zji/T+cO9vJHHoQSyfygq7wi1batDO/b2q1LE7wowzC/ndczc8g+oOE+wsnVXX5ZI5PJNnlfyMlUfshYkw7241YOJ0Z2zzmU+CaJ5LgAAAAAAAAAoFjnzp0/ffq0bt261q1ba+o0IaASfX39f/7559y5c3fv3iVmY9Y4XV3d/fv337lzx8DAoNxLPB7vwoULFYP410lJSTU3McU6dOgQExMzffp0KrWS5yDT09PHjx/v4uLy5Ysm84w2aNAgOjraz8+v0q1FhYWFPj4+Dg4O0dFqpskEAIHFCQD+FOwpCNOdUMYw3hJE8rn2J2LBdm2kN44YeZu1Pb3ocVX1NYJJZc77axaLkBz7R9HPfQmHNJgc24ZjuKZ1P2JEv4+TTlfHquojCHLy5MnevXtXfC4DZ62nt92tN/FxjhNv3wR/jFVjehQKunFUbxNdDh5JyeEvO3NT1ecqvKa52Vga4sVcXtHyLVfEErL7Oeb49reylW8xyc0u2LjkvEym/JCxEd6D2rjJ30yRQLzGY1sR6aTcAAAAAAAAAKCYrq7u0qVLX758KRQKMVDrcnJywsLChg8fTv7cIVxoaKi3t7dKTVxdXR88eGBqaloufvbs2XIR4mLAkydPVJ2bBhkZGQUGBsbExFSVxT0qKqpDhw6vXr3S4KAlScU/ffo0duzYSv9r4uLiXF1dL1++rMFBwR8FFicA+EOgqO4GhN5MHsCKsNyZiIxf+1Npbji7HquTfCKI7Gn60kJxco0OasasN812MjE59ovcV9dSwzQ4RG+LZmPtnIgR02l9teqbVFUfQZC7d+/26NEjKyurqgp/29pObt2GGPGNvBufna3G9Ay5rG3j3OmE66r7sYlHIp+r1Ik2k75hyQCWtvxJovdxKftPPSTbnMVYunWEFlOefOLt868n90YqbYhSUO/jcwzN5dlTfsanBi44RnbeAAAAAAAAAAB+Uz9+/Dh48CCZ596ImjVrFhQUVO6Ge1xcXLlq+vryz6EZGRnx8fFqz1MjWrRocfv27WvXrjVv3rziq9nZ2X379tV4NghLS8vjx48/ffq0e/fuFV8VCoUjR46MiYnR7KDgDwGLEwD8MVAmqrenTHJsaRLGm4cg6qQxqNZEEEp707Ucen08IpLxo9MWS2Q1+yB8a/2WAy3KbG648CP4Td5bDQ6xpLlbG0P56UkUJsN8iQeFpaWgybNnzzp06KBg66VXJ5d2FvJE4kVi8fTrVwrUOtXR0cZsXp9OxMiuG1GP48nmjShhZW7gNb3MiVVnr76IfEz2+symoem8VQOJkTMH7714pHwTj56J7tJT8ylU+Z+t8CMRt4/fJzkuAAAAAAAAAIDfVU5OzsePH1Vt1atXr759+xIjycnJ0rK5Hsud/nTkyBGVhoiPj1dwXoLa+vbt+/r16yNHjlRMRJGWlqbxdOIl2rVrFxERcf369YrrIgKBYObMmTUxKPjtweIEAH8SqgWqt6NscuxHWMGu2p8Ig6LTyWwHnSI/tZAnin+esQLR3DlLlRpk0b+9gTw1NIZggYkH0wUae6aARqHsbD/MmCk/PYlhbmgxbwiicFtqQkKCi4vL69evq+pzTx93E8IJj19zc33u3lZvhuO6tnFztMeLMgzzPhWewSObN6JEz86NB/Yi5BjHkPV7wr8l55Bs7trX0W1ga3lzGebvfT4jJU9pQ4euTUcvG0KM7Jp18PvHmt1zAwAAAAAAAADg/9/Dh2T39BNNnDiRWGQwGOWSOrRo0YJYPHLkSGFhIfn+Fy5cuH37djUmhvv27VuljzNSqdQJEyZ8/Phx7Nix5V46efJkNVdEsrOzq7pH0adPn5iYmGXLllEoZe4qP3nyBDZPADXA4gQAfxiGM8r1LBMpCEQEN2p/Ily6Tbnk2MmFEXF5x2t0UBRBpzSYUC459rb4XcVSjW3aMGJytrQdQiXsDGW1szcb0k1xq7S0tO7duz948KDSV41Z7B3/9CH2eS0+7sTbN2pMD0WRNR5utqbyRz9yCooWBF0TS1XbQLNg0t/NG8nfxqJike/WKwJhlfm9y5m9vL9dYzO8mM8rXu95TiJWPoexK4a17uGAFwWFwjUe24TF6uwjAQAAAAAAAADw21Av7YGjY5lUkebm5uUqODs702g0vJiZmenp6YmQ8+rVq7CwsA4dOqgxMdzFixcXLlxY1ascDuf48eMHDx4kLhUIhcLnz1U7w7mc58+fDxkypKpXaTTa2rVrb968WS5RdlRUVHUGBX8mWJwA4M/DnoRoDyaUMYzng0jq4NhEc3a3JvqTiJH32bvTimr2jxmTypz/12wWlYVHUgSp+xMPazA5tpOxzdwmZc5h1BvV3bxTS8Wt8vLy3NzcLly4UOmrHS3rz+/gTIysvh/5MjVFjemxtOg7x/dna8nzRrz9lrr92iOVOqFRKasXuuvqyHOMJ3zL8g+8RbI5Q4u2dMsIFkd+4NWntz+O7VK+HQSloN4n5hrU08MjSe+/71sURHriAAAAAAAAAAB+Q3fu3ElMTFS1Vbl9Ep07dy5XgcPhODmVyS65b9++4OBgpT1LpdK5c+fq6el16dJF1VmV8+DBA6FQqKDC5MmTyy1gKMhtSVJiYmJCQoKCCj169Ni9e7dmBwV/IFicAOBPhOqsRuiEnYlYEZY7FZHl1v5MmhpMM2PL/05jiOxZ+vIC8Y8aHbQe03R2w2kUVP4L8GVuzJWU6xocYmqjzj3NG+NFGYJZeY9s2KqFgibIf1mk9u3bV+mrs9o79bS1w4sSmWxO2PXcYnX2fNiY6K8c1oMYOfHg1bWXqh3QaWqk4zunN4Wwn+PWw49XbpPN4WFhbTi/bPKJS0FR0XdjlTbUN9X1OTmPmHzi2r5bd0kn5QYAAAAAAAAA8PuRSqW+vr6qtnr37h2xWOl2gdmzZxOLGIaNGDHi0qVLinv29PSMiooaO3Ysk8mstAKGkX1EksfjXbx4UXGdBQsWEJN7GxkZkexcgcOHDyuuMHbsWOJAhoaG1R8U/GlgcQKAPxKqhertRiiEtE7SZCxvQZ0kx3YyWafDsMUjIhk/KnW+WKbCGY5qaKHbfLDFAGLk0s/LMXnqHJRUKRRB17UeYMaQJ5/IFRe33TKnVZvWClohCCKVSmfMmOHt7V1Zn8hmt171dXTxSGp+/qJb4TLSFzREvVs1GtmpzPbVNZfuJqRnq9RJx9a244aUeYRk2+G7cQnpJJt36dXCfYS8OYZh23yDU38qz13R0rW5h1eZ/76dMw78iFNnHwkAAAAAAAAAgN/D6dOnjx9X7bDoY8eO4V+3atWqT58+FesMHTrUxsaGGBGLxcOHD58zZ06lqR14PN6kSZO2b9/O5XK9vLyqGlogEBCLivdGbN68WSKRKKhgbm6Orw1QKJQmTZpUWq247AOOigc9cOBATo6iT+hUKrVZs2Z4sWKibACUgsUJUGdSUlLaluXq6qreEYFAHVRzVG9nmeTYoigsv1ppmtRDo7A61ttCp8jv4+eLk55n+GKIrEbH7W/et60+IS0zgu1LOPizWGPZlXXoTC/LzgyK/B2O4aUMOuDXs2dPpW39/f0nTpxY8cpDV4sZ0Lsvg7DtNDLp69bHah6E5Tmgq4NVPbxYJBTPP3Y1t0C1rRiTPDq1c7DGi2KxdNmWK5k5ZDNsT/Psbd/MAi8W5AvWzD9dkC9Q0KTEv34ezTvL96YUFwjWemzLJz0uAAAAAAAAAIDfz6RJk4KCyB78Gxoaim+AoFKpAQEB5U55KkGj0Q4dOlQu/7NMJtu9e7e1tfWUKVPOnTsXHR394sWL4ODgefPm2draHjlyBEGQFStWVExigSsoKFBQLOfNmzeKE2tLpVJ84cHFxcXMzKzSanw+n/yg2dnZCtJdlOvB1NTUxcVFcWXw/+b06dPOzs7lbs+W+yapaTTlVQDQqLy8vJIvRCLRy5cvy7368ePHjh07anbE/Px8oVBIfrvcn6QBC53NwXbKA4UHeEUWAsQVD/B4PIlEIlUxW7LqmPZai2OLV+MLEimF96O/r2yoNVtxs2oaxOn3o+BnujijpFgkLd4Yu2Wu2Uxdqo5G+tctlI7Ta3YoR37S0alvL6evX6itrX3lyhXFbY8ePZqamrpv375yO0Droejclq23vJTnttr7/BldIhnZqPLHIhTz6dthelAYr6j0WYmkjNyJe89tHfE3MSOFUjNHt1/8PTM7r6ikmJrBm+17Zu1CNx1O5XtXy5nq02PF9LNFBaVzSIxL85ly2NN/QH4BT0tLq7jqc6um7hyztMeGgtzSTTaJb78t7rHK5/wcbS6pcX9jMpksOzu7qKiIxWIprw3KEolEPB5PJBIxGCr8FIASAoEgPz9fIpEQcwYCkjIzM7Ozs9PT08t97gVkwMVedeTm5iIIIhaL63oiv6Ts7GwGg6HgcgUokJmZWVhYWFhYsxumf0sikSg7O5vJZMJPbqXgbfnDSSSS8ePHR0ZGbt682djYWEHNq1evjho1Ci/u2bOnU6dOVVX++++/ly5dunbt2nLx3NzcQ4cOHTp0qGKTvn37Kr6z/+HDB2Lx06dPrVsrOmvBx8fHxsZm2LBhlb4aHh5e8huVQqFs2LChqk7KHWMVFxenYEQEQYKCguzs7Ko6L+vLly+vX78u+Xr9+vXwKaBSeXl56elkT5ioCVlZWVQqlcPhlItjGDZlypSioqKqGopEohqeGoLA4gSofRV/GIicnJzYbLZmR5RKpTQaTePd/i7GiwVJdEnof0VMB1lPZ9rJqE1LyhKJRCKR1MK7x0a6i6g/PhfIDzRMFd/gaJnZscfV5KDsOcwZGxK3FEpLPxTxpPxDmccW28xnUbUVtyWDxWL1pttnMGVXUt7jwf0/nq7w9zExMan08oUoPDx8zJgx586d09Eps1jyb8tWcTze1S/yHOa7Yl4ZcLiD7RupOkM2m712eI95x2/IZKU3dL6k5y4LfrBrXF9tBtk/EGw2e8XcfxavDxVLShexfqbxVu+O2Ozdn8PWUtwWQRC2HXveqv4bPS/iN5U+f0gNWBU21ceVxdJW8L3H/os9/8CUdcN34g0TX3/bMiZwVagnk8S4vzGZTCYQCNhsNixOqIFOp5f80oPFCTVQqVSZTMZms+FjiRqKioq0tbXZbDYsTqgBLvaqo+RjJ7x76hEIBHQ6Hd499eC/9+p6Ir8eOp1e8tbBu1ep2rmbBv7PBQUFXbp0acKECWPGjGnXrh0xGQOCIK9fv962bdvJkydLPktSqVR/f/9p06Yp7nP16tUikWjTpk1kJtC+ffsTJ04ouK4LCwv78aNMus3AwMChQ4cq+BgilUpHjBjx5s2bZcuWaWuXuWWRkJAwffr0kq83bdpU1VO/cXFxERERxMjZs2d9fHwMDAwqrV9ixYoV8fHx27dvL5fHIicnZ9SoUSUPs06cOHHChAkKOvmTMZnMuv11zWKxqFRqpXNwcnKKjIysqmHtfChG4QkjUMuSkpIaNGiAIIi5uXm5h8dpNFrz5s0r3UNXHXw+XyAQmJiYaLbb3wcmxHJGIWJCHmOqJWoYglD0EATJy8uTSCQayaREZipP05f/KAgnRNC2Jr423AFVttCED/zYLXE7JZj8DKXGXHuvRgvpFHo1e46Pj6fT6eZW9SdEHX+VLb/sYFCohzqNiTx8rtLcEuU0a9YsPDzc0tKSGCwSi0cFX3iTloZHqBRKYN9+xIzZ5J1+9HpDSJm/Rp0aWQdMGkBX5YfxesT7DXvDiX9SHBpbbFsxVFuL1Nt45sC9oIA7xEgr5waeGwYbGOgrabgh5Miy08RIS9fma6/6aGn/uXeWZTJZZmYml8uFxQk1iESi3NxcfX19WJxQg0Ag4PF4hoaGsDihhvT09NTUVAcHB1icUANc7FVHyVnSiu9KgKpkZWUxGIxyz5EAktLT09lstuJn10ClRCJRbGyslZUV/ORWSiQSaWlpIQjCYDAUn6cPfhu7d++eM2fO4MGDu3Xr9uHDh1u3bn39+hV/VVdXt1mzZqamplQqNTs7OzY2lvgYu6Wl5YkTJ7p160ZyrAMHDnh5efF4PAV1BgwYcOrUqUrvBX/48CE6Ovr9+/eHDh2q+MS6g4PD8OHDzczM/v77b2vr0vOTt27dunjxYmI1MzOzMWPGuLi4mJqa5uXlRUREBAYG8vl8Npu9Y8eOyZMnl+s2Li7u4cOHiYmJR44cqfgIf4MGDcaNG2dlZfXPP//gh1CFh4f37t2bWI3L5Y4ePbpHjx4WFhYCgeDJkycBAQEpKSlUKnXJkiVr1qyBi9hy3N3dr1+/jiDItWvX+vbtW4cziY+Pp1KpdnaV3C8Si8Xv37+Xycocq+7q6lpyslNOTo6+vpJ7MtUHixOgtuGLEzY2NsS/FjUHPq8qJ8vEsgYisgx5hNERNTiKINTaXZxAZJgkKm1eetETPIIilI71Npuzu9XouE+yn+1NOIAh8t+HrfVbzms4i4JW649ryeJEgwYN8sXC0Q+OxPPl7zCHpnWiy/iH567MnDlT6alZ1tbWoaGhjo5l8lfnCgQeF859zpGnsKZTqUf6D+xsZV2hA+X23366OzyaGHFtbrftX3eqKpcXl8Jith26S4y0bWG1edlgBp3UbcqjO26dO/yAGHHqZr9y5xillzhHfc+cXhdMjLRxc1wTuoRObl3k9wOLE9UBixPVAYsT1QGLE9UBF3vVAYsT1QGLE9UBixNqg8UJxWBx4g+0e/fuDRs2JCUl0emlnwHfvXsXFhZ28+bNR48eVbWZpnnz5rNnzx4/fnzJNwx56enpa9euPX/+fEZGRrmX2rZt6+vr279//6raBgUFnTx5UukQXl5eeLrKrVu37tixY8mSJT9+/Hj58uXz588rpgRgMBijR49evny5ra1txd4uXLhw4MABpYOuXr0a33IRHh4+dOhQPz8/Pp//6tWrp0+fZmZmlqtPoVDc3d2XL1/erl07pZ3/gX6JxYlKGRgYlBz7CYsT4PcEixP/p8SvsJwxCEY4nZM9HuUuq+XFCQRBJLKieymT84Tycw+pqFYX832GTIcaHfd6avjZHxeIEVeTbhNsxlanT3xxAkGQtGL+yPuHU4vl1xAmTO7ZrpOe3743cuRIpUcVczic48ePDxo0iBhMKygYduHsT8J1CYfBOD1kWAsTUzVmu/3awyORL4iRfm2arB3Zi1J2A6xiRy88PnS2TIJul/YN1y3uT6WSutd2YNON4BNl1kh6Dmi1cM1gVNkcDvmcOud/mRjpNLD98nMLaXQN78T6JcDiRHXA4kR1wOJEdcDiRHXAxV51wOJEdcDiRHXA4oTaYHFCMVic+ANFRkbGxsbOmjWr4kuFhYUPHz5MSkrKysrKysrS0tIyNja2tLTs2rVrVSmjSZJKpU+fPv3y5UtaWpqWlla9evU6duxoZWVVnT4rxePxpFIp/vMuk8liY2Pj4uLS09N5PB6Hw7Gzs+vSpYtmf50WFRXx+fx69erhkS9fvnz48CEjIyMrK0tbW9vKyqpLly61ebPolwOLEyTB4gSobbA48f+r6AzGX0EMoLob8oQ9anlxAkEQgTQr8ueEQkkKHtGi6nWzOMKlq7MngLxT38+Fp90iRobXH9LPrI/aHRIXJxAE+czPGP3gKF8swCs05Bqf6jLh46s37u7u2dnZVXRTCkXRFStWrFy5knin/lte3rAL5zKL5IkE9bW1zw/1aKj6BxUMQ9Zcunvh8VticGQnx6WDXatqUqnAkw9OhjwjRnp1abp8bm8yixwYhu1Ydflm8EticMCoDjN83JU23D3n8JW9N4lBlyEdlp2ZT6X9cesTsDhRHbA4UR2wOFEdsDhRHXCxVx2wOFEdsDhRHbA4oTZYnFAMFicAAP8PYHGCJPjwAwD4D2skwhpBDGD8VVTZh9qfCJNq5GK+V4sqv9QWSvMepc4RSJXcvq+mUVbDOxmVSRt14Ufww6yoquqr6i8dk90dPBgU+b3yL/mZU6NPtWzXJjIyEj/bsSoYhvn5+Y0ZM0YgkC9vWOvpHR80WFeLiUdyi4vHhlxKzi+/zVMpFEWWD3Ht06pMVu0zUW/KHfek1PTRXQb2KnMC1c0HsRv33iSzFI6i6LyVA7r0akEMhp5+cmLP3aqa4A1nB0zqO7UHMfjw0pOtkwMxGazBAwAAAAAAAAAAAPzfgcUJAIAcqrMSYRDOCsSELNEiCpJV+zPh0Ot3MttBo2jjkUJxclTqPImsfMIoDUIRdHKD8c11m+IRDMEOfw16y3uvqSHaG9lsbDOIuIfgTW7ywueXmjZvHh0d3bhxY6U9nD592tnZ+ccPeXrtxkbGRwYMYtHl+RXSCvLHBF/KqpBcSykKiq4b+U/XpmUOqdx/+2m5454UQ1Fk8ZSe7q5lFhiuR7zfdTSC1BwoFK8NQ9u52BODp/ZFXjjyUNm46Ly9U/8e7UIM3j5+f9vUfbBHEAAAAAAAAAAAAOD/DSxOAACIaKjeLoQqP1WQgmRzJEvL5KKoLQZazZxMN6CofJ9BrvBjdNpCWU1OhobS5jacac2SHxMpxaQ7P+/5UpCoqSH6WDZb3KzMA/4RqXFr3tywtraOiopydnZW2kNMTEyHDh2eP3+OR1qbme36py8xeXVSXu6kK5cLq0j8pQCNStk6rm87O0ticMf1h+WOe1IMRZElM9xcnctswjh//dWxi0+qalJmDnSq7/aRjR3LzOHIjlvXzz+rqknpuBTU69jsbh5l3sPwIxGBC46RmjcAAAAAAAAAAAAAqC2wOAEAKItihOrtQ1D5MUF05B2Wv7ZO5mLGcmlt5EOMZBQ/f5GxCkFq8EF4bar2Ivt5RlqGeEQkE22L35UmSNfUEBP/ch7fsAMxcvbri4PxUQYGBrdu3erdu7fSHlJSUrp163b+/Hk88ret7ZaeZZJXv01Pm3I1VCiVqDo9LTptz+SBrRrIj5nCMGTtpYgbMXEKWpVDoaAr5vXp0LoBMXjwzKMzV0htwmBo0RescbdrIl8nwzBs99qrN0NeKmiFIAiFSllyfG4H9zbEYMiuG/sXB5GeOwAAAAAAAAAAAACocbTv37/X9RwqYWhoyGaz63oWAPyp6M1QnTUYz1MeKTqN0JqUy0hROxroDCqSpH3MPYRHvheEs+hmzQ1m19yg+gy9xfbz137cWCApTTSdL8nfHLdjRVMfXbpmEh4uaeGWKyoK/S7fjrDtwx0jJnuQVcurV68uW7bM399fcQ9FRUUjRox49erV+vXrS7KnDmzchC8UrrwnPz3p8c8fc25c39u3H03F9KraDPqeSQMnBl74lJxZEpFhmM/pMDqV0tPhL5Kd0GnUdYv7L1xz6c3Hn3hwz/F7bG1G/54OyufAZizf4bF2/vmEj6klEQzDdq4KZbG1XNyaK2hIo1NXXly8ctCmZ2ExePDitmscPc7o5UNITh4AAAAAAAAAAAAA1CiatbV1Xc+hEocOHZo0aVJdzwKAP5j2QET8Dik6jgcwvh9KsyuTkaK2NDOYLpBmfeVfxiOfco9qUQ3/0h1Zc4NaaJsvtp+//tNmkaz0ZKQMYcbW+J1LG3sxqVrV7x9F0LWt+mcKCqIzSg+MwhDEN+aqsRa3s6ndxo0bbW1tZ8+eLRYrOsMKwzB/f/+EhIRjx46VLOiOc2yZWVS4+9lTvM7txIQld25tcfsHrbqfSnG1tfZPHfzvnvNJGbklEZkMW3IyjDWJ0akR2T8cTC36pqWD5q46H5eQ/t+ckc0HbrO0GT06K0+wweZords33nP8oR9f/1sjkcn8vS8wWYx2ne0VNKQxaCsuLFrad/3b+7F48NiKszQ61WPJQJKTBwAAAAAAAAAAAAA1B451AgBUDtVZijCIRw9JsLy5iDStTubS2niZObsbMfQ2a9vPgjs1Oqodx3Z2w+kUVP578mth0u6EfVJMppH+6RTqLqfhjXVN8YhEJpv37HxsXiqCIFOnTo2IiDA2Nlbaz8WLFzt16vTt27eS4qKOnSa2ak2sEPwxdvX9SDVmaMBhHZw2xFxfvllELJXOP3bl1ddk8p1wWFrblw+1sZQfkyWTYWt23Yh+SSqNh54Be/2B8abm+nhEIpauXXDm3cskxQ21WFprQr0bt29IDB5eevrK3pvkJw8AAAAAAAAAAAAAaggsTgAAqkJF9QJkqIU8IMvC8qYjmKD2p4IiFCfTdYZM+VlAGCJ7nuGbJYhR0Kr6Wuk5/ms9hhh5k/f2YOIRTENJLzg0rQPOo81ZunikUCKaHH3ye2EOgiCdO3d+/Phx06ZNlfbz5s2btm3bPnjwoKS4zKVrP/syyaiPvY6pGjzRAAAgAElEQVTZ9+J5ZU2VqKfHPTB9iBFXfs6eQCSZdSj0Y3IG+U50dbR3rBxmZiL/Z0qksuVbrsR8+EGmuXE93Q0HxxsYc/GIUCBeOftE/AclayQsHe2NN33/amOLRzAM2z3n8PUDNbusBQAAAAAAAAAAAACUgsUJAEDVKHpFjM0YIk+OjYg/YHzfOpkLFWU619vOpcsPFJJioqjU+TzR5xod19Wka3/zvsRIVPbj4J+hmurfhMk94Dxal6GNR3KERZOjTmULCxEEsbOze/LkSf/+/ZX2k5WV5ebmFhQUhCAIBUW39erd3aZMMupNUQ/Pvn+nxgytjfT2Txusoy3/NigQCKcfCPmakUO+E2MDzp41HqZG8k0YQpFk8brgt59IbcIwtzJcv3+8jh4LjxQVCJfPCPr2RckaCVuXtSFsuU1zKzyCYdjOmQfunnpIfvIAAAAAAAAAAAAAQONoCIKcPHmyeXNFyUVrU+/evVNTU+t6FgCAUlL0r0LqSo50KYLvFSi+jNBbIKxxtT8ZLapeZ7OAyOQJAml2SUQsK3iUOre7xVEWrV7NjTvUchBPzLuf+QiPXE65yqVz3Uz/1kj/DbnGezqMmBR1QiiVlES+F+bMeHwmyOVfbSqdy+UGBweTSZEtFArHjx//6tWr7du30yiUvX37jbt86Xly6d1/DEGWR9zhamn1/UtRtoZK2ZsZBU4ZOGX/pSJhaQ6MnIKiqfuDg2YPJx76pJipkc7OlcNm+p7JySsqiQiEYs/1wQF+HvYNTJQ2t/nLdMPBCUsmHi7IL927w88tWjLp8JagKZY2Rgoa6hpxN99Zsaj7yu8f/3srZNim8bupNGo3D2eSkwcAAAAAAAAAAAAAmkVDEKRhw4aOjo51PZNSdDq9rqcAaklubq63tzcxoqOjM2LECFtb26qagDohRLtx2JORwoN4BOOvR2n2ZTNS1BI23aKT2c77KVMlstIb3MWSjEepc7tZHGJQyN4lVxWKoBNt/s2XFL7KlZ8ider7WQOGflv91goaktfW0Gp7u6Fznp6TYqWLQG9zkxc8u7CnwwgqSqFSqRs3bnRwcJg0aZJAoORYrV27dn3+/PnMmTO6urqH+w0ccel8bGZpNmkphi24GcZlMLpY26g6Qwdrs10T+s86FCqUlK6gpOXlT9136djs4cRDnxSrb66/3XfY7JXn8gtK/xUFhcKFay7uWTPC2sJAaXO7xmar945bOvWYoLg0S3leTqHPlKNbg6aYmOspaKhnorvxpu+ibitTE0vzcsukMv9xu5gsRod+bUlOHgAAAAAAAAAAAOC38enTp9OnT4tEImKwuLi4NueAIgjy5MkTJyen2hxVAWtr6+/fvx86dGjSpEl1PRdQI2JjY5s1a1bVq40bN46KitLsiPn5+UKh0MhI0bPVoCp8Pl8ikRgY6HEki+ky+X8NhuryaUfLZKSoRbmS128KlsowMR7Rpzs6cjZQkBpc3RRj4t3J+5ME3/AIHaXPNJ9iq92gqiYJCQk0Gs3a2rqqCuWEpLzb/PkeMTLArNkSe1e8+OzZs3HjxmX+t9igQJMmTU6dOmVtbZ0rEEy8eeM7n4+/xKRS9/bs5WisfLNCRVHxP3wv3ZPK5CnB7Uz0d4zppaOtRb6TTwkZvtvDBUIJHjHSZ2/06mNqxCVWy8rK0tLS4nK55Zq/e/Fti0+oWCRvXs9Sb2XACF0DFqJQ1s+cVf22ZP7IxiM0Bm3x8Rmtevy/7B3UFJlMlp2dzeFwtLW1ldcGZYnF4ry8PD09PXhaQg1CoZDP5+vr69NotLqey68nMzMzPT29adOmFAocu6oyuNirjry8PARB9PQULfODquTk5NDp9IqXK4CMzMxMFovFZpN9zAXgxGJxXFycpaUl/ORWSiQSmZmZIQjCYDCEQmFdTwcA8Idyd3e/fv06giBnzpxxc3Orw5kkJCRQqVQbG5uKLzk4OCQnV3nadmZmZi1cYMOHH1DbUBRV8CqVSq21mQBVUAqpq6SIJV5GMR5HsgRF6iA5NoIg+rSWjVmLS5ZXS+SK38QW+mOITEGraqKj9ClmE4zp8t/LYkx8KO1YukiF1NCKDTJvMaZ+G2IkNPXD0W/yRNbt27ePiIhwcHCo0LS8jx8/9ujRIyoqSp/JDHDtaUS4SS2QShdG3k3k5akxw0729b3dnSmEn+KEjNwl5+4WE5YKlGpsZ7JsVg86Tf7DnpVb6LstPJdHanG+RVvrOSv7Uqnyv19pP/PWL7pYwFfy3WhkabD80nw9U0JebpFk24T9sVHx5CcPAAAAAAAAAAAA8Bv4f3guCp5rA7UNf5JXX19/yZIlxJdoNNrw4cMNDJSf7qISGo0mEAg03u0fgkKhSCQSAwMDBDFAJIex7CEIVlDyEhX7rEdZj+oFEBcJao0BMpSSy3+fswePZIjuc5nGrYx9anJQA2+dxatj1/PEpRsRCqVF+9IOrWi61JBRyTdYVlYWnU5X6XtvmUHfAlRy+fsbPHIo6YmNgckQ61alczAwiIqKGjduXEhIiOKucnJyBg8evGPHjlmzZp0aMszj4vm8/46EyhMK50TcuTBshKWOymdhjehqgNAY64Ij8EhscubKyw/3TB6gRfpZaddOBnQ6c9mWK1Jp6XpSama+X8Dt3atH6HBKM29LJBImk6lT2Qzd+htQUfqW5ZcwWekpWD8Ss7YuvbLx4ARttqI9HAYGBtvurV7UbUVuOq8kIioW+Y/avSFsefPOjUlO/v+fTCaTSqVcLpfFUrKbBFRUsqFVX1+fwWDU9Vx+PQKBgEKhGBgYwM4JNYjF4uLiYgMDg/+HTwi/HLjYqz5499Qjk8kYDEallytAKbFYzGazORxOXU/k1yMSiXR0dPT09OAnt1LlzicBAIC6xeVy6/bXdVZWFpVKrXQOkZGRwcHBMlmZJ339/PxKTnaqnSfI4cMPqDO6urpLylq0aFH9+vXrel6gajRbVG9zmaUIwU2k8HBdTaex/sSGuiOIkQT+xfi8EzU6qImW8SL7+Uyq/A54jih3S9yOImmRRvpHEXRtq/6dTe3wCIYgK2Ku3k2NwyMcDufixYs+Pj6K9yEhCCKRSGbPnj1//nxbXb0jAwaxCMfUpBUUjAm5mFlUqMYkR3RynNO7TCrpp5+/e564IZWpsHPFpX3DZbP/KbMJ41vWorWXiopJfZb4u1/LWT7uxEjcu5/LZxwXKGtev5H5xvDlXAP5x2BBoXB5vw3xLxLITx4AAAAAAAAAAADgl2ZnZ+fp6Vnu9iyTyazNOcDiBABAFVo9EM5MYgDL34wI79XRbBBHo0WWnB7EyNvsnd/yr9XooA3Y1gv+mkND5c8F/yxO3vF5twRT4WgjBWgUys72w5vq1cMjUgxb9PzS65yfeIRCoaxfv/7MmTNkkgrs3Lmze/fu9TDkgPsABmHd+1te3riQYJ5QnbO5pvZwmujajhiJfJ+w/Owt2X8Jvcno1aXpgsl/EyOxn1MXrb1ULBRX1YTIfYTTNK8+xMiHmG9r5p8WKztjytbRZv31pSyu/K0r5BUt7bMu6f130nMHAAAAAAAAAAAAANUCixMAANWgnHkIsxchIMN4ixHptyob1OhkEEo7kzVGzFaEGPYyc0160ZMaHbepTpMpthNQwiaSj/y4/QmHMUSFW/MKsGmM/R1HW7DkCe4EUvGMx2eSCrKJ1Tw8PKKiosjsN3r06FHbtm3Rnz839+xF3KzwKStzYmhIkZjUYkA58/t0Hu5cJvvFtZcfN4REqtTJ4H9azp3QnRh5+yl5qX+oWCwl03zQWOcRU7oSIy+jv2zwOo+fFlWVxk5/rQ9bps2RPw7Ay8r37LH6+8cqM0EBAAAAAAAAAPhVFBUV3bhxY9WqVVOnTh0zZsyCBQu2bt36+vXrup7XLyApKWnv3r2zZs0aN26cr6/vyZMnCwoK6moyxcXFu3btmjx5ck0PlJ6efu7cuVWrVk2bNs3Dw2P48OEvXryo6UEBgiC0VatWWVpaKq1XaxYuXJiXl9e6deu6nggAoCooquuPSRIRyefSgIyH5U5FDS8haB2cGEtFGZ3MdtxLnswTlc5Hhkkep3t2Mz+kp9Wo5sZ1NuyQJcy+8DMYjzzJecZJYv9rM0Yj/RszOUc7jx15/0i2sPTkpVxR0ZToU2e7TjLUYuPVWrVqFR0dPWDAgFevXinuMCUlpXv37tu3b/fr5uobeRePv0pNnRN2fb97f5qKp5yjKLJ88N8iifTysw948GzUGw5Ta16fTuT78XBvk8cvOn7pKR559iZp5Y5rc8Y4kWk+fm5PsUh6KegRHom+G7t9RciiNYNRiqJjr5o5N/IL8Vreb4NIULo2k5fB8+61Zus9PzNbU/LzBwAAAAAAAADw/6O4uHjDhg179uzJycmp+Kq9vf3mzZv79+9fnSH279+/adMmMjUXLVo0c+ZM5fX+PyQlJS1evDgkJKRcEgJdXd3Jkyf7+fmx2eyq2mpcYWHhoUOHNm3alJKSYmxsXEOjvHv37vTp0zdv3nz9+jWGYRQKpUGDBs2aNWvSpImhoWENDQqIUEyVIzgAqL6kpKQGDRogCGJjY/P169daGJHP5wsEAhMTk1oY6/eTl5cnkUiMjIzKvyD5iuUMRWR8eYTZE9XbUyfJsREEKZZkRCaPL5Kky6dDNepueZRNM6/RcU98O3Mr/Q4xMsrKo3c9t5Kv4+Pj6XR6yTe8et7mJv/7MKhYKt/Z0Fzf/Hjnf1m0/7F3nnFNLF0cnk0jECD0qtgbKlasCF7sgl1RLFhBsCAWFMWGFRVUUFAQO1gAexf0ithQUdRrQ0QF6R2SkLr7fog3bAIkIQX0vvP8/LB7Mo012Z2d/5xzxFL1stnsBQsWxMTEyNPmjBkzenguPJj6Am8c37FT8HCxDBBygqKY7+kbd99+wRt9nOzmiwd9ksnBkw/OXhXblfBXvzarPBz16HSZdTEMC91y5Va8WPUxrn0Xrxsjs27q3Tcbxu3i4QJJmVgZ7X2wxbSluqY+jQCKokVFRTAhtmJwudyysjKYEFsx2Gx2RUWFoaEhTIitAAUFBXl5eTY2NjAhtgLAyZ4yCBduYFpdxSguLoYJsRWmoKAAJsRWDC6X++HDBysrK/jLrRMul6uhoQEAoFAoHA6nqYcDaWwyMjLGjRv34cMH6cUWL1584MABmXkc64TD4bRp0yYnR7bbPZVK/fbtm5mZmcySvwPnz5+fP38+k8kEADg5Oc2cOdPAwCAzM/PYsWMvXrwAAHTq1OncuXM2NjayWlIWBoNx9OjRwMDA/Px8ocXY2LiwsFC1vbx48cLPz+/+/fvC0z59+ri6urq4uFhYqGYdydnZ+caNGwCA69evOzk5qaRNxUhPTycSiW3atJFdFAAAgIGBQVlZGQCgtLRUX19fnUMDQP6wTlevXp0xY4a7u/v79+9ll4ZAIP95SK0QerDYPYSdABhhTTUcTZLJQPNQMgGX5VhQ/Ch3KUdQrtZ+Z1hN7a0v5ul1Niv2SUlKfeUbio2+ZZDtJCJuwvRPWe6y53FcVCzqEZVKPX36dGBgoDxLWjExMdFLvSe0ao03Xv70cUvSAwXEagIB2TFjZN92Vnjj/huPYpJfN6idxW6DR//VBW/5+9nXwzFP5BHQEQRZumGs/YiueOO1sylRwbdlCvC9hndbF7OMSKpJxVGYVbxmxNaCH0UNGD0EAoFAIBAIBAKBQJqaL1++ODg4yFQmAABhYWErVqxQrJcjR47Io0wAAObOnfunKBO7du1ydXVlMpkEAuHIkSPXr1+fNm3a8OHDPT09U1JSNm7cCAD4+PGjg4PDmzdv1DeMysrKXbt2tWjRwsfHR6RMqJyqqip3d/d+/foJlYl27drdvHkzJSXFx8dHVcoERH7kEidCQkLGjRt35syZqKiofv36ZWZmqntYEAjkD0BjMKLjgzdgjFDAVm8yainQKW0HmO0lIjWbnat43x/menHx7h2qhoAQFrXx6KDTXmTBABaRGfW8VGWhCYeYd9jU3RlvSS7IWPzsHEcglvYZQZA1a9acP39ens3yaWlpR93m9NXWwRtPvnm97l5CgzJaC9EgkQ7OG9ezlSXeGHj5wb4bj+qrUhsEAWsXjRgysCPeeO3e+y2hN/iyEkgAAAgEwurAyX0dxAJ5xZ94FOR/gc+Xkb7CbmLfdWd8CMSaB2LOlzzv/uu+vIIPOwgEAoFAIBAIBAL5M2AwGBMmTMjNzUUQZOjQofv3779169bdu3ePHz8+ffp0MpksUT4kJOTu3bsN7YXL5QYFBclTkkgkLl++vKHtNwknT55cu3atcG/f2rVrJRI8IAgSEBAwYcIEAEB5efnIkSO/fv2q8jEUFxevW7euefPm69atqzMel6pITU3t1atXVFSUMHTVihUr3r17N2rUKPX1CJGObHGitLR07dq1olMGg3HhwgV1DgkCgfw50DwBdSTuHMMq1gLe26YajrFmr94mAQjuzlbBTX+St1yAsdXXKZlA9mm3xFKzRl1HMfTQ1yP/VMjerCEnLi17enWwx1uSCzK8n8dK+E8AACZPnpycnGxlZQVkUVlREe+1uLn4wv25f96tvHubj8oWAySgUkgH5o9tby4W/uvY/Rf7rifLL3YQCMgG71H9eopFwbr78KP/nitcHr++WiJIJKJ/8LRufcQ8Qu5dS9vqc4bDlpHx235yv+URC/EuvaX55ascN79KbLIvMwQCgUAgEAgEAoFA5Gf16tXv379v165dSkpKQkLCsmXLRo4cOWzYsDlz5sTExHz48KF79+748hiG+fv7N7SXo0eP/vjxQ56SEyZMaNeuXUPbb3zevHnj4eEhVCbat2+/adOmOovt379fGPk2Pz9/8uTJXC5XtcP48uVLXl7e9evXGQxGQUHBX3/9pdr2hVy+fNne3v7Lly8AACKRePDgweDgYGEgOEhTIVucePv2bXV1Nd5ibm6utvFAIJA/CwSh7wYk3G53jI2VeQKBupzvZNJce7iNkZhvZjE77Un+KhSTsTytDNokmm+H5QaUmkh8fIy//8vBbP5PVXXhbT14coseeEtS/pcltfwnAAA9e/Z89erV8OHDZbYp4PEerfWnlYlFvrr86aP3rRs8gQxvg9roalIjF05qZSIW9/bY3y+3XbwnvzcGmUTc4TuuR+fmeOOjF19XbL3AZMme+lA0yJsPzLTuLqbNpCR9Xut+vKqiur5aQkbOc1x6cAE+hzarstrfeWfi6YdyDh4CgUAgEAgEAoFAIE1CampqRETE4MGDnz17ZmtbRwbEtm3bJiUldekiFkz45cuXDXIC4PF4wjzYmzZtwmQRFxen5B/VCAgEggULFoiUhlWrVtV2MRFiZWXl4uIiPE5LS9u6datqR9K/f//jx48PGjRIU1PTxMRETveUBhEeHj5p0iQWiwUAIJFIly5dWrx4scp7gTQU2eKERMDuNm3aTJ48WW3jgfwfwefzM8X5+VNlK7mQxgPRRPQPAwJuyzxahJV7AEzGWrD6aEd3tTZYiLcUsJ4+K/DDsAYvuMuPIcVgbUdfOrkmezMH5Zxlxufy81TSPgKQrT3HTGvVG298WJCx6Nk5di19wtDQ8ObNm5s2bZKZggLj8T7s3IVkZeONtzK+eFy/yubLdlaQ7FdH68TiKR0txVJJxz55uzbmljyhmYRoUEj7Nkx26Ce2weT1++ylm86XVbBkVtfUouw8Mtd2UHu88UNa1kq3yKL8Cul1x3gN3xi7kkKtmYrxufzdcw6e2hwr5+AhEAgEAoFAIBAIBNL4BAQEdOjQ4fr161ISxevq6p46dUoiCXaDMigcP378+/fvurq63t7eio/1d+LEiRMvX/6KSq2pqTl9+nQphd3c3ETHwcHBcnqQKEaXLl3kyakpP8eOHVuyZAn6b6CIkJCQMWPGqLD9P5esrCyJ5Vm04eE0lAGRmSyUxWKZm5tXVlYCAAgEQmJiopo8ayD/J2RmZkpJED937tyDBw+qtsfKykoOh2NsbCy7KKQW5eXlfD7fyMhIejGC4L0Gaz5ekBCQBnG1QgAgSqmlVj5Vhmcyz+ItlpojbPTWIfLl2lGMHHZu8LdQpoApsmgADd+2Ps2pzVTSPgawwA+JcdlpeGM/w5Z7e0ygEkm1y9+8eXPBggUVFTIW5REi0WzeHI3O1nhjb3OLQyNGadWzaUIKDDZ3RfStNz/EvGfsOrTYMXWoBrmOQdYJimI7w24/eP4Nb2xmprfLb4yJoU59tUQIBOjhwFv3rorNMg2MtTeGuFq1kXEr+JSSsW3KvqpSBt44bLa9V8gcfN7s3xkURYuLi7W1teVJQAKRgMvllpeX6+npCX2WIQ2CzWZXVlYaGBiQSPL+2CEiCgsL8/PzVf4a9n8CnOwpgzCss5SlHIgUiouLKRSKrq5uUw/kj6SwsFBLS0tbW7upB/LnweVyP3361KxZM/jLrRMul6uvrw8AoFAoHA6nqYcDaQwYDIadnV1MTEznzp1lFv7rr78ePHggOj116tSsWbPk6YXH43Xo0OHbt29r167dsWOHwqP9fRAIBNbW1unp6cLTMWPGXL16VUp5Ho+nr6/PZP5a8fDy8goPD1ff8ExNTQsLC4XHxsbGomMFOHv27MyZM0Vr7mvWrAkMDFTBEKXi7Ox848YNAMCFCxdGjhwps7z6yMjIIBKJrVq1qv2Rm5ublPQNpaWlwtupWpEtTgAA9uzZs3r1agDA+PHjL126pEx/8fHx58+f/yM8myBq4vXr1z179qzvU2Nj43fv3qm2x6qqKg6HI3N5HVInFRUVfD7f0NBQZkkq+FsX2whAzS2FCWYwES91jk46WAYnLI93E28yJzu11VCv114W92dEwVEOWjMJ1iZqLzJzNyGpZsUEA9j+zEeX89/jjbZ6zbd3HKlBqGPp/OvXr/Pnz//06ZOMdgkEI9ep2rZinhmdDAxDBjvqNnyJlsMTbLr88OU3Ma8Rm+Ym2yY5aFHkVTuKioovJX65nZyBN+rTNTctHWploSezOoZhcVFPb5xPxRu1tDWWb3Nu38WivlpCctLzd08PK8kpwxt7jbRZHD6HovkHLFijKFpSUkKj0aA4oQBcLreiooJOp0NxQgHYbHZVVZW+vj4UJxSgqKiooKDA2toaihMKACd7ylBWVgYAaIQ3z/8kJSUlFApFR0f2zglIbYqKirS0tGg0WlMP5M+Dy+Wmp6dbWlrCX26d8Hi85s2bAyhOQOohICBg8+bNotMHDx44ODjIU/HYsWPz58+n0WiZmZkmJibqGl8jcvHixUmTJolOg4ODV6xYIaU8AGDkyJF37twRHtNotOzsbPXdiFq1avX9+3fhsTLixNu3b/v37y+M5gQA6Nat24sXL+qLXqVCROJEdHT00KFD1d2dFL5+/UokElu2bClhxzCsZcuWUu6T+fn5pqam6h0cAHK9Oq5cufLNmzcxMTEFBQUoiirzypSVlcVgMGSXg/x3Ed22SCSScMYggkwm+/r6yrMO3iDIZDKbzVZ5s/8nEIlEOcUJACajrFwC65DonAZitGgdUOoU9Q1POgZgQ2qx4CfzjsiSx7uhq2XSSc9TfZ0aAsNVusuCvoSI9AmGgBFVdGJtu1VGGqpZNNlqOI76jnrue82y+4vy7E1fEw/YutT2nzA0NHz69Km7u3t8fLy0RlG0+Ox5IBBo9+srsn0sLfF5+ODE2PH6mpoNHWS4+4R1Z+8mvquRFt5mF/rFJ4XNG6dHo8rTgkAgWOxm36K5WcSZRyJjWUX1xv0Ju/zGW7czk9mCl98YSyuTI8G3MfSXZsZicIL8rvrtniIR90kCw/6GoU+2bxi7K/NNjZtq6u23u6aGBVxeTTf+3XdHoiiKoqiOjg4UJxSAy+USCAR9fX0oTigAm80mkUiGhoZQnFAAPp8vnK5AcUIB4GRPGYTRLeD+a8XAMAx6TigMn8+n0WjQc0IBuFwunU43MDCAv9w6UXmeXsh/DHwmXT09vT59+shTSyAQCPfae3l5/TeUCQBAdHQ0/lQiYXid9O/fXyROMJnMixcvzp8/Xy2DA0Alb2QMBmPixIkiZYJEIh07dqwRlAk8Ojo6TTtNLSkpIRKJdY4hMDAwLCxMIJ529MePH0Ivk8Z5KZbr1ZFAIJw6dcrIyCgkJMTV1fXEiROaDV+oEnL79m0i8c8IiwFRN82aNcvMzGyEjkj/0gh9/fcQXjd5r57ucgz9CdjXRAaEsYVEaQUo/dQ0PJn0Md0iyGflsZJFls8Vx8kk7Y56c9TXaUd6B592S4LTQ/jYr7QNpdyyoK8h6zv56eGSUijDph5OBALhTOYLkeVp0Tev5+ciB8zQJEo+ZfX09GJjY0NDQ319fXm8+hODo2jx+TiUw9F1sBfZPhQXTb98IXriZFNaw94bSSRSsJvzpriEy89rnDw+/CxcEHEx0nOiia7s1oQ/W7dJ/bRp1H1RNVm1KxnsFdsu7Fw93rZbC5mNTHQbqGdA27vhEp//61nLYfO2+pzz3jh25KTeUiqaNDfen7xty5Tgl3dqgmh9fvF1hf3GHTf9LduZS6nb5KAoCu97CgOvnjKQcDT1WP48RJcOihMKAL94ytCwyR5EHPjdUwZ49RQGTlek08jR0iF/HMLA9UK8vLzkXOGMiYn58uULAODly5fbtm3r27dvnz596HTVvOA3CeXl5TdvioWasLGxkVnL2losHHR8fLz6xAmVSAjr16/H5zxfvHixlGguaoJIJDbt7ZpEItU3Bh8fHx8fHwmjgYGB0LO2cZD35YdAIOzfv//cuXNJSUl2dnapqamy69TixIkTCQkJClSEQCB/CAhC3wnIeLGdj5UvBQI1ZkmSDgEh9TfbY6rVH2/8p+TAl4ozau23C916SVtPAqhJtFXALtz1KZjBV43rGAKQDd1GzWhtize+KP7h8SSGxa9joxCCIMuWLUtMTJThkYdhpZeulN+5i5NIP1UAACAASURBVLdllJZOiT2fXSkjcUVtCARki8vwWfZiD/6vBSVuB2J/ljSgtYkju29YNppErHlgVbN5vjsvPniWLk91R+fuWw+5adI0RBYURUMCrkSH35deUVObuvXKmiEzBuGNuV8Llttv+JLaGMIqBAKBQCAQCAQCgUBUS3Z2tvCATqcvXbpUnioCgUCUZOLBgwcbNmwYPny4gYGBnZ1dZGTkHxohJikpCR/Ph0ajyRMhU0KcSE5OlrYDUjmUFydevnyJz2tLJpNXrVqlZJsQlSNbt8nJyXny5InwmEAgbN68ecuWLX369Jk/f/6wYcPk6YPBYOTk5CQkJDx8+FCpwUIgkN8fRAPRD8dKJgHBv/kG0HKszAMxiAOEpnF4JyDkAWZBybmLi9k1W+DfFO8lE2gtdcapr99e+j3G0pyuMG9g/+bh+FmdE/gpeG1HXxpJBcF2EICs7zYKABCD8594Ufxj4dMzEf2na5HqcL6zt7d/+fLllClTnj17JqXl8lt3MC5Pf4yTyJJdWTEtPvbMxCkt9GQnexAbJAJWj3Mw0tHad6MmNFNOaYXbwfORCye1NZPXsXH4oE7aWhrrg65yuL+cUXg8wYbga2u8hjs7dpVZvUe/Nrui5m1YdKqi7FfmLgzDog/dr6qs9lw9GiEg9VUkUUhrTi21aGN2ektNqqSygooVgzeuP7eir1Njb7iAQCAQCAQCgUAgEIgyJCUlCQ+ioqLwIZ6kcO7cuc+fP0sYURR9/Pjx48ePfX19fXx81qxZ82eF1RUt9gpp1qyZPLUkwrMzmcy0tDRbW9v6yjctGzZswAcsmjZtmpx/JqQxkS1OPH/+3MXFpbb9yJEjR44cUcOQIOqlqKjo+fPnRUVFBALBxMTE1tYWxueFqBiCMaIXgZVOA9ivoH6An4lVLEP0owBomqhuRIQ60DwkKdejnCOaT2CphdtICK2ZthqzEnUldwY6yJWq6yJ94gcrKyh9/5oOK6lEDel15eFffQKJyXwuMgr9JyIHzKhTn2jWrNmDBw9Wr14dGhoqpeWKe/dRDsdw0gSA/Fq4z62qmhJ3/vSESR0anm50nqMtAGD/zUf/RmYCRZXM+YfiIzwmdrSUN0/4gF6t926YvGbnJQbr1+YOFMUCw+9UMTiuY6UFaBLSvotl0MkF/gtPFuaVi4xXYp5WlbNWbJtIItX7zUQQxG2zi66hTvjy46LcFWwmZ+P4Xd5h7k4eTZnVCgKBQCAQCAQCgUAg8vP8+fM3b94AAJYtWzZ58mR5qqAoun37dikFKisrt2zZcvz48d27d0+bNk01A1U/EnsW5Vy119XV1dTUrK6uFlnevXv3e4oTz549u337Nt5SO34R5HdAdlin/v37N3KeEIiaSExMdHBwMDMzc3Z2njt37uzZs0eNGmViYmJvby/KZgOBqAZyJ0QvREyK4DzCKjY23YAAmaA9yDxMh9xSZMEA+rxwfT7rsVr77UntNsNKbHaSwfi6/8tBHqoaz0cEIOu7jZzZRiyF18uSrPriOwEANDQ0QkJCjhw5QqVKS0xd9ehxSVw8EOkJABSxmNMuxL4tyFdgnPMcbddPHEJAanwUShmseYfi0r7nyt9Id+tmh7a7GhnU5KvAMHDw5IND0XK55TVvZbw/ZmHrDmKZtO/feLPe81Q1k1NfLSHjl47aFL9KQ7NG70EF6H7PiKi1MfKPHwKBQCAQCAQCgUAgTQWGYf7+/gAADw+PvXv3ylkrNjb248ePMotlZ2e7urp6eHioL8yRahGm0BAhv0uBRD5weS5Ok3DgwAH8afv27UXZJjAMe/fu3cmTJ4OCggICAqKiop4/f47hVj8gjYlsccLMzGzcODVGPoE0Anw+f9myZcOGDXv48KFEbigURZOTk0eOHDl37lw2m91UI4T8B9EYjOisFLNUxwJWdBONBgAANIj69hbhNJKFyIJivKf5q4vZr9Xa7wizoRMsx+It7ys/HPx6WIAJ6qvSIBCA+NvUoU+4169PAAAWLFjw5MmTVq1aSWm56smzougzGO6mUc5mz7p04VVenpRa9eEywGbnjFH41BFV1RyPiItPPjcgJUlrK6ND21wtzcSiS0Vfeh4UmYjKMZMwMNbZfWx+555imbTTUr6uWXBMFPGpPgaO77Pn3ia6kQ7eeH7X5T3zwvg81fxXQiAQCAQCgUAgEAhEHWAYtmbNmsTERG9v78OHDxMI8mbh7dy5c2xsbERExMaNG2fMmNG9e3cpyY2PHDkyZswYfM7t35Pq6ur8fLF9h5aWlnLWpdFo+NOioiKVDUt1lJWVXbp0CW8ZP348AODr16/Lly83NTW1sbGZM2eOr6/v5s2b3d3d+/bt26pVq8jISIlVU0gjIFeu8IULF8bHx6t7KBD14eXlFRUVJb3MiRMncnNzr1+/Dh1lICqD5g4EWYB1TmTAKrchxGZAY3BTjUiTZDrIIvxBzgK2oFhoEWDsx3k+9haH9TU6qa/fiZbjuCjvRt4tkeVVWVr418jFbRYSEHmnRFIQ6hMIQE5/TREZU0uy3J/ERA6YQasrvhMAoEePHi9evJg+ffrdu3frLAAAYKa+wjgc4zluyL/Tr0oOZ9al+Mgx4wY2t2roOEf36EDTIK88eYPD/5U6oprLW3L0yq6Zo4bZtJOzEQtT+qFtrsu3xn39USwyXrqTxmCy13uL5c2uE21dzcAjc3f5xT1KeC8ypv+T4zMjYkfEHPPmBlLqdurXPvTJjrWjt+dm1Ezj7p54UJJbtjFupZaOppx/AgQCgUAgEAgEAvkNwTBw9eWHm68/lTPh3s3GppWJvptDT+tmpupovKysbN68eZcvXwYAPH78OD4+fvLkyQhSb/ZBPF27du3aVSzTIZPJ/Pvvv8+dOxcfH4/PKS3kzp07Li4uN27cIBKbJq61PGRnZ0s4Cmhra9dXWAINDbEg1eXl5fWVbEIuXbqEjz0FABg0aJC7u/uxY8fqkx9+/PixcOHCU6dOXb58WZ7c4BBVIZc4MWTIkHbt2gn9fdq2bTt06FBTU1NNTU0AAJ1Olyk2VlZWMhiM4uLis2fPlpaWKj9oSIOIjo4WKhMWFhbz5s3766+/TE1NKyoqnj9/HhER8enTJ1HJu3fvrlmzRn7XNiXhcrmpqal4i66ubtu2beV8PED+CBDdTRj/O+CKQhkKsPLliOF5QGrfVEPSJjcfZBGWlOPORX/tZeChjEd5Sx0sInUprdXX79Tmk6oF1fcLH4gsz0tfahA03FvPRYAKvvMIQNbZjEAAOCWpT0QfGTCzPn3C0NDw5s2bW7du3bp1a31PaNY/7wuPnTCZOxv5V7lk8XjuVy8fdh5r36JlQ8fpYN36kMeEpUevMDm/vDp4AsGq0zcCpgwb36eznI0Y6tMObpm2avuF9+k1PhwJjz4xq7lbV46hashQWMkU0rqgqQe2Xr0V/1JkzMsuXTn7yLZDsyXiPklg0dZs38Ot6513fnmVKTKm3n2zeuiWbdf89Ezocv4JEAgEAoFAIBAI5Hdj343k43+/lF0OogY+/CxIePvlsMdE2zaqTFnM4XBOnDixffv27OxsoSU1NdXFxcXR0fHo0aMtW7ZUoE0ajebs7Ozs7BwYGBgYGHj48GF81mUAwJ07d1avXh0cHKz8+NVEVVWVhEW4zCsPEgGiKyoqVDMmlZKQkIA/RRDEzc2trKxs6NChCxcudHBwMDIyys3NTU5ODgoKwi9OPn782N7e/t69e3ImS//TQVH0/fv3XK5Y1A2J77O6QeSMqBUUFOTr62tra5ucnCwhkcnP9+/fe/To0a9fv1u3bskuDVEFHA6nXbt22dnZ3t7eO3fu1NLSwn/K4/HWrVsXFBQkspBIpLdv33bqpMYt5F+/fm3btm19n06ZMuXYsWOq7bGyspLL5ULZUzEqKir4fL4yWdMRrJLKmkXAskQWFDFna0VjiLQt6uqmgvfxedlyAVYjpFOJxn31D2gSVfn4ycjIIJPJLVr8CiKEASw699yTcrGsU38Z2LuYTVJVjxjA9n5+cDbrFd7YTc/iQM/JWkRpS/ZXrlzx9PRkMBj1FaC2bWPiPp+Au/+TicTdgx2HtpQWGKo+PuQUrYi+VcGq2WOCIMB7RL9p/Ws2pBQXF1MoFF1d3foaYXP5ASG3X/3zE2/s0Npk+yonHZrs5xSGYXFHH8cefYQ30rQ1/IImd+rWXHpdNpMTNDs89e5bvNGkhdGmS6ss2qplp0+DQFG0pKSERqNJ3PMh8sDlcisqKuh0OoVSt6QHkQKbza6qqtLX15fi6g6pj6Kiory8vC5dusgfZAAiAk72lKGsrAwAoK+v39QD+SMpKSkhk8lSpisQKRQVFWlqasq/Vxcigsvlfvr0qXnz5vCXWydcLlf4AkuhUGrvapdCQQVj+NYoeaLFQtSHTQvzGG8V5JRmMpl37txJSkqKj4/Pza0706Gpqen169d79+6tZF8vXryYM2fOhw8f8EYEQZ49e9anT5/6ajUtDx8+dHBwwFsiIiI8PDzkqdu/f398Mu3u3bu/fq2WWNk9evRIS0sTHhsbGxcWFspf19TUVKJ87969Q0JCBgwYIFFSIBAsWbLk8OHDeKODg8O9e/eU9H1xdna+ceMGACA+Pn7EiBHKNKUkGRkZRCKxzrDekydPlpKHuLS0tBEeNPK+Os6ZM2f9+vVDhw5VWJkAALRs2XLq1Kk/fjQgvDhESW7cuJGdnb1ly5YNGzbU/pRMJu/Zs4fP5+/fv19o4fP5J0+eDAwMVN+QpIfeS0pKYjJlRH5vKCwWi8PhyC8CQ/AwmUw+ny89c7IsiGwQqI8sRLBfyjwByyOzVpSD/RhoshhiJGDVmbrpn+oNKPiVq4otKHpeurwrdbcGQXElRgIWi0Umk/Ff6fG6zkwu8w3rncjyd+lDkoA0Qm+oqjr1bNaHIMBicmomB2/Kcxe/jN3dyUmKPjF06NA7d+7Mmzfv8+fPdRZgZ3wtOHzEdOECwr9fBp5AsOp+on+ffqNbNdjjpIWeVvC0oX6xfxczWEILhoGQ28/yyyrdHboLLcLvnvTZgJ+Hw77jyU9f10hfnzMLV2y7tHHJEAM92evyTq49NLSI0WEPMfTXGwiTwQlYes5z7Qhb+zbS63ofnX9ibezf0TUJ1Qt/FK8ZsnXFCY/2fWTUVTcoigq/dTCjlwJwuVwmk0kikf6URHa/FWw2m8lkUigUKE4oAJPJrK6uZjKZUJxQADjZUwbhIwMqsoohvOn9zoE7fmeYTCaGYdBvXgG4XK7wkQF/uXWi8CwuI78EKhNNzpe8YtmF5Gnny5dDhw4VFhZKbAnHU1BQMHr06JSUFOm5GGVia2ubkpLi4uKC34qNYZivr29SUpIyLauP2kln5Z9H8f+N0lxfU01OXl6ehDLh6ekZFhZW5zSbSCQeOnQoNzf36tWrImNSUtLevXt9fX1VMh7hW5JKmlIMFotFJBJrjwHDsIcPH0qpKOXno0LkfXU0MjKaNGlSfWKj/HTr1g2KE41JXFyco6Pj+vXrpZTZvXv35cuXv3//Ljy9d++eWock0twoFIpE2D4SieTj42NsbKzaHjU0NNhstsqb/T+BTCbz+XyltyIaI7xQULYAgF+uYWTsjRE1FOiqUQaTPSYwRLda+0nBchT7NXmtRvM+8Tfbm0VQiKoJzlNWVkYmkyW+e97Gi0Izwt9U1OgTCRX39XT0nM1GqaRTAIC/sbOWltaRLzXr5u8q89d9uRvR31WbVK/AbGxs/Pz58/nz59eXZIjz7Vv+wUOmXh7Ef/NfCTBs+/NnmtraLtbyRmTCd3dqqbFH5KWfJTVOoOdTPmhpaS0bNRBBAIZhVCpV5lbEQL9JuyMSbtz/R2TJyi3fsD9x34ZJEnmz68R1wZAWrSx2r43jcn5NsPg8Qfi224vXO4+aJGMHzZrjSy1bmUdvrblcjDLmLtdw/zPL+jr3ktm1+hBG6NLR0YGeEwrA5XJJJJK+vj5821cANptNoVAMDQ2hOKEAKIpyuVxjY2MoTigAnOwpg3Bh3cCgKV1a/1wQBJHu6AmRAoqiNBoNek4oAJfLLSoqMjIygr/cOlF4Na2ZAfwtNz2WKvpf6N69uyiwz4cPH+Lj448dO1Z7QbKoqGj27NlJSUlKCqXa2tqXLl0aPnw4fqn34cOHr1696tmzpzItq4na6Wbl34wu8RP7DXeH1N5zaWdnJ32OHRkZmZSUhA9RFRQUtGTJEpX8dXQ6vWmnqWVlZUQisc4xHDx48PDhwxJRvtPS0oSRnRrnpbgBr46LFy8+d+6c7HJSGThwoDK+F5CGkpKScv78eek3WTKZvGjRotWrVwtPc3JyGmVowMLC4uXLxgjmSPiXRujrv4fKrp6GHaBvwSr8RQaEfQkhtwU0udwG1YQZrX9f0+3P8v0w8OtGXMn9+qhgsYNFBJmgo3z7dV49CqB4t1sUlL7/Y2XN8zLu50UygTzKbLjynQpZ2WUogiCR6TUxi16XZi98evbIwBlS9AldXd3Y2Njdu3f7+/vXGWSQ+/NnfmiY2SJPIv3XlFGAYevuJbB4vHk9Gjzlam6kf8xrinvEhR9FZSLj8b9fMjlc/4mOcn73CASwdtFIuo7mmSsvRMa8worFG8/v3TC5bQvZMwC7YZ21dTW3+MSwGL+cvlEUPbj1WlkRY+YiR+l1ZwdMNW1hvN8zUsD/dbk4LM7mSUFLD8x39lTZ/6YCwPuewhBwNPVY/jzg1VMGePWUAV46ZRBeN3j1FAN+95QBXj2FgY8M6Sh8WVoY6w+3aXf37RfVjgfSINyHqD4OkrW19caNG/38/I4dO7Z+/fqSkhL8p8nJyVevXh03bpySvWhoaFy8eLFnz55ZWTWe/deuXfs9xQkdHckVD/ldjiRK0v7dvPj7UFuFat5cRuhmU1NTDw+PPXv2iCyFhYWxsbGzZ89WfjwIgjTt7VrKI2PevHnz5s2TMBoYGAjDfjYODbg0AwYMCA0NVaCP5ORkFxeXx48fAwBsbGxq/80QNSEQCNzd3W1tbWWWdHSsWYD7DTVPyH8ETRegNQtvwKqCATuhvuKNgyVtSC+TjQCXkrqc8/lR3jI+Wi2llpJQCJTl7Za2oYm5jp7Nin1QJM2frqGs6DxkYYdBeMvr0uwFj6MZfGlxVxEEWbNmzePHj+vzbOUVFOSHHeKXl4ssGABbHz4ITXlWZ3npmOvrnFzs0tFSTEKIffJ27ZnbfEHdCbrrGjNY7ObgNdMebywpYy7ZeP6fz3I5/HXv2zowap6eQc2kCsOw6EP3w3dcF0V8qo+R8xw3xa/S0KqRfFABGrLoSLjPcRhVCQKBQCAQCAQC+YPYOWPUvL96m+vr6GpS4b9G/tfR0jholtPonh3V9J9LoVA8PT1fv35dOw9EZGSkSrowNDQMDw/HW+7evauSllVObXGiulreNRCJkr+hA1ztdN/NmsnOsr5kyRKJvd2JiYmqHBakHhrD6X7QoEGnTp0aMmRIVFTUzJkzG6FHiBAikbh27Vp5SlpZWdV5DIGoFkTXHxP8BJy//zWgWMUKhBgDyDZNOKqWOmP4KDOtuEYhL2G/eZq/cqD5fgKiLhc2TaLm6o4rdnzc84P1a1cFBrDj309TCdR+hirbKrLc2hEB4PDnZJElrfTn7OSTx+3cdMnS8oj07dv39evXCxcuPH/+fO1PeYWF+aEHTRd5knHxvvY9e8LkctYOcqhdXjqGOlrHvKYsirqc9r1GSLj56lNpRdWOaQ1IxTFzQh9tLY3gI4miQLFVDPaygLida8b16dZSZvX2nS33xSz0X3gyN6tmH83Vs89KiirXBLpQNKQ9LvuP7R10f/OGsYHlhTVOoJdCbzLKmSuOeJHIMA41BAKBQCAQCATyB0AhEZc7D1ruPEh2UcifSfPmzW/evGlra/vt2zeR8f79+1wuVyURbJycnBwcHESpJn7byPZ6epIxkOVPHVGO26oI5HBKaHwYDIaERZ4geFZWVj179kxNTRVZhPvsIeqmkZxKDh8+bGdnN3v27Li4uMbpEdIg8PFbJPJAQCAqhYjo7QOkDjUGjI2VeQFBftMNCQAA2tKnWeu74y0F1SkpBeswrI7QRqpCi6i1puMKC01zkQXF0MOZUa/L36iwFx9rR09x/4n35XlzH52q5MmYedDp9HPnzp08ebLOvAX80rL80IPcPLH/uMhXqcuvXlbAWUBHUyNy4cQBHVrgjc++5qyMvsPkNCBi7PgR3Tb5OJGINY82Noe3esel+0/qzvItgXkzg+CT7m06muONjxM/bFx8ShTxqT469mkb+mS7ZTuxugmnkvyddrAq1eiFA4FAIBAIBAKBQCAQ+TE0NNy3bx/ewmazP378qKr2ly5dKjouKCiQiOb/m2BqaiqhT9Re0K8TgUBQWVmJt7Ro0aK+wk2FMJ8WHjndO0aOHIk/VT71MkQeGkmcIBKJzs7OKIq6ubm9ffu2cTqFyA8+z8TUqVObcCSQ/z4IDdGPAATDGgtaiJV7AqyJF3CtDTzb64lFncph/v2yaIsoHYU60CHprOmw0lijxv9AgAkOZhz+UPlJhb34WDt6dRALeSTUJyq4sq+5m5vbixcvbGzqcG0RVFYVhB3i5og9rS9/y5wWGYE2PJyRJoV8cP64oV3b4o2vf+QvOBRfzpR3BwcAYKhdx+ANkzWpNdm9eHzBpn3XrybI9ejRN9LedWx+114t8ca0lMw184+WlzKl1zVvbRr6ZLt1//Z446vEt8vtNxTnlMr7B0AgEAgEAoFAIBAIRJ2MGzeuS5cueEtRUZGqGh8+fDiJ9Mvzns/n15nN8XfA2toafyrnQnxFRYWE3NKmTRtVDksVSKTBoFAoov8R6UgsfXA4nNoRoiAqRxFxgsViFRYWZmZmvnv3LlUqSUlJiYmJ165dO3TokFCWZLPZfn5+qv4rIMry+vVr4UGrVq0GDBjQtIOB/PchWiJ6YQAfMYn3HqvwBeqUAeTBxnBZK90JeMuPqutvioPU2qkBRd+v40p9Ss2eBS7KDU4PSa9SZR62ZdZ/LepYS594fFoefcLa2jolJcXb27v2RwIGI/9gOOe7mKfq82pm/80bK+XbdoGHTCQGuzmPs+2MN/6TXTA3PLawsgGt9e5qFbrZha5Tkz4HRbHdEXdjLj+Xp7q2DnVH5JxBw8Wmql8+5C6fEYGP+FQnuoY6u+5u7OsklvEs8+0Pn0Hrsz/l1FcLAoFAIBAIBAKBQCCNiaurK/6Uz+erqmUdHZ1OnToJj7W1tclksvTyTUXnzmKv3vhdy1KoXaxv374qG5OKkMgwweVy5cyo0bGjZMqTpk1k/X9CA3JO5Obm7ty5MzExMT09XRmnpNu3b5eXl9eObgZpQq5fvy48WLdunUT6F/WRlZUlEfSNTCb7+fnhPeBUAv9fVNvs/wnqunqEbggtgMDA5URh3xFU7se06lgBb0xs9FfzBMyfzJqkVRkV54mA1klvoQKt8fl8BEFkXj0DosGadit3pu+p4P3yjhTqE77tVrTUUlkOmEXtBqEoejj9kcjyoTxvzqNTUf2m0ymaUioCAEgkUnBwsJ2d3cKFC8vKyvAfodXVBYciTBbMo7arcXooNNDvuXH92ZluPepyuZDOpkmONArpzOOa2FYZ+SVuB85HuE+wNNCVs5H2rYxDN09etf1SUekvVQPDQPjph+WVLA9XO5k3OYQAfHdO1Nal3op/KTLm/SxdOftIwIGZrTuaSalL0iBujF8Z5n3s5pF7ImPB96Jldus3XVjVeWAHKXVVBYqi8L6nMKJLB6ehCgC/eMoAv3vKAL97yiC8bvDqKYbwNwuvnmLAX67C8HE09Vh+R+BlgciDk5OTv7+/6NTExESFjZuZmb179w4A0K5dOxU2q1rs7OyOHDkiOv3586c8tb5//44/NTU1bdWqlWoHpjxt27aVsBQVFcmTYdcIl1YTAKCpqSnhhKEYAoGgae9LfD4fw7A6x7Bz587Q0FAJ/x6JtCLqRl5xIjU1ddSoUSrxcsIw7Pv37927d1e+KYhKKCoqunv3LgCgY8eOc+bMUXd3opVNFEUlVjkBANu3b58+fbpqe6yqquJwOLVDzkHkoaKiQrjCroa2B9HATBqIFp0TWIcrWcZsZLga+moALZElTGJpmaBmVfpzxTFuNdKMMqmhTZWXl5PJ5JISGdvtAQAkQJxn5Ha44Gg1+kvPZwmqg7+ELDJ1NyEbN7Tf+nA16sJksU7/fCWyfKzIn//4dHDnMdpE2bm/7O3tExMTvby8nj8Xc0FAOZyCI0dN5s/V7FAT0UjQwmps5GHP5laeC9xrtSSDuQM6C/i88ykfRJac0sp5h+J2uzg2k1uf0NEEm5cNDQhNLCyp8bo4c+VlSWml+9Q+BILsr/Q0z/4UKuFKdM0fW1bM8Ftw3GerUwcbS+l1XQPGa+hSLgXfElmqShnrRm1fFD6n96hucv4JCiO8u8q/PQSCh8vlCl2VVZIQ7/8NNpstdHyW028agqesrKyioqKkpASKEwoAJ3vKIJyQYw0PyQgBAJSWllIoFB6P19QD+SMpKyvjcDgcjozMXpDaCKcrpaWl8JdbJ/AnCZGHli1b4k/Nzc3rKagIoiWUfv36qbBZ1TJ69GgikShalf748SOKojInohLihKOjo5qGpwwdOnSg0+kVFRUiS25urjzihK6u2IKDPFXkoaqqSp51IfVRXl5OJBJrjwHDsG3btnG59Wb6lPKRCpHr1ZHBYEyYMEFV8dc0NTV/Z+WwqWAymTo6OqpqrbS0VH7flJCQkOrqagRBwsLCGmE1QcrAEASZOXMmnU5XbY8IgrDZbJU3+3+CUFxV29VbLWAWE3m3Rb3pIrs0tduhxCYWL/vp7n5esrKE81pk+cY9pqNlbEUb06B2dHV1yWSynFePDug+tCX7voWyBb/e0BgCRmTR8dVtlhtTjKTXlZ+VXYdpUTUj2N/uuQAAIABJREFUMh6LLJ8YRSs+XI/oO02PLMN/AgBAp9Pv3bsXGBgYGBiIl9YxLrcwMsp49iwtm64iI7VTx8MZX1MXLYoMC2uot9yqsQ5aJMLxx/+ILIWVrBXn7h2YM6a9uaGUihKjDdvq4hd49WtWsch4JzmdUc33XzxcgyL7djd32XAzC4PIoDsY+uvFj8Xk7F5zZdmmsYNGdJZed97W6S3aNz+45Cif9+tCcdm8UPej7rtnOnsNk/NPUAwURblcro6OTp3JzCHS4XK5KIrS6XQoTiiAhoYGAIBOp0NxQgHYbDaLxaLT6VCcUAA42VMG4QMdXj3F4PF4FApFYi0DIidsNptGo8mZpBSCRzjT09XVhb/cOmmc1TTInw6dTtfS0mKxWACANm3aqFacyMvLEx6MGzdOhc2qFiMjo4EDBz58+FB4WlVVlZ6eXjuukQSfPoklyJwyZYq6xqcERCJx0KBBoiAxAICnT58qIBQNHDhQJePR0tJq2tu1rq4ukUiscwwzZ848duxYfRUb56VYrlfHqKio7OxslfRHJpPDw8NV4hTz38PQUN4VN5nIv8+9qKgoLCwMAODp6dk4gqdobFZWVmlpafiPSCSSChUaEcKpCZVKVXnL/w9QqVQ+n6/Gq6exGyvNBrz3v04xDpnpgxjGA2IzqdXUDXWQRejDXM9Szr8DA9i7ij06mubmWnbyt0KhUMhksvxXz5ra0Ye0NDg9hIf+2uxTzivf++3Ahk5+BhT9BgxfKsu7DiWRSGGfkkSWz1WFC1+cPz7QzUBDrrXsbdu2DRkyZObMmfiUWZhAUHTytNHM6bQeNdoStW2bl0RC30GDzpw40dDn+ky7bgZ03X23norSa5cyqj2PXglfML57Sws5G7GgUg9unbZy24UPX/JExscvM9cH3wxcM56mJftBO2GWnZGp3u618TzuLxdIPk+wd+NlRiVnwiwZGXqc3IcZWRhum7aXzfwlOKECNGLlqbL88gWBM9UXQw9FUeq/qKmL/zAEAkF46aA4oRgcDodKpUJxQgGE3zoqlQrFCQWAkz1lEF43ePUUQ/TLbeqB/JHA6YrCEAgE4RcPXr06gU9SiDzgHc2HDBmiwpZLS0s/fvwIAGjTps2wYerdl6Yk06dPF4kTAIDU1FSZ4gQ+jgKdTh81apS6BqccLi4ueHHi4cOHy5cvl1lLIpyRqpZJm3yqQKFQiERinWM4evTovn37JMI6tW7dujEjO8n16njmzBnRMZVK7d69e4cOHTQ1Nel0+u3bt9+8eePu7i6RPABPdHR0bm6ur69vly5dHBwcVOUU8x+DRqOpyjelQaxYsaK8vLxr165BQerN+lsbAoGgr6+y9VbInwqiiegdxkomAbTwlwUtwcrcEcNYgKheqZIfEkHLzuLgg5wFldyvQguGCZ7lr3GwOGxA7Sq9rjJ01u20tK1XyJcwAfbr2VDMKQ78FOTfaQ2drLJNeUs7DaYSycHvE0WWzxUFM5OPn7BzM6HKddn/+uuv169fz5kz59atmshFmEBQdDoG43K1+/YRGTVateKOHzPU2XnTmjWrV69u0KvCRNtOJvp0/3N3+IJfiY6qqjnuERf2zxk7sEMLORvR1aaGBrj4776SkvZdZHz1T5an/5l9GyYbGcjerDdoeBe6Pi3AO4bJYAstGIpF7L6Zn1PmuXo0IjVCVF+nnkH3N28YG1hWUONSGrvnal5mod9pbwr1N82NBoFAIBAIBAKBQCD/Yf755x9RYDQPDw8VtnzhwgVhcP8dO3b85lLZ7NmzN2/enJ+fLzxNSEiYMWOGlPJsNvvt27eiUy8vr99WIp0wYYKBgUFpaanwNDk5WSAQyAwB+uPHD9GxoaHhxIkT1TjE34baDqCNlo1YiOwfCYPBePXqFQBAS0tr//79RUVFT58+PXHixKFDhwIDAzdv3gwAaN++fWD9nDlzhkAg5OTkzJo1CyoTvxV3796Njo7W09O7cOECjP4BaTKIZoh+JEBwMYX4GVi5NwCC+us0BhSC7iDzMBqpZpO+AGM/yl9Wyf2m1n576HVb0taTiNTcn/PY+bs+BzP4DCm1Gop7+4ErOw/FWzKrit2STxZUV8nZgomJyY0bN4KDg8U2mKNo8bnYyqRkfElKs2aGXh7rA3fa29t/+PBBsiGpjO7Zcd/sMRq4XdhsLn/p0St336TL34imBnmX3wTHAWLJqDOzihdtOJeL0wykYGPbavfx+QbGYsrNlZingX5xIo+K+uhg23b/o+2W7cTchJMvPFs3ejujnCnfXwCBQCAQCAQCgUAgEJVx4cIF4cHIkSN79eqlqmarq6u3bdsGAHBwcHBxcVFVs2qCSqX6+PiITq9duyY9Zcv9+/dFYdM0NTXxddUBfjs/iqINqqutre3t7S06LSkpEWbblc6LFy9ExwsWLNDUlB37GqI8ssWJL1++CL8NsbGxy5Ytk4gI6eTkZGZmFhERIeVbYm9vv2rVqpiYmKioKOVHDFEV+fn5c+bMIZPJcXFxMAsIpIkhd0boQWJ3JM4jrGJD0w3oF5ok40EW4RrEGs8wrqAiOW8xi5+v1n576/dc0GouAmrE6mzWz8BPwUw+S4W9uLcf6NtFzMn0O6Nk+sNjP1nyuu8hCLJixYqnT5+K3UMwrPTS5fI7CfiSZFNTc++lKZ8+du/e3c/Pr0GZDwd3bn3IYwJNo0YC4QkEvtE3L6b8I6WWBGQyccuKMdPG9MYbc/LLF66LSf9WWF8tPG06mu+PXmjVWiw/edKtt/6eJxlVbOl1LdqYHni6o4udmIfsmwfvfezWF/xoAp85CAQCgUAgEAgEAvm/pbCw8ODBgwAAGo0WEhIivTCPxxP5FsjEy8srKyvLwMAgMjJSZuG0tLQVK1ZMmjTJz8/v2zf1boKsj0WLFllaWgqPS0tL79+/L6Xw2bNnRcfr1q0zNTWVUriysjIqKmrbtm1///23YmNjs2tetBXIJbNq1Sr8Fnnh/7h0Ll68KDwwMzPz8/NraI8QxZAtTghjDTk4ODg5OdX+lEwmz5kzJyMjIyEhofanItavX29hYeHt7f3u3TuFxwpRITweb9KkSfn5+ZGRkUOHDpVdAQJRN9ThiM5KMUt1HGCdbKLR1KBNbm5nvp9EqHEtquYXPMrz5qKVau3XzmiAW0sxh8ofrKyg9P2idNkqYX67AWu6Dsc77OWwyt2ST2Qzy+RvpGfPnqmpqbNmzcIby2/dLrt2A28hGRqYLVkE6PRdu3Z17dq1QRMU2zbNjnpN1qfVbFtAUWxzXMLJB6nyN4IgYOmcwV4z7fHG0nLWovVnX7z5UV8tPCYWentPe3Tp2RJvfPvi20q3yKJ8GR4YOgbauxM2OriIpan48eGn9wD/L68y5foDIBAIBAKBQCAQCARSF69evTp06NCNGzeYTBnu6Xw+39XVtbKyEgAQGhravn17KYUvX75sbGxsbm5uaWl5+vRpUSSo2ggEgpUrV548eZJMJsfHx0tvFgBw8uRJW1vbffv2Xbx4cdeuXV26dLl8+bL0KupAR0cnNDRUdCol5Ht2dnZsbKzwuHPnzqtXr5bSbFZWVpcuXdzd3Tds2ODo6Lhy5UophesDL0goIE7QaLTIyEhRZK2bN28mJydLKZ+amvro0SPh8f79+/X09BraI0QxECm/KyFXrlwZP378xo0bAwIC6iyQkZHRvn37kSNH3rx5U0o7W7du3bhxY8+ePVNSUmCaxCZn4cKFkZGRu3fv9vX1beSuv3//3qpVKwAAgUCQyBSvq6u7YsWKRYsWqbbHyspKNpttYmKi2mb/TygvL+fz+UZGRo3THcLYRGDH4gwEVDcUo6gyOZViFFQ/eVa0CsNqnAr1NbrYmYYREWkBFtPT08lksvALrxh3C++d/Ym/IMBap6NPmyVkgipzFcT+eLX17S38w8Bci36s/4zmWg3LCnP69Glvb28Goyb8lO4gO4OJ4wEuXqGgsqrg0GFuXj6BQHB3d9++fbvEfUBEYWEhlUrFRz/MLCz1irpSWCEW3mrO4F7LRslITC3B7aQPuyMSBYIahz8ymei/eMRf/WVMH4XwuPy9Gy4n3xXz2zA00dl8YGar9tJ2jgAAUAF6eOXJa+Fi/qSa2tS1Md62o3rI/RfIAEXRoqIiHR0dGK9PAbhcbllZmb6+PkyIrQBsNruiosLQ0BDO9BSgoKAgLy/PxsbmN49N/HsCJ3vKIAzHLCWDIEQKxcXFFAqldrBmiDwUFBTQaDSJ2AwQeeByuR8+fLCysoK/3Drhcrk0Gg0AQKFQGuSxDflziYmJcXNzE8Z0MTIy8vHxWbx4cZ2LywwGw9XVVZgqedOmTcJg9VIwMzMrKCgQnQ4ePPjgwYOdO3eWKPbp0ydvb++EhARtbe3o6Ohx48ZJb7a8vNzS0pLFEguNQKVSnz171q1bN+l11YGnp2dERITw+O7du7XzeKMoOnbs2Bs3bgAA9PX1nz17Jl19mTFjBj6BMQAgJSWlT58+9ZWvjUAg0NbWxjtPlJSUKHDTCwgIEP0vt2vXLjU1VUenjkSbHA6nX79+aWlpAAAvL6/w8PCGdlQbZ2dn4RW7cuXK6NGjlW9QYdLT04lEYps2bWp/tHv37pCQEIlwXuXl5UK9oLS0tBGyBcsWJxITE4cNGyZ9FdvR0fHBgwcvX77s2bNnfWXevHnTvXt3AMDevXvlyZAOUR/CX+batWt37NjR+L2/fv1ayvfEyMjon38aEKpFHqqqqjgcTqMtr//HqKio4PP5hoaGjdUhXw9bRQEvRecY0CxDDvFB28YaQL0U8v/+zA4CoOaeaUDqa62xHkHqTan09etXMpmsZK6duxX37pbfw1s6arafazKLCGSkcmoQ1wo+7s18iOKeCAYUrX2dx7TUbNhzKDs729PTMzW1xqFBZ0B/wymTxPQJBqPgUCQ3JwcAYGpqun37dmdn59pNFRcXa2hoSMwb8isYq8//nVsulhhjXI92i4f2JjQkZdPzN9nBR5N5/Bq1iUBA3Kf2GTFILn0CRdHosIf3roj5AtK0NZZtcepgYymz+p0jD6I3X8DQmqtNJBFn73BxnDVQ7r9AxvBKSkpoNBoUJxSAy+VWVFTQ6XQoTigAm82uqqrS19eH4oQCFBUVFRQUWFtbQ3FCAeBkTxnKysoAAI3w5vmfpKSkhEKh1LnMAZFJUVGRlpaWcBEZ0iC4XG56erqlpSX85dYJj8dr3rw5gOLE/xOOjo4Srvk6Ojpz585dsmSJKARxVVXVpUuXNm7c+OPHDzKZHBIS4uXlJbNlS0vL3NxcvIVAIIwaNWr06NFt2rThcrnfv3+/fft2QkICj8dr3br1pUuXbGxsZDb78OFDBweH2nYnJyehcNLIcLncsWPH3rlzBwBgaGj4+PHjDh1qUjayWCxvb++jR48CAPT19a9evWpnZye9wY4dO37+/BlvOXjw4OLFi+Uf0oMHD/766y+85cyZM66urvK3IATDsCVLlojEhiFDhly9elXiTZnFYrm4uAiFhKlTp0ZHR6vkdUYkTkRHRzdt0JqvX78SicSWLVtK2DEMa9GihRSvlPz8fOnBu1SCbHHi1atXvXr1kq4axcfHT5kyZciQIQkJCfVl9M7Ly7OwsAAAWFtbv3//XplBqwkmkxkVFbVnz56RI0cqnx6jsrLy+PHjly5dSktLq6qqsrCwaN++vaur6/Tp05t2tSgqKsrd3X327NnHjx9v5PTrQr59+9a6des6P0IQZPHixXv27FFtj3AznTI0sucEAADBKsmMGYjgu8iCIcY8nbMYQe03RJlkMKI/VRzCW1rQxnXVq9eZMSMjg0wmt2jRQsl+4/Mu3ykSC53XQ7fbwhYL8Emzlefyz7db/rktoU9E9pnWVsdYSq3a8Hi8Xbt27dy5U5SLiNarp9EMVwS33IZWVxdERHG+fxeejh49OiQkpFmzZvh2antOCCmuYi09cT0jvwRvHNmt3ebJjsSGrOi9+Zizce9NBkvsdWXamJ7u0+T1w7h29vmx/Ql4jYFMIXlvGjNouOQ+mto8ufwieN4hLltse8Kklc5ztk6Vs3cpQM8JZYCeE8oAPSeUoaCgoKCgoEuXLlCcUAA42VMG6DmhDNBzQhmg54TCcLncT58+NWvWDP5y64TL5Qqds6E48f/D2rVrAwMD6/zI1NTUwsKCwWB8//5duD3czs4uLCxMHgkBAHDw4MGlS5fKLEalUn19ff38/OR8BXv37l2dAyCRSKWlpU2ieVdXV8+dO/f8+fMAABqNtmbNmuHDhxsYGDx58iQgIECYEqNLly5xcXEdO3aU1RgYPny4RPz/a9eu1bkrEU9lZWVpaWl+fv7jx4937NghnKKI0NTU9PX1HTJkSPPmzQ0NDeV/+GIYtnXr1oCAAOEaRefOnbdv3z5ixAgqlcrhcK5du7Z+/frPnz8TiUQ/P7+AgAAiUTU7QUXixMWLF0eNGqWSNhUjIyODSCTWGdXD09Pz5Ml6A6r/Lp4TTCaTTqe3aNHi48eP9b2ooyjapUuXjx8/RkREeHh41Fnm6tWrIremnJwcoVDxm8BgMI4ePbpr1668vDwAwPz585UUJ06cOLFy5Urhr4hCoRgYGBQUFAgvtZGR0ZEjR8aPH6+SkTeUuLi46dOnT5gw4ezZs6r6sTUUUVgnKysrocOUCBKJpI5bMHxfVYbGFycAAECQjZVMBijuOUTujBicBYhm/XUaiTcle7+Ux+At1gYLrfXrvu8pH9ZJCAawk99j7hWK7QSxMxrg0XoePmm28tz4+c/ql5cEWE28I0MN2nE7t/a6Df75JCYmzpo1S5Q3TKtrF+PZsxDceiXG5RZEHWOnfxGe0un0gICApUuXilbl6hMnAACV1WyvI5ff/sjDGwd3bh3k5qTRkCXRzKzi5Vvji0vF4kRNGtXDZ76jnH4Y96+n7d14ic+r8cBAEGSez/Ap8wbJrPvhafrGcYEVxWJeIMPnDF4e4UkiK3V/huKEMkBxQhmgOKEMMKyTMsDJnjJAcUIZoDihDFCcUBgY1kk6XC5XQ0MDQHHi/wmBQLBkyZKIiAgpi5za2tpOTk4LFy6U2I8vk/3792/YsAEfvhiPpaXl7NmzPT09hf46coKiqL29/ePHj2t/9Pr1a2HgmcYHw7BTp075+/vn5ORIfGRubr5q1aqlS5eSyXKFmH7w4MGQIUNEGxb79euXnJws8x2hd+/e+DAMUrCxsXnz5o08JUU8fPhw3bp1omtOIpHodHpZWRmKogQCYeTIkVu2bOnVq1eD2pSOSJy4fv16nYmcGw0pYZ0AAJWVlQKBAG9p3bp1eXk5+H3ECQBAjx490tLSpk2bdvTo0fpWOmJiYmbOnEmj0a5cuTJkiGSA+KqqqgEDBojC9Tx79qxv375KDl0lVFVVhYeH7969Gy/HKSNOcLncRYsWCX2d9PT0du3aNWvWLE1NTRaLdfbsWX9/f2GsOh8fn7179zay48KFCxdcXV0dHR2vXr0qfc2Fx+O9fPmyf//+6hiGSJxo2bKlUHpVN/B9VRmaRpwAAHBfYmWzAYZzLqMOR/QOANDkSzbYi8JNP6rEUj13N/JtS59Wu6iqxAkAAAawo99OJhWJpW8aauo4u8WM+qooxq2c96teXMTrE7pk6rGBs7roN1hRzs3NXbBgwa1bt4SnmtadTObORnBTGYzLLTx2ovpTjbPnoEGDIiMjhRsxpIgTAAAWh7fsxNVn6Vl4Y5+2zUPnjaVpNGBNOa+wYvmW+Ow8sQTgDn3bbV7uRCHLtbqalpK51ecMk8HGG8fN6O+5ejRCkHGT//Hhp7/TjoIfRXhjr2E2G+NWaekqLsVBcUIZoDihDFCcUAYoTigDnOwpAxQnlAGKE8oAxQmFgeKEdKA48X9LRkZGYmJiVlZWcXFxSUkJhmEUCsXCwqJ169Y9e/bs1auX8IuhAGVlZTdv3kxLS8vKymKz2RoaGqampp06derXr1+PHj0UW9wrKyvbtm1bSkqKlZXV9OnTmUzmtGnTAABPnz7t16+fYuNUCTwe786dO0lJSVlZWQKBoEWLFoMHDx4+fHhDr97jx4/37duXn59vZ2fn7+//m4RAfPfuXUJCwufPnwsLC8lksqmpaffu3UeMGCERyEEl/CniRG0MDAyEYT9/I3EiKChImHDC3Nzc3t4eRVENDY1evXp5enpSqb+SwQoEAmtr6/T0dCqVunPnTvxHb9++nT9//suXNUHknz9/bmtrq4Y/pwGUlJQcOHAgJCREqAXhUVicEAgE48ePF4aH09XVTUpKklA709PTBwwYUFJSAgBYuXJlUFCQosNvMJcvX3ZxcbG3t7927Zqmpow1L19f38rKSlEyHNUCxYk/iyYTJwAA1RexijViFponorOyCUYiDorxH+cvK2A9E1kQQOhnFmhJk9RlVShOAABQDD2UeeRZyXO8caTZsBlWdegiynAn58PKlxf4qJg+ETVwpo2+7GwKtYmLi1uyZElhYSEAgNq2jYn7fAJuToMJBEUnT7Pe1iRvIJPJK1asCAgIqKiokCJOAAC4fMHq6Jv33mXgjV2amx5yn6hHk5aoXILSctbKbfHp3wrxxl5drXauHk/Tkmt5+ntGwXrPk8UFlXij3bDOq3dOoWjIWKItzStbPybwy6tMvLG1TYvtN9YZWSr4tgnFCWWA4oQyQHFCGaA4oQxwsqcMUJxQBihOKAMUJxQGihPSgeIE5E8kIyNDmB4jMzNTVWsIkKYFihNyItfLz7x584yNjQEAeXl558+fj4uLi46OXr58uZubm6gMkUjcvn07AIDNZi9fvtzS0tLR0XHSpEk2Njbdu3fHKxMNuhxqIiQkpGXLlsJ4Z507yw4OLifLli0TJa45cOBAbT+s9u3bh4aGCo+Dg4P37t2rqq6lc/HixalTp9rZ2V29elW6MpGTk+Pu7h4UFDRr1qzGGRsEUi+aEwHNU8zCPAxY55poNDUQEFJ/0z16GjVhFjGAPi9YX8x+reZ+CZ6tF/TQ64Y33s5PuJx7TbUdjbC0Pth3mgaxZm2xksee//j0m9KfCrQ2ZcqUz58/e3h4IAjCzvhacPgIyq5xMkCIRJM5btq2vUUWYcqKrl271uniiodCIga7OY2ztcYb/8kumBMWW1hZt8ttnRjoaYVvc7XtJpYaJPVdlvfm2LIKljwttGxruveUh1VrseQcjxLer/c6yahi11frV+/m+sEPAvqM7ok3Zr794TNofdZHSV9aCAQCgUAgEAgEAoH898jMzAQAmJub185aDIH8t5HLcwIAEBcXN3XqVInCZDKZxWLhN8dNmTIlPj5eelMjRoy4ffu2AmNVIS9evKDT6e3btwcA8Hg8e3v7Z89qNkEr5jlx/fr1MWPGCI/79OmTkpJSZzEMw7p37/727VsAAJlMfvLkSe/evessqSpOnTo1f/58Pp8/evRoGo1WuwCLxaqqqmIwGCUlJVlZWRiGtW7dOiMjQ01Rp0SeEyQSSSIkn66u7rJly1Sui8DNdMrQlJ4TAACAEap8EQ4+hhIJpR/ByE3p5CiEIyhLzvdg8GvCCpEJ2oPMDuuS24ksqvWcEMLH+KFfw99VvscbXSwnjjIdocJeAADJhV99XsZzBHyRRYtECevjYmuoYH7v5ORkT0/P9PR0SrNmpl4eRPztCEWLY+MZz8RumwiCuLm57d27V/puRAwDQdcennksFm7SQl83wmN8MwO6/MPj8QTbw+78/TQdbzQ30Q1eP8nSVK52GJXVW33OvX/9A2+0amMccHCmsZmMFgR8QZj3sVtR9/FGbX3apviVXQZ1ku8vqAF6TigD9JxQBug5oQzQc0IZ4GRPGaDnhDJAzwllgJ4TCgM9J6TD5XKFSx/QcwLyB7F48eLw8PDly5c32j5miLoReU5c+R97dxkQRdcFAPjOBkunpISIoqjYCYrdiiiKBXYrChbY8hqAqNiCmGCiotiCnw12E4p0SdcusGzN92N9l9kFlmVZwtfz/GIOc2fuEhtz5p4TGjpmzJgmnImYlRP+/v6HDx9msVjEYEpKCr9fSDMq68R36NAhV1dXHqHQh6GhYVpaGnGfkpISKyur6OjoKqN/U1BQePXqVZcuXWraoUn4+fktXbpUsClFcoJOp3fs2FHw07hy5YqDg0NNO/v7+y9Z8vt+8K5du3748KHhPoUeP358xYoVxN+aJLZu3erh4dFAU/r06VP37t1r+q62tva3b99q+q506HR6RUVF011e/7MVFxdzOBwtLa2mmgCGKtTxlVRU+azCQyqFyJ+LGTfVlATKeb++lq9h4ZWl4WgkrS4K+2jY74sjCQkJVCrV2FjGU2Xj7IDsM4kVyYIIhrCJmuOtVGScs3lXlLbp+4MKXmVnJHkSxdNidHc1aeo7IYSYTOaRI0cOHjyINDX1li0hqxE+yeN4wc1bJc+eiwzR1dXdtWvXuHHjxB85MOJbYITQU4eWsoLXlMGm2uqST4/HwwOuvH34Qig/oaGqsHn5EFMjiT74cdhcf6/wt89+Ch2hhdLqXbbGZrU/Bd05En55VygxQpGjLD7o1M+ubl25eDxefn6+kpISJCekwGKxiouL1dTUIDkhBSaTSafTNTQ0IDkhhdzc3Ozs7A4dOkByQgrwZq8++Mv2G+GT539Sfn6+nJxcM6mj/cfJzc1VVFSs9v45IB6LxYqLi2vZsiX851aLzWbz74OE5AT4U6SmplpYWFAolNjYWAODOrd7BM2TIDlx/vz5YcOGNeFMEhISyGRy1UU5OI6bmpoymTXWe8jKytLV1W3YydUpOYEQevr06YYNG/iLDHR1dQMDA0eMGCGyT05OztixY4l1nARUVFQuXLggWF7QfDx48GD06NGCTSmSE3v27HFz+10cX1FRMS8vT0z1pIKCAl1dXQ7n9/3IZ86cmTNnTp0nLYFdu3Zt3rxZioFxcXH8UncNITExUUxdL0eoHXIAAAAgAElEQVRHR5n3uigpKamoqOCXJgN11dQrJxBCCMPzaKWOGO+XIIKTDCuULuBYHa47N5Bi9o/X+c5cvFwQUaIY9dM6KkfSQAjFx8dTqVQTEymXGojB5DH3Jx1OKa9ct4EhzKnldGsNGfex/1CQtupTSBmnMosuT6b6dpvYR9r1EwihqKio5cuXf0lJ0V2+hKIu9EssevCw6EFY1SGjR48+ePBgy5bikiJBLz4fDX9DfE1TVaD5zhrTybBuN9JeufPp5JVXxIiSotyO1WMs20n0HpHH453aH37/6gehIyjT3H0md+xe+w/t8fmXR51Pc9iVCSEMw6a6T5i+aaJk0/89h7y8PGVlZUhOSIHFYhUVFamrq0NyQgpMJrOkpERTUxOSE1LIycnJysrq1KkTJCekAG/26gNWTtQHrJyoj5ycHEVFRVg5IQUWi/X9+3dDQ0P4z60Wi8Xip20gOQH+CCwWa+TIkU+fPj179uzs2bObejpAZgTJievXr48aNaoJZxIfH08mk6ut6jF9+vRbt27VNLDZrZwQKCwspNPpLVu2JJPJ1e7AYrGOHDni5+f38+fvu0d1dHTs7Ozc3d2bZ1MXkXv565qcYDKZpqamWVlZ/E1bW9vQ0FDxQ/r06fP27e+uthYWFtHR0Q1RQ6lfv35sNruuo8zNzS9evCjzyQgIyjoZGho+e/aM+C0KhSLze8wRrPSvn+aQnEAIIc5PPH8qwumVEbmemMY5hDX91cOc8ncvf63k4ZWX7zVpHW0M/CkkhYYo6yRA5zB2x+5JL69sS0DCSEvNFvbV7C3bE33IT10UeaGUkJ+QI5EP9nEYrGcu9TF5PN7JkyfX79yhPNuJKvzXVfy/x4W371Ydoqam5uHh4ezsLOay3dVXX3def8wjvK4p0qiH5tr2aVu3J5br9z8dOCV0HCqVvN1l7KC+kj7km+df+fvcw3mEI8hR1uycNGh051rHfnz01WPy3rKScmJw4soxS/fPwUgSvVJAWaf6gLJO9QFlneoDyjrVB7zZqw9ITtQHJCfqA8o6SQ3KOokHDbHBH6SsrMzJySkkJGTnzp2bNm1q6ukAWfojGmLjOJ6amsrlconB7t27FxcXo8ZKTkjz0VFDQ0P8zOTk5FavXr169WoGg5GVlaWsrKyrq9tADQxkop4XIK5fvy7ITCCE+vTpU+uQwYMHC5ITsbGxjx8/Hjp0aH3mUK1Xr17VvlPToVAorVu3bupZgD8EpS2m7osXLkbo32dM1nu8ZAum5t2k00IIIR2FXr10tr/N3oyj3/XTCiqi32S7W+k1bKVIFYryhvZrd8XuyWT+XlPCw3l+CSdpJJpI0+x66qFlfNLacWHEBQbn9zt7Fo+78k3wgd5Thuq3k+6YJBJp0aJFI0aMWLBqZaxFezl9PcG31IYOIdFo+ddvIOHceXFxsYuLy9WrVwMCAiwsqm/DMKVfZ2V52sZLDzjc37+Lsgr2spM3fZzGDulU44KtquxHd2uhqbzd9y6L/XuJG5vN3bLv9rpFw22H155dQAjZOfZTVVfYv/WGYA0Em8Xxdrua+6t4yrwB4sd2H9b5wIudm8buzk3PFwRvHLqXk5a34fwqmgJcMQcAAAAAAACAP97jx49XrlyZmpp6/vz5mTNnNvV0wN8Iw7Cq1T4a+Waphj2ZsrJymzZt9PT0mnNmAtU7OSGyzkBMQwWBbt26ETcvX75cnwkA8FegDcRU3IUi5SGoNKCJZiPESHlk1xbriJFfZS/f5W5HqM5L0+pElarq1n6NNq1y5QEX5x76eexbcZRsT9RN0+jcgNlqcpXV6tg8rsvbq+GZ3+tz2FatWj0KvbWza3dedjYxrtLfWsthMqruhSMiIqJLly7u7u413QM1ulu7g3NtadTK1DuLw1197s6t9zF1mtvAPm33bpqkRMgE8Hj4Hv+wU1ciJTzCkHFddx6fraQsL4jgOH7K9+Fxr7vEFRXVMrU09n2+w9hCqIxVxI2364Z6FOeWSPwgAAAAAAAAAAA0O9+/f+/bt+/IkSP79esXExMDmQnwN4NF9wghRKVSpR5bWFgYHh5OjLRrV/utxB07diRu3r59G8fxZp7CkbnCwkJ3d/dadyOTydOmTbO0tGyEKYHmTmkO4qagsvOCAE73wcgGSL4p18fxmak5lHIy44qCBJFU+j0mSc4IOTboeTXlNNzbr9kZ613I+t2Xm4NzDvw8ur6dazsV6csuVdVRXf+M9ax5EYFFrN/lhtg8rsvbYK8eE8cb1evfc+60aUMHD7Y9fbJYsTL5odKvL4lGyz1/EfF4Ivuz2Wxvb++7d++eOHGiX79qemzYWJj6L5q04tRNBvN3KSouj7flShiLw53ctw5T7WFpfMjDYe2ukMLiMn4Ex9Hp4MgSBnPVvMEkCZ6xu/ZpvS9w4eal5/KyKzMKoRde5eeUrPecIkcT9xKs20r74MtdWyfu+fa8Mq0S+zpupdXG3fc2tWyrL/kDAQAAAAAAAADQfBQWFo4dO/batWuGhoZNPRfwt3j//n1ISAivyjWWqsrLy2vdR4ak6Tnx35Oamkpcw1KnnhN3794dN26cYJNEIpWXl9e6FKOiokJRUZH4BxETE1NToZL/mJiYGJHcTK20tLRevnwp9aoiBoNRUVGhpaUl3fC/XElJCZfLbYQacxLjGijuVKK8FWzjiJZe6snkSllfSKbwdJJ/ASbUSUWx0LaN6vSGPnE+ryCQcZHBKxVE5DGao/I0fbKemFFSSGQWbkt5UsypXLVAxrCVBn0Hq7eq55GZXK7L40dJHKE2OWXR0blnAnEOp9ohJBJp4sSJy5cvr7ZRdmJe8Y57b0vKK1tlYBhy7GNh16Vu1eRyC8r2nX6VnV9KDPbt2nLBlO5kyTpAFOQyju/4X3ZGMTHYtpPeArdBCoq1vFhwWJygjSHv73whBlVbKC/1m2Xcqcb24Dwer6CgQElJSUFBoaZ9QE1YLFZJSYmqqir0nJBCRUUFnU5XV1eHnhNSyMvLy83NbdeuHfSckAK82auPoqIihJC6unpTT+SPVFhYSKVSoWuCdPLy8hQUFJSUlJp6In8eFouVkJCgr68P/7nVYrPZnTp1QtBzAgDQpAQ9J/z9/QcNGtSEM0lKSuJwONOmTWMwGHUamJOTo62t3UCzEpD+o2N5efmHDx9ev36dkZFRWFhYVlaGENLU1DQ1Ne3WrZuVldVf8hYtMlKoxIeOjo4klzNoNJqmpmZeXp4g8ubNm78kOSHFAhEKhUKhUKReWUImkykUSk3924F4/J9bc/rpkXNZG6ik1XKkJP42hioMFHdmlB/k4A3+jFkrY7SEg0pK0CdBpEz9Nh0zU0fV3OAvQzpkbUeVaYH0i2W83/ltJl5xkRE8V81JmyzLZuZtlVp4m43cmBhewP59Ii6OH8p8jZGwoRr1aiGjRCYfHj5y69vXH/MrnxgVO3bUmT835/RZnM2uOoTH412/fj00NHTcuHGrVq0yMjISmqqu5m476223XuWXMvkRHEdBr2NLWZxZfevwZKunrbJpmc3eU5GpmZXZhdefM+gM1qrZfeXFrn7g09ZTW+s91n/34/iYyu5EP6OyDmx6sHzrCI0W4j6QkxXI8/dP0zPVvnP4kSBYksfwdQpYcGBG5yHVPxAMw/hPm83pP/ePQfkX/PSkAD+9+qBQKCQSiUwmQ3JCCvBmrz6a35u9Pwn5X009kT8SvGRITfCSAT+9aklyXzAAADQa/jN2E06Af01VihvIGqfGjzTJiTdv3hw+fPjatWtiUtDy8vJjx451dnYeOHBgPab3B/jw4QNxU/IFWbq6usTkRHR0tCyn1YwJ7uTV0NBwc3OrdX8ymWxnZ9emTRupz1hSUsJkMnV0dKQ+wt+sqKiIw+G0aCHLC9wywD2D509GvN//QWSswFj1H0wrGGFNnxM1xY88z1yaz/z6exvDU7AjhvptdRX6NOh5zZCZHkPP68c+Jvf3tfgyvDyo9PImi/UG8rIsAWSG0AVj4zkvz2WX0/kRLo77pkUqa6rPaN2rnge/bGa28sG9B/E/BREFi/a6SxblnDjJq+EVh8Ph3Lx58969e3PmzNm2bZuBgQFxqhfNWi/yu56SVyQIhnz8SZFX2DRpiCR1mQQCvNqs97zxJTZdEImOz/U9927vpknqqoqSHME3yNxn4/XnD78JIr9Si3w33t9xbHbrdrUscFl1sI2xmdHx1WcFzSpY5Wy/ZUErDs0fv3RE1f15PF5ubq6KioqiokRzA0QsFquwsFBDQwNWTkiByWQWFxdraWnBygkpKCsry8nJmZmZQXJCCvBmrz4KCgoQQpqamk09kT9SXl6enJycqqpqU0/kj6SsrKykpPSX3NQoWywWi8lkGhsbw39utVgsVu07AQBAY9HX1zczM2vCCXC5XDKZHBERcffuXUnStx4eHvzKTo2TU6lbWafi4uLly5dfuHBB8iHDhw8/duxYfa4sN4L6lHVq165dXFycYHPixIkhISGSDBw4cODz58+lGPinS05ONjU1RQi1atUqKSmpEc4In1fro5kmJxBC7K94gSPCCYXwaAMxDX+Emv7uoQpu0dOMeXR2iiBCJSkNNAhQpzV47ak4Rvye7/sreJXX8TXlNLZYuLegyfg3mMIomP3yXFZ5ZSsFDKHNXUbPbN27nkfm4vj68IchsUL9qytS07L9TvDKysSPpdFos2fP9vDw0NOrvNyfTy9bfCLkR2Yucc8x3drtmj6KQq7DFUA2m7v9wN2nr+OIwVaGWvu32Ou2kOiSBI/HO+519/alN8Sgsor8tkMzLXua1jo84uZbz5kHK8qFPmtNXDlmqe8ckdsZIDlRH5CcqA9ITtRHdnb2r1+/OnfuDMkJKcCbvfqA5ER9QHKiPrKzsyE5IR0WixUTEwPJiZqwWCwajYagrBMAoEkJyjrduXNn7NimbJUaFxdHJpMlT5BoamoWFhYihAoKChqhzHsdPvwkJCR07dq1TpkJhFB4eHi3bt2uX79ex4n9GXg8XmpqKjEieSkukVLg/N86AEBS1M6YmjdChGuyFc9w+p6mm1AlGll9gMFxBYquIMLmlb74tZzBThUzSibMldu4tF1BwSovCxawCr1+7BO0y5YVE2XNCzZzDRUrq9ziCO38cj8w4Y2YUZIgY9ie4SOnduxEDNKMjfSWLSHX9tm1oqLixIkTbdu23bhxI/9SC0JIS0Xx9LLJXVsZEPe89+mHy9nbFezqu1lUi0ol71gz3nZ4Z2IwOT1/ofuF+JTcmkYRkUik5RvHL3EbixGaVTDozI2Lzz29/1XMQD5ru94+/9umpi10+ePGoXs+c49yWHV4IAAAAAAAAAAAAADNgaTJiZSUlCFDhiQnJ0txDgaD4eDgcOLECSnGNnMFBQVMJpMYkfw2VX4mX6C4uLimPQEA1ZMfjZRXCEVKT6Oyi000GyGKFN3++ofIqLKdQAW38OUvZya3oKFP3Umtw4o2S8hY5dN7NjPH87tPMbtEzCgptFRUDxowx1ipMouOI7T76wP/Hy/qeWQyhnkOGzGtXXtiUM6wpZ7zMrKaWq3DGQyGp6eniYmJu7s7P++rqiB/YvEkq3YmxN2exSQuCbjBYNZh0TeJhK1fPGKegxUxmF9YumLrla/fMyQ8iJ1jv3W77CnUyiU+bBbH2+3q1dO1/9ws+pofitzdsq1Qna7wwGcbxuwqLa5lWQkAAAAAAAAAAABAsyJRcgLHcScnJ5ElAnw6Ojr29vaenp5BQUGhoaFhYWHBwcEBAQFubm4jRowQrNDk8XhLly69d++eLOfeDJRVqTEish5CDJF6EUVFMr6vGYC/AabsjOTHEyN4yT+IFVnT/o1JTa5NK95qDFEFEQY7PTLLlYs3+MriHhrdFraehxGWlfxiZvn88C3jyvj6tb6i2rkBc4yVhJaT+8Y8PvWzvr8CDCHX7j3nWgotU6Dq6uqtWEaRbFEhg8Hw9vbmpyiKi4sV5KiH500Y3EloGeP7hPQFftcKGHX4sWAYmj/VauWcwcRCSnQG0/Wfay/exkt4kCHjuu48PltJWV4QwXH8lO/DQx6hHA5X/FgDM91Dkbs6WgmVCPv8OMq574a0H5mSPgwAAAAAAAAAAACApiZRcuLcuXMvXoje0dm5c+eQkJD09PRr1665u7s7Ojra2toOHz58ypQpCxYs8PLyevjwYVZWVlBQUPv27RFCPB7P0dExMTFR9g+i6dQnOcHlCl2BgpUTAEgFw9Q8EbU7IcLFi1YibkqNIxqREt7BFFuJEZ5pC5hR73K2IVSHZj/SsdbqN7eVEzE/kVKWuvfHQSZXxqkRfQXVoAFzTJW1iEGfqPCTPyPqf3CXnr1X9xNapkDVbqG3cjlVW9IWGnQ63dvbu02bNnv27GFXMH1njxvfw4K4Q3Ra9qzDV9Lz6/YMPHV8jy0rxxBbVjAr2Bt9QoPvfpTwCF37tN5zer6mtgoxeO/au+3O50sZzJpG8alqqXg93NJnLPHPHqX9yHTpv/nz4ygJJwAAAAAAAAAAAADQtCRKTvj7+4tE1q1b9+7du4kTJ1Kp1GqH8CkpKTk6On758mXTpk0YhhUWFi5btkz6yTY/LJZoPRDJkxNVxwIApIHRMA1/RCZU7OEV44WLEE5vujlV0sD6ddN2I0bSGeHRBX6NcOrBOgMdTaYRIz8Z8b4/D7N5bNmeSFdB5bzNXHNVoTake6Me+dW7vhNCyLl3X49BQ4jtnikaGgYuK+UM9GscU0VeXp6bm5uZmdnhQ4c22w10shG6rJ+SV+R0+Epsek6dJjbSpsO+LZMVFSrXwPF4+MHTj/f4hXG5PEmOYGah73t+kZGpUKei9y9/rpzml5GSJ36svBLtn5tu45eOIAZL8uluI3dc8b4p8YMAAAAAAAAAgP8sDofz+fPnBw8ehISEvHjxQrY3TPN4vE+fPt2+fTssLOznz58czn+qEeCvX7/Cw8Nv3rz58ePHJr+dOikp6datW41wovLy8i9fvjx8+PDq1atXr17NzITiBI2h9uTEr1+/3rwRanC6Y8eOPXv2iFQlEkNOTm7nzp0nTpzAMOzhw4dPnz6VYqLNk5KSkkiEQqFUu2dVbLbQ9UHJm1UAAESR1DGN4wgjdEvmJOJFaxCS6BpxQ2utOrmd+hxiJLbwVAr9biOceoTuMHtDO2IkpiT2cPxxLl5L7aC60qIpnek/SyQ/cSDmcUCcDNZPzOrSdeeQYSRCHSVMSan1+rV6XTqLGVVVdna2q6urqWkr/PvrBUN6Er+VRy+dd/zqm/i0Oh2wp6XxwW1TNNSEnr1Dw79u9Aktr5AoA6RroLEvcGHH7kLNMDJS8lY7BUR/rGX1D4lMWnl04bxdM4jttXlc3skNF3wX+3PZMv4VAwAAAAAAAMCf4uPHjzNmzNDQ0OjWrdvo0aPt7e1tbGzMzMzMzMwEvQmllpOTs379eh0dne7du9va2o4cOdLc3NzExGT79u25ubmyeghNAsfxixcv9u7d28DAYMSIERMnTuzRo4e2traDg8PLly8bfz5JSUmLFy9u167dggULGugUOI6/e/du586dAwYMUFVV7dq166hRo6ZPn75p0ybpWi+Duqo9OZGcnIzjlRVIRo8evWnTJinOtGDBglWrViGE9u/fL8Xw5klFRUUkItIfWwyRlROQnACgXihtMfWDCFU2GUYVT3B6c3m2sdRaYaQ8khDAP+TuyC3/0AintjMYP05/NDHyqejLkXg/Li7jzI0WTels/9ki+Yl90Y+O/3he/4PPsOzsO3I0mUQoo4SQxsL5znu8NSRrQSGQk5Pj7u6+b+lMG02MeEAGk7X0xI37n37U6Wgd2uoHeM1sZShU1erlu4QlGy/m5Eu0dkdVXdH75LzhE4QWcxQXlrotOB0eWnuRqOkbJu685a4knCB5cOrxLvuDhdlQLRAAAAAAAADwd2Gz2evWrevVq9elS5cYDIbIdxMTE729vc3NzR88eCDd8a9cuWJhYeHj45Ofn29hYbFo0SInJ6cOHTpkZmZ6eHh07tw5PDy83g+iaaSlpQ0aNGjmzJnv3r1TUVGZMmXKkiVLhg8fjmHY1atXbWxsXF1dKyoavIkmX0xMzKxZs8zNzU+cOCFye7esVFRUHD16tH379r17996yZUtkZGS/fv2OHTv2+fPn0tLSuLg4Kyur2o8C6q325ER+fj5x859//sGIbUDrYvv27crKyo8eParaquEPVZ/kBJ0udN1KU1Ozpj0BABKh2WAqLkKRUn9U3hhL/ySA9dTZpinfSbDNw9mvstcx2HW7VV86Dkb2Q3UGEyPvCz+eSjqDy7r1hSZN8Wz/2e3UdInBgzFPjn2XQX7Ctl17/7G2NHLl6rRyDueRovzlV5FeXl5qamp1OlpaWtqxza6Ml6Fkwgsam8t1u3Dv3NO6JY30ddT8dk3v1tGIGIxPzl3kfuFnkkSloihU8pqdk5a4jSWugeCwufs2hxz3uovzavk19R7T/fBrT6N2BsRg3LvENQO2xb1PkPhxAAAAAAAAAMCfraKiwt7efu/evTyeuLvx8vLyJkyYcPv27TodHMfxLVu2TJ8+vaCgQE5OLiAgIDo62t/fPzAwMCoq6uLFi4qKillZWaNGjTp69Gj9HkcTePfuXZ8+fZ4/f44QGj9+fGJiYnBw8PHjx8PCwqKjo62srHAcP3DgwNChQ0tLSxt0Jt++fZs1a1bnzp2DgoIarljWvXv3OnXqtGLFiri4OBKJtGDBguTk5OfPny9durRLly40Gq2Bzguqqj05oaNTeRtsy5Yte/bsKWZn8dTU1AYPHlxeXt4kS4EagoKCgqqqKjEieXKiqKiIuGliYlLTngAASSktRvLjiQG8ZCNif2mq6RCRMZqV3j5FSuWFexa3OOKXC4tX0tCnxhA2u9XMgdoDiMEXeZFBKRdlfi5NmmLQgDkd1YUaQhyKlU1+Ymjr1v7jbeUpQvmJFeEPu9hPSkhI2LZtm8gTcq0SXj/5efEgzioXRHAc7b393OvmU7wuiRsVZXnfrZNH2nQgBnMLGMu2XH79KUnCg9g59vvniJOistB7oNALr7auCCovreXmFKN2BgcjdnUfJlTnKj+z0NVmy//Oy+AnDwAAAAAAAADN3+LFi/kpBzk5ORsbm4ULFy5btmz8+PFV72ZjsVhOTk51qtvzzz//7Ny5k19d5vTp0wsWLBDcvY1h2PTp08+fP48Q4vF4K1euvHhR9h+3G05sbOzIkSN//fqFEBoyZEhISEiLFi0E323Tps39+/fbtGmDEIqIiJg0aVIDtdH9/Pmzg4NDly5dgoKCuNyGqlRcXl6+fPnysWPHxsfHI4QsLS1fvXoVEBBgZGRU61jQEGpPTnTp0kVZ+Xcl9/r/nnR1dRFCaWmNcbNw47CwsCBuFhQUSDhQZEkKJCcAkAUMU/NEVMIlWrwCL1yKuFlNN6VK8uQWVnq+FFJlBR46O/lV1loe3iBLFIkwhM1rNauPZi9iMDz78bX0GzI/lypV/kz/WQ2Unxho0irQzl6Z0PSIzeWuuHfnWU729u3bExIS3NzcFBQUJD9g2a+U+EuH2XShbPGFF582X37IkayvNR+VQt6ycsw8B6FVn2XlrPWeN26GSZoe6zXAfN+5hTr66sTguxdxq2cF5PwqqmkUn4qmsuf9TVPdhFqMsJhs79lHTm64UOvyCwAAAAAAAAD4o509e/bcuXMUCmXDhg0ZGRnPnj07ceLE0aNHb926lZ2dvX//fpGPisXFxZs3b5bw4MHBwR4eHvyvp02bNnPmzKr7TJw40cHBASHE4/HmzJnz6tWr+j2gRlJcXDx27Fh+Hw5VVVX+z1BkH1VVVT8/P/7XYWFhK1askPk07t+/P2LEiJYtW166dMnPz49/AVnmMjMzra2tjx07xt8cM2ZMRERE7969G+JcQEK1JydoNNqMGTP4X+fl5dXzfFlZWQghfi7uv6FTp07EzYyMDElGcblckbJOIkkOAICUMBqm4YfIhJcxXi5etATh5TWPaTzqtHZ9db0wwnNvbvmHT3lejXBqEkZaYragq7rQzfWhmXduZ8q+NTc/P9FJQ6jQ0KHYJ0e/P6v/wXu1bHnRfoqGvLwgwsXx9eEPr0RHtWjRwsvLKzk52c3NTZ6wg3gV+VmJVw5XFAiVYLr1Psbl7G0mqw5rSDEMzZ9qtWnFKAq58vfL5fJ8/MMPnH4s4VIMU3O9AxcWm3dqSQwmxWW5zPSPi6rl9YVEJi3wnLn6xBKKXOVbSRzHr3jf3GzrVVr8HymoCAAAAAAAAAAi8vLy1q5dq6Ghcf/+/d27dxNv/EcI0Wg0V1fXx48fKykpEeNXrlwRqWtSrdzc3OXLl/PXTJBIJEGWoipBtoPNZjs5OTV0BSSZWL9+fVLS7xX/ixYtMjQ0rHa3oUOHCnowBAQEhIaGynYaw4cPT09P9/X1nTp16uLFi48fPy7b4yOEoqKi+vbt++nTJ/7m4sWLb926VbViP2hktScnEEJbtmzhL4BKTk7mZxekw+Vy3759ixD6L5XuEklOpKenSzIqPT1dZIFSv379ZDktAP5mJG1M3Q9hhHsi2NF4yZamm5AQPUVrS61VxEhSyc2fRRca4dQUjOLcZqmFajtiMDg95H5WmMzPpUqVP23tJJKfOBz7VCb5CUsd3cuTp+oQ3lZycXzDo7BTnz4ghHR0dLy8vOLi4lauXCnhyw27pDDx8qGyTKESTM9iEucdv1pYWre01pjBnfZtmaysJHTeq3c/bt1/m8WWKNWhqa2y9+zCwWO6EIMFufS1cwKe3Kt9EcboBUP3PNqqriNU4ertvY8uA7b8SsyWZAIAAAAAAAAA8Gfx8vJiMpnPnj0bNmxYTfv07dv3yJEjxAiHw3n9+nWtB1+/fr3gdu2RI0eam5vXtKelpaXgNvyEhAQfHx+JZt90+BWN+F9jGObs7Cxm5/nz56FEjo0AACAASURBVAu+dnFxkbyyvSQoFIocoUbC0KFDZXhwhNCPHz+GDx8uqOUzefLkY8eOkclk2Z4FSEGi5IShoeHFixfJZDKHwzlz5ozUJwsLC8vJyUH/Fnf6bxgxYgRxMzU1FZfg/liRqnZaWlpintoAAHVG7YSp7hCKlIei0oAmmo0oc3VHM9XJxMjX/AOZpU8b4dRyJLk15qvMldsQg5dSg5/kyr4zQU35iSOyyE+Ya2ldsnfQU668xwFHaOfzZ94RL/ibRkZGBw8e/PHjx6JFi6ouSq2KyyxLvuZPT4whBr+lZs05GvyrkF7TqGr1tDT22zVdT1soPfA48sfKbcHFJRKlOuRolPVekx2XDhHUMEUIsSo4e9yvnT/2uNZXmY5W7f55sL5Nd1NiMDkqdXlv90//+ybx4wAAAAAAAACAPwCDwThx4sSxY8csLS3F7zlr1qy2bdsSI/wLlWIkJibym0nw2dnZidkZIWRvby/42sfHp/5FaBrUjh07BB8wu3fvbmxsLGbniRMnkki/ryQnJycLCj01BFVV1bo2lRQjLi5u4MCBghvuraysgoKCBI8FNC1Jfw1jxozZu3cvhmGenp4pKSlSnInNZq9fv57/dbt27cTv/Afp0KEDvycMX1FRkSTtdAQLpvjGjh1LvAIFAJABhQlIaQExgNP3oorHTTUdEV1brNdR6CPYxBHvbc6WooofjXBqGom2pt0qE8XK9xw4ws8mB73Ofyvzc1Wbnzgio/xEaw2Naw5TTdSFOjT4vX8nyE8ghExMTPz9/aOjo2fOnFnrOw8eh5Uaerrwm9CNM4nZBVP2nvuRmVunuZkatTjhNbO9mR4x+O1H5qINF9J+FUpyBAzDHJcN2eDjIEejCoI4jp8//thrfTCropY+JZr66p5hm4Y62hCD9ALGhtG7rnjflPhxAAAAAAAAAEBzp6ys/PHjx1mzZtW6J4lEGjNmDDGiqakpfsjevXs5nMpF8KNHjxa//5AhQwRfl5WVNegV/Hr6/PnzgwcPBJujRo0Sv7+GhkbXrl0FmwcPHmy4ttUIIXXhD/tSo9PpdnZ22dm/CwloamqGhIRIXggaNLQ65IhcXFzOnz/PZrPt7e0ZDEZdz7Rx48aoqCiEkLq6es+ePes6vDmbMGECcfPjx4+1Dvn8+TNxc+rUqTKeEwAAIUxlHaINJgR4eNFqxIlrsgkRYBi5n56PqpyZIMLhlUVkrSrnNEbhHUWyolv71QYKlT2reTjPL/HkpyJJWzdLjp+fsGyY/ERLFdWrU6aaawmVE/V7/27Lk//xCMsLzM3Nz58/HxUV5eTkJH7ZJo7zMsKv5rx6SAwWM9lT9pw5HBQsycI4AS11pSM7pvbvZUYMpmcVLd5w8WusRN2JEEI2Iy33nJ6noaVMDD578G39vNOF+bW8EMvJU93OrVjgORMjVSa/uRzuyQ0XfBf7c+rSTgMAAAAAAAAAmjPifcOS70kikcRfomQymRcvXhRs6ujoGBkZiT9+t27diG0MTp06VacPko3pzJkzxLn16NGj1iE2NpU3wCUnJz969KhBZoYQQohY5ak+5syZExsbK9j08fH5L1X0+Q+gnDhxok4Dpk+ffubMmYkTJ06ZMkXyUYmJiXv37uV/PXz48P9YSa9Fixb5+vryeDz+5tu3b4lruKr17t07wdf6+vpiKuIBAOqBhKn74vlTEOfn7wBeihcuxrRCEEmjSSeGEEJUkpK1nu/jjDkV3AJ+pJyTG5G1epDBSQpJQfzY+lOhqLi1W7Mz1iu34vciUy7OPfTz2GpzZ0u1TuLH1pUqVf6UtdP8iKBvhZmC4JHYpxVc9pqO9X3201ZUujhp8qyb12NyKxc3nP/6hcFi+QwfSSGslrCwsAgMDHRzc/Pw8Lh27VrNbxDxnFcPucwy/UF26N81bTiZ6v8hJSDIbq2j/cyZMyV8FVOgUT3X2x088+TavcqkdTG9fJXH1c3Oo4Zat5fkIO07Gx2+smybc1BC7C9B8PvXNOepxzwOO5lZ6IsZi2HYVDc7U0vj3TMPEhti3wt4lBKTvu3aWg1dNUnmAAAAAAAAAAD/DcQl9XZ2dnp6emJ2vnv3bnFxsWCzS5cuYnbmI5PJFhYW/J67CKHk5OS3b9/26dNH/KjGx+Vyr1y5QowQV0XURKRwVnBw8MiRI2U8s3/JJDlx/vz5kJAQweagQYPmzp1b/8MCGaIsXrxYimGPHj2SOjm2bNky6QY2mrqmNM3NzSdNmnTt2jX+5u3bt729vcXsX15eLmgNjxBavXq1rJKBAABRmBKmcQLPn4R4/9bS4abjRS6Y5mmEmj5LqkRt2U/P53nmUh7O4keKKr6/y9naV88bq8vKNuloymm4t1+zM9a7kFXEj3BwzoGfR9e3c22nIuMuONXmJwLiIhBC9c9PaCkqXrJ3mBsa8vFX5eX7m99jOTye78jRFOFqTh07dgwODv727duOHTvEpCjyP71gM4qNRjti//arwMgUXicb133+e/bsWb9+/YwZMyRpZUEiYa7zh7TUUz985olgMQeLzdnmeyc5vWD+VCtJHmALXdW9Zxd6uwe/fvJdEMzLLlk7J8DNy6Hv4FqSHL3HdD/wYsdWuz3EhtjREd+X93LbHrLOvKeZmLEAAAAAAAAA8F8iaImMYZig/nxNQkNDiZtmZhJ9eurQoYMgOYEQevjwYTNMTrx69UpQ6QghRKFQxDec4OvQoQNx8+HDhzXtWX9UKrX2ncTKy8tzdXUlRnbu3Al19Zubxm790bVr10GDBjXySWvFZgsV75aiYpq7u7vgjzs2Nvb79+9idg4LCysv/90TVUdHR7r8EABAUmRDTP2AUCqCFYmX7G66CQlpId+1l44HQpWvjhmlj6PzjzbO2XVoOhvar1OjVraZYvFY++MOJZVK01tIPH5+QqS+U0BcxL5oGawDVaXRgiZOthZ+L3Un7sfiO7eYnGrqF1laWgYHB0dGRg4fPrymY5b8/Jp8M4DHYgoiGEYyGDY5T9N09uzZHTt2PHv2rMjLR00cxnbftX6CvFD3CHQ6ONLbL4zL5UlyBAVFua0HZjjME+ohUV7G+sflYvDp2puZt+pkfPStV7ehQje55Kbnu9ps+d952fdCBwAAAAAAAIDm6cuX39WMnZ2da80ZREREEDcNDQ0lOYVIDuP58+b4mSsyMpK4aWBgIEmFAJGHlpGRkZCQIOOZ/av+WYTdu3cTG5L36tXL2tq6nscEMtfYyYndu5vLBUEiJpNJ3GSxWHU9Qo8ePYiNdwIDA8XsfPr0acHX+/btI5aiAwA0CDkrTHWDUKQsEJVdbqLZiDJSHmGhMY8Y+V50NrEkpKb9ZUtfXm99u9VKFEVBpIxb7vPDN6M8U8wo6fDzE501WhKDAXERe6NkkJ9QpFJP204c3lrordLjpMS5oTdKa3hW79u3b1hYWERExNChQ6vdoTT1Z+LlwxxGCTGo3WtIyxFTf8bHz507t23btgcPHhTkm8Ww6d3msIeDproiMXgr/Ou63SGlZRK96JBIpHmuI1y221EolW8ZeTzead+wA9tvcji1pNVVNJU972+a6mZHDLKYbO/ZR05uuIDzmmkVVAAAAAAAAACQlaysrPDwcIRQr169fHx8at05MTGRGKm14QSfSEsDYvWU5kO6vIuWlpZIDkOSzrtNIisry9/fnxipdaEMaBKNmpyYOHFirU3tm0RZWRlxs7S0VIqD7N2718Dg9x3Bx44dKywsrHa3Dx8+3Llzh//1+PHjHR0dpTgXAKDOFGcjxWnEAF7igVhvmmo6IjpqLjVWHkWMfM7zzil/V9P+smWsaLTW3FWeTBNE6By694/9ORW5YkZJR5Uqf9LaUSQ/cfKnbPITcmTy0THjRrcVqkn1Oj1tRsi1IuEkNJGVldWjR49evHhR7cI+Zt6vxCuHWIVCPwqNTn2Mxs8hUagpKSkuLi6mpqbe3t4iLyVVdWirf8JzZitDLWLwzefkZZsv5eTTa310fKPse3qfmqemoUQMPrj+3m3+6eLCWl68yBTyAs+Zrv6LKXKVBalwHL/ifXPLBK+yktpTLAAAAAAAAADw5/L19eVwOB06dAgNDa21xHpUVJRIRMIr+Do6OsTNgoKCX4QSxM1EdHQ0cVPCh0YikbS1tcUcp/k4fPgw8UO6hobGhAkTiDvQ6fSfP39GRUXl5+c3+uxApd+XJ4yNjW1tbU1MTFRVVVVVVRuoYXX//v0b4rD1J7IEKSkpSYqDtGjR4vLly8OGDWOxWMXFxa6urmfPnhXZp6ioaPbs2fzW2ZaWlhcuXJB2ygCAOsNUt+GcRMQSVH7k4EUrMK0QRJbo3ocGhvXQ2cbgZBQwv/G3eTjnddb6wYZnVagmjXD6NsqtXdo674s7yOb9rlNUyCrcHbtns4V7C5qW+LF1Jeg/8bUwQxA8+TMCIbS2U337T1DJ5MOjx26gUq/GVL5D+pqd5XTjWqCdvYZCjZ3G+/fv/+TJk0ePHm3atIlYHhQhxCouSLxyxGTSQgWdyrdrqmadTCYtSg09za0oz87Odnd337dv37Jly1xcXNTV1Ws6i76Omt+u6Rv2hH6KThME41NyF7lf8Nk4qa2pTk0DiTp2NzlwYfHW5UFpSZUpk+iPKa6OJzyOOBqZaosZixAas3CYSQdDj8l7C7MrG7u9ufvRZcDmf2666Uk2BwAAAAAAAAD4s4SHh+/fv79Lly5hYWEi+YNqJScni0QkvIJf9SNhenq6vr6+ZNNsDFwuV9B7g0/Ch4YQUldXz8rKEmxmZGSI2bmpcLncc+fOESNjx47lN7F48eLF+fPnnzx58vPnT8F3jYyM7O3tXVxcTEwa4woMIKIghAwMDKKiov7a4kIMBuPYsWPESFRU1M2bN+3s7GoaUpMBAwZcunRp2rRpbDb73Llz2traO3fupNF+34z85s2bBQsW8DOKffv2DQ0N/Wt/5gA0EQqmfhTPn4S4/74G84rwwmWYVjDCarxm3WjImJyV3r7H6bPLOL9vqWDxSl7+ch7SMpBGrvFitwx1VLVYYbbkUPwxLv67QFA+q8D7x77NFm5qVDXZnkuFSqs2P4EjfF2nGptASIiMYd7DRyrJyZ39XLl4Nionx+HalaCJk/WUlcWMHTZs2NChQ2/fvv3PP/98+PBBEOeU0ZOuHDUeP1u5VWX3aSVDs9bTnJNDTrDpRQih3NxcDw+Pw4cPr1q1auXKlTWlKFSU5X23TvY69vDBsxhBMLeAsWzL5R2rx/ftbirJY9Q30vQ9v2jn6suf31Qm1zNT810dT2zeP71zr1bih3e0bn/0nff2ST5x7yuHJ31LXd7bfcuV1V2HdJJkDgAAAAAAAPz35JaVPkpMKGZWNPVE/jom6urDTFtTG+ZuaYTQzZs3HR0dORzOsGHDJOy0XDU5IeZGNCLBlUCB4uLiavdsKpmZmSI17TU0NCQcK/LoioqKZDYt2QkPDxfJmkycOPH+/fubNm2qtspWWlragQMHTpw44eHhsXbt2saaJkAIIYq1tbWCgsLfdpW8tLT05MmThYWFycnJ4eHhmZlCpdVxHLe3t7e2tu7du7eOjs7gwYN79eol4ZEnTZr06NGj6dOnZ2Zm7t27NyQkZMSIEQYGBh8+fLh9+zaPx6NQKKtWrdqxY4dCzTfwAgAaCkkd0ziG5zsg/N8KNpzvePFaTP1w4/fgqUqerNVf/9CTjLlsHoMfKWVnvMpaa2NwjITVsuBUJrprdF1utvhIgh8P/92lOYuZ7f1j/8b265UpSuLH1hU/P7EgIugLIT9x6mckQqj++QkMoa0DB1NJ5ICP7wXB+IICh6tXzk+abKwmLteCYZitra2tre3Lly+3bdv2+PFjfpzHrkgJPWU4crpa++6CnWlaeq2nOieH+FcU5PAjBQUF27Zt8/HxmTdvnru7e7V3x1Ap5M3OYwx01c9cjcT/7fVQVs5a73Vj9fyhdiO7SPIYlVUVdvnP9vO+e/tSZXUyRkn5psVnF68f02doLUkObUMt3+c79i/yIzbELsmnu4/aOXfHNJHWFAAAAAAAAPwNniYnLb93p4zNbuqJ/KXMtbTOT5qsrSjjz54ZGRnbt28/deoUjuMIoX379gUEBOzatWvZsmUkkrjrAFWr/SgqKla7p4iqyYnmdgWf2CaaT/KrlCKPrrnlXfju378vEvHz8wsPD1dQUJg+ffqgQYO0tLQyMzNfvHhx48YNDofD36esrGzdunXx8fFHjx5toKpCoCrSkiVLvn//juN/VyfMioqKiIiImJiYsrIya2vrKVXY29vr6emlpqa+f/++rn3nbWxsYmNjt27dqq+vn5iY6Ofnt3Xr1tDQUCUlpfnz53/79m3v3r2QmQCgyVDaY2p7EcIqI8wwnHGk6SYkRFWudR9dTwyrfBXMY376mLu70SbQS7PHAtO5GOHnk1aWvjfuAJNbY88GqalQaSetnboI95849TNyT1R4/Q+OIbRxgI2b9QBiMK2kePr14OSi6nsCiejfv////ve/Fy9ejBs3jh/Budy0exfy3j8h7kZV1Wg9baWiQStikMFgHDp0qG3btqtWrap2lSuGoflTrTatGE0ldLfmcnk+J8IPnH7Mk+xFmUwmLd84fuW2CWRy5VtqLpd3zPPOWd8nXC5P/HA5earbuRULPGdipMpfN5fDPbnhwoEl/hwWR5I5AAAAAAAA8N9QzuG4PrwPmYkmFJefv+v5M1kdjclkPnv2bOHCha1btz558iTxymdJSYmzs7OtrS2DwRBzhKptBSW8mkehUEQizS05UV4u2nFQ8guVIo+uuT00vkePRLtaPnv2bO3atcnJyRcvXly0aJG9vb2zs3NwcHB0dHT79u2Je/r7+2/ZsqURJ/u3o0yePPnly5dlZWVKSjLOTDZnmpqawcHBDXd8VVVVDw+P7du3x8TEJCUlcTgcAwODbt26SbhwDADQsORHIOUViHG4MsI4gihmSH5s082pkp6iVRet1Z/zfASRZPptFTnTduqzG2cCA1pYlXPLg1IuCiIJjETfn4fXmK+SI8l4AQc/PyGyfuL0z0iE0BwdiRYQiLekZy9FKnX708eC96GZdPqUq1eCJtq3b1FLbwa+/v379+/fPzIy0tPT8+7duziOZz2/zWYU6w+aIEhxkeUVW9kvSbsbSE+MIY4tLS09dOiQn5/f1KlTt27d2qZNG5GDjx7UUUdLZaNPKKO0ctn41bsf8wtLt6wcLUcVfUdbrTGTe+nqq+9ee6WUUZlAenI3qjC/bIvvDCVleTFjMQyb6mbXqpPx7pkHiA2x7554lBydvu3aWg1dGVf0AgAAAAAAoHn69CuziCn7W7JAnTxJlqYLbFWvX78eNGhQRYW48lx3794dO3ZseHh4TZ2xRa7gy8nJSXg3veBOfAHxWZDGVzXvIuGiEIQQWziBR6fTZTMn2aHT6bGxscSIlZXVmTNnzM3Nq+5sbm4eERHRq1evxMREQdDb23vo0KFDhw5t8LkChEjy8vJ+fn5/VWai0WAY1rFjx3HjxtnZ2fXu3RsyEwA0H5iys3AqAseL3RH7W5NNSFgbtWlmag7ESFT+kYzSJzXtL3MjdIfaGwoV9okp+X7g5xEOLvu76X+vn9AU6r51+mfkseRXMjn+rC5ddw0dRsIqFwfklZVNu3b1c9YvyQ9iZWV1+/btz58/Ozk5kcnk/I/P0x9cwnlcwQ4kqpzxhHkaln2rjmWxWEFBQR06dJg1a9aPHz9EvtvD0th/9wx9HaEcwOPIHyu3BReXiN7MUpMe1m33BS3UNRAqEvr5deIap4DszNqXifQZ2/3Ai50irbCjI74v7+X280NiTaMAAAAAAAD4L6FVudsdND4aWTa/hZ49e/769Ss+Pv7Zs2c7duzo2rVrtbs9f/7czc2tpoOIlJmRfG0Bu8r6m5ryH02lagUdqR9dc3toCKEfP36IPMC5c+dWm5ng09TUPHfuHLHGF4/Hc3d3b8ApAgLSkydPmlWO69WrV0+ePMnOzm7qiQAA/tswTM0LUQmNf3EmXrQC8UQLLzaVri3W6StWliTCEe9t9qaCiuhGm4Cdwfjx+mOIkW/F0Ufj/bl4LcWCpKBCpZ20chTJT1zO+Hww/nlNQ+pkeqfOviNHkwlvNYormDNDrr1KTxMzqqrOnTsHBgZ++fLFycmJEfc5JSSAx6q8EwfDSC2HT9HpN7LasWw2m5+icHBwiIkRWmDRylDL33OGRRs9YvDbj8xFGy6kSZBa+H2QNrqHryy17NGKGEyOz3aedvzbh+Rah5taGh996yXSCjs3PX/1oK0vrr+WcA4AAAAAAAD8ubrq6bdSl7QnMGggdsIFdqRGoVA0NDTMzMxsbGw2b9786dOnyMjI4cOr6W545MgRkQ9oAsrKysRNyUvii/SaRnVZl9A4qvYe5vEk/aQv8uia4f3u8fHxIhFDQ8Nq9xTo37+/ra0tMfL+/XtBB0rQoEhDhgyp6Z+wSUybNm3IkCHh4TIoOA4AAOJg8pj6EUTSqoxwM/HC5QgXfRvRJDBE6qO7W02ushAQF6+I/LW6jNN4uVsHI/tReiOIkfeFH08mncGR7NsUVZufuJDywTsqTCbHt23X3n+sLfE2nDI2e37ojRepKXU9VMeOHQMDA3/8+DFj1KC0mwGccuL6XEyn30j9wRMRYaEGEY/Hu3r1qqWl5fjx49+9eyeIa6krHf5n6oDeQnWf0rOKFm+8+DW2mpYV1VJVV9x9Ys4w227EYElh2cZFZx/d+lT7cC0VrwebRVphM0srdjjsP7nhAs77u3pTAQAAAACAvw0Zw06MtzXT0Gzqify9xpu3W93PuoEO3q9fv7CwsKCgIJGUA4fDOXr0aLVDVFVViZtMiat+/YnJCakfXXN7aKi6NhhGRka1jlq9erVI5M6dOzKbE6gZrFkDAPzFyC0x9SN44SyE/7sskf0RL9mGqXk26bR+o5AUrfR9H6fPruAW8CNMbl5klutAgwAqqZHuTZhh7FDKYbzIixREXuZF0ki02a1mEptmywQ/P7Eg8vyXgnRB8MzPVzwcd+s0glTD5X7JDW3d2m/c+KV3bzP/LQBazuEsvBXqPXzEhHZ1vj2ndevW/v7+G1NSdvoefknnUFTUBd/S6jaAqqyWEXaZW1H92zsej3fnzp07d+4MGzZsx44dffv2RQgp0Ki71004eObJtXsfBXsW08td/rm6esHQcUMtJZkVVY6yZuckAyPNoGOPBff1sFmcfZtDEr7/mrtquBxNXIFBMoW8wHOmXiudoytPcdi/i1bhOH7F+2ZyVKqr/xItA7iVDAAAAAAA/Ge11dR66DQ7JienRGyvAtAQjNXVjFQbvOOdo6Nj69athwwZQmxHcfXq1SNHjmBVPnKKXMFnsVhcLleSthNVL47r6+tLO+UGUZ/kRHFxMXFTT0+vpj2bStUSQbq6urWO6t+/f8uWLTMyKu8OfPr0qWwnBqoFyQkAwN9NriemuhMvJlSZLL+GKG2R0rymm1MlJYpBf/2DTzMWcvHfbxSKKn5EZrn21z9CxhqjsCOGsAWmc9k8zuuCt4Lg/3KelHPLF7WeT8ZIYsZKQYVKO2XtuCDi/GdCfuJc/OvMsiKfnpPkyfXt3DOolWmgnf28WzcY/97rUcHluDy49yY9/Z/BQyikOj8cExOTgAN7YxKSFx4PLsErp6fatrOCrlHa3cCyX+JWZjx69OjRo0fW1tZubm7jx48nkTDX+UNa6qkfPvuE9+9KhQoWx/PYw8gPiW5LR6ip1F4GFMOwaYsGqmrJBex5VMH8nXXDcfxGUOTrp9/X7rTv2N1E/BHGLR5u2snIY/LewuzKN51v7n6c39FlobfTmIVDq75rBwAAAAAA4L+BjGGWElzHBH8uKyurTZs2bd26VRDJzc1NSkpq3bq1yJ4mJqIfnZhMpiRVjKomJ4yNjaWabEPR19eXk5MjroEQ6f5dExzHRR5d1Z9Sk+NyuSIRkeUy1cIwbNy4cf7+/oJI1fJQoCHI+LoSAAD8eRQmIcVZxABO34MqGq/7tHgatA49dbYgwjKF3PIPb7I34Ljoy20DIWGkxWbzu6gJ3bkfmf/6WIJ/Q/THVqbQTlo7dhWu7xSe+X3Oy8CCirL6H79Xy5ZBE+3VaPLE4KWor7NuXC+Q7N1YVR3MWj3YsaqzkVBDaaqqhqnDcq1uA1BtS0wiIiJsbW1tbGzCwsIQQg5ju+9aN0FeeInDszc/Z68+9+FbqoRT6mXTZoefo5aO0O0wv9IK1s87FXjkfxxOLX88Ha3bH37l2bpLK2KwtLjswBL/DaN3ZafkSjgNAAAAAAAAAGhu1qxZ06JFC2IkLa2afoQdO3YUiUjYIrewUKh3IJVKbdmyZR3n2LCoVGq7du2IEQkfGoPBEGmI3apVKxlOTCZEKk1RKBR5efmadibq2bMncZNOp1fAIqqGB8kJAABAmOpGJEcsbcnFi1wR53uTTUiYkfKojppLiJHM0qcfcneiBuj9UC0KRlnZdlkHVQti8G3B+wNxR1g82bfo4OcnLFWFFod+Lkif9uxkMiO//sfvqqd/afIUbUWhG15epaeNv3T+W46ULT1UFGinV0wdZinUNAIjU/QHTzS2nUOm1b7i4cWLFyNHjuzatWtgYKBV91aHPRy01IVmmFvAcPG4ejTwGbu21AJfGwv9gxeXtu1gQAxyubyL/k9cZvgnx9fySHVbaR98udNmcl+R+IewL4s6r7l9PEzydnAAAAAAAAAA0HwoKipOmTKFGGEwGFV3q5qcSE9Pr7pbVTk5OcRNS0tLCqXZla4ReXTEckZi5OaK3qnWrVu3avdsQtra2sRNHo9XdS1FtTp06CASkXBBCagPSE4AAABCiIxpHEGUtpUBvBQvXIJ4eU03JSEWGgvaqs8kRpLptz7n7W20CciR5Na1c+mhIfS240vxtz0/fMu5sn+1VqbQDnSarI6rkwAAIABJREFUMEJX6FaO1NLCqc9OvcurcwvrqixaaN+aPrObnlDdz0w6fXLw5SvRUdIdk0ah7J893s1uEFW4CKlqG8s2s9YqGrSS5CBfvnyZPXt227Ztw+8F++2abN3TjPhdHo5fDH03b11QQopEf5ktdFV9Lyx2XDqEJFyxKj42c8WUY+ePPebxeGKGyyvRtgSv2XJltVoLoRUYZfTyQ8sDXG22pv3IlGQaAAAAAAAAANCsTJ48mbipqVlNI3Q1NTUzM6FPZBJewU9OTiZu9uvXr87za3jdu3cnbkqYdxF5aAoKCl26dJHhrGRCpEIXj8fLy5PoE7ShoVAJByqVqqbW4H1QACQnAAAAIYQQpoxpnEAkwjsSbgZeuAjhzSVP3kXLtZXKeGIkvvjy98IzjTYBCkZxbrPMuoXQ+6of9DjP7z50TjW3mdQTFSPt6DR6RfuBxGAxq3x+RNCdtG/1P76esvLlyQ7TOgmVq2Jxue6Pwjb+7xFbshsrRGAYchzQLdB5aktNoXcwVBUNU4cVOv1GIsm6NSQnJ7u4uHSx7EAqfrNsRk+REk+JqXkL3c8H3/0oydIFCoXsuGzI/qBFhq2Eli1zONzzxx+vdgrIqC3PYTOlX8A336pLKKIjvi/tvu6K900eV1yGAwAAAAAAAACaG5F75HV0dKrdbdy4ccRNCZsQiFzB79+/f90m1yike2hJSUnEzT59+lCp9e0NKXOdOnUSWaoiYdEqkT7h2tra0HCxEUByAgAA/kU2xNSPImKjafY3vNit0aon1Qbrrr1ZX1HobU1UwdHEkpBGmwEZIy0ynTdI24YYTCpN2RnrVcgqrGmU1DCErbAYtKPbeGLnbRaPu+59yJHYp/U/vhyZ7Dl0+O6hw0TWOlyK+joj5GpOaal0h+1kpHttzcwRndsSgxiJpNNvpMmEeWR5xZoGisjLy/P29l40a6yh3Dd9TaG3RBUszsHTj9fsvJZfJNEk23c2PHZtucM8G4wkdJzvX9OW2h8NPv0c54n7I9fQVdsSvGZHqJuWgYbQNMpZJzdccBmwJTVWohuIAAAAAAAAAKA50NHRkZP7/dlfXV29psYJtra2xM0PHz5IcnDihX55efkxY8ZIOcuGZGFh0bZt5YfWjIyMrKysWkclJCQQN+3t7WU/s3pTUlISKTb15csXSQaKtKbo1auXLKcFakBCCA0bNky92ai2BQ0AADQSuZ6Y6g6hCPM+YhxvotmIImGUvnp7WsgTX2XxT7meaYywRpwDaZ7prNF6I4jBzPJfO2K9cioapE/ylFbdT1jNUKbQBBEcoSPfn236eIsjtiqRhKZ36nzdYZqB8C0S7zMzbS9d+JT1S7pjKsvT9s4aV7XEk0rrjm2c1ioamEp+qLKyssBzp26cXs9IvllaKPQS+eZz8uzV5yI/JEpyHDkadZ7riN3+c3T01YlxVgX7tG/YpiXncrOKxR+h7/ieJ7/5jl00TCQe+zpucdc1Jzdc4LBk3yAdAAAAAAAAABqCoMjt4MGDycIf3AQGDBhAbGAgSXIiMTGxoKBAsDl69GhVVdX6zbShTJo0ibgpyaN7//694GsymSxSHav5sLOzI24+f/5cklElJSXEzQEDBshyTqAGJIQQg8EobjagwSYAoIkpTEJKC4gBnHEAMe801XREkDGatf4BdVplMwYc8d7lbMkqi2y0OWAIm2E8daqR0LuQ3Iq8HTGeGeUN0oTAWsfsgs1cPQWht3TXUz4tenWBzq6o//EtdXRvT3fsZ2hEDGaXMqZdC74U9VW6Y/JLPAU5TzXSEkoGUFXUW0+tQ4knPh6P9/VjxJcnh75H+BX8ihGs5iksLlvvGbLHL4xZwZbkON36mvmFOI+ZLHoDyMdX8UsmHr537Z344coaSi5+i3fd2aBtqEWMc9jcK943l/d2//lRokwJAAAAAAAAADSh9PR0Duf3zVUizbGJqFSqs7MzcZRIyaaq3r0T+lS1ePFi6WfZwFasWCFYPoIQevnypfj9cRwnPjpbW1s9Pb2Gmlz9zJgxg5hwkjA5Qaz+RKFQxPxhABlqds3iwd8jNTVVpOMQlUp1d3cnPu/LBOdfsj3sX+Iv/ekpuJLYSRjrf/9u43jxBh4ywCmd63QYDoeDYZjMf3oYku+nffBF1iIGJ5Uf4eGcV1nrrHUPa9LqNsP6GKU9nIIoF9Ou4P9eKC9iF+/+7rO2zSojBUPxYyUh8rdnpqR1wXrO8rdXvpdUvl2IzEmc8ezUsd5T9RXr26VKlUo9PX6C75tXJz5W3i3C4nI3/u/R2/SMHYMGy1OkecVsp691ceXUHSGPw778rIximE6/kXoWXWIuH+eU0et0wILshILsBEU1/ZZtB7Yw7IqRyDiOQsO/fonN2LpytJlJC4QQj8cT858rJ09etmls70Hmh/+5lZ9TefZSBvOQR2jk/2JWbrXV1FapOlCg+4jOxz/tObXhwoNTT4i3FCR+TXHuu3GS61inrZOptGZXeFRCgh+dSBdxIIm/9CVDRuBvrz7gb68++D83+OlJh/8/Cz896cB/rtQ4BE09l+YIfixAEg8ePOB/0aZNGwcHBzF7Ll++3MfHh07//dHpxo0brq6uYvZ/+vSp4OsePXqMHDmyvnNtMIaGho6OjqdPn+Zv3rx509PTU8z+X758KSoqEmxu2LChQadH/LBZ13vZW7VqNWXKlMuXL/M34+Livn37ZmlpKX7Ux48fBV/b2dkZGxvX6aQ14XK5Tfu8xOFwcByvdg6enp6HDh3iCjfdJP6WG0EzbesRFBTk6OjY1LMADeLTp0/du3ev6btaWlrR0dGyPSOdTq+oqGjRokXtu4IqiouLORyOlpZW7bv+t2CoXANfSkGVlSJ5SKsQC+Ci6ttkVSshIYFKpcrq9UwEk5f1lbmugpcviFAw5c4KXkqk1g1xupq8pr+9XhCKE9pyKJAUFujMNqHV91Hn5eXRaDSRhlRlXPb2H2FvioSqG7WQU/JsP9pcWTb/4w+SkzzfvakQfm1ur6HpPWCgrqKk7SKquvsl/sij92zh3tGqcmTm2wcfH9+X7pg0RQ291v30TPuRqfIIISqFPG1clwnDOyAcz8/PV1JSUhQ7YXpx+bmDT989F+17pqquMMdlcI/+ZrVO4OuTmFPrLuVniLYbMWxvsMh3ZuuuJnV8QM0Ci8UqLi5WU1Mj3kMEJMRkMul0uoaGBkWqZN5fLjc3Nzs7u0OHDpCckAK82auPwsJChJCGhkate4Kq8vPz5eTkRN6uAAnl5uYqKioqKSk19UT+PCwWKy4urmXLlvCfWy02m21kZIQQkpOTq6iQwTJr8N/D5XItLS1jY2MRQlevXq21NtGGDRu8vLz4Xw8YMEDMbfgcDsfIyEjQvOH+/fujRo2qaWcWi/XmzZuUlJQ2bdr06dOnSXovx8XFWVpaslgs/mZ0dLRIq3CizZs379q1i//1xIkTQ0Jq6X+Zn5+flZVlbm4uXdNsCwuL79+/879WU1Or6xXzuLi4zp07C54EXFxcfH19xQ+ZNWtWUFAQQohCoXz48KFz53rd/Tlu3Li7d+8ihM6fPz9smGh55MaUkJBAJpOrNlbBcdzExETw268qKytLV1e3YSeHEBYYGNjQ55BC//79TU3rUJIb/EGSkpJat67+4imGYStXrhQ848tKSUkJk8nU0anDNWUgUFRUxOFw/s5P+xieS6VPw3g5ggiP3J6tHIgwBQmPEB8fT6VSTUwa6hItnZ0YmbuMjVfe/C5PbmHV4rgixaCBzlitt0XvT6cFcvHKq/k0Em2ZyaIOKu3rc9icnBx5efmq1Tm5OM8zJvxa6mdiUJEi59XF1kan9uvpkojN/z97dxkXxdYGAPzMNrF0g6SIgShgYxd2FxY25rWvwjWviS02dqNiIKhXr4oKqFxFTDoERTp2qe15P+z7w91hWZbdBYzn/8k5M3PmoAKz5znneQoW3b+XVSq1p0Gfwdjbz7OjhaXS3SZ+K/ANevClUKq0A5lE6m1r8CHk/KOHD5VLbEihaZrZdzF38KDStRFC7q2b/Dmnj5BfzmQy5QcnxJ4/ij+y7W4pq5LQ3qVPi/l+g7V1GDLvqsKt4F7eduvG3juEktpkCnmwT9+pG8fSNek13ftj4vF4xcXF+vr6EJxQAofDYbFYhoaGEJxQQm5ubm5urrOzMwQnlAAve6oQ58UmbGgGCiooKKDRaD9sMvEfXG5urpaWlra2dmMP5OfD4/ESEhKsrKzgO1cmHo+nq6uLIDjxm8FxPDc318TERJFXqY0bN27YsAEhNGPGjJMnT9Z6fUVFRatWrcQJnTAMe/v2bU3T1leuXJkwYYL4zxMmTLh8+XJNfcbFxY0bN65qea6Hh0dQUJCVlRqSENSVn59f1YaJRYsWBQQEyLyMy+Xa2tqK4y5MJjMuLk7OaHk8no+Pz5kzZxBCJiYmZ8+elROkqYmdnV1VEi0NDY2Kioq69lD1D40Q0tTUTElJMTc3r+nioqIiKyuryspKhNDKlSt37NhR18cRVAUnbty4MXDgQBV7U0VKSgqZTJY5075gwYKqrTPVFRUVNUAUHIMaD6CBff78Wfz9YG1t/fat1PQihUKpj2VH8HlVFb9zcAIhhPgf8aKJCJeYt2X0x/QOiAv21CopKYlKpdZrqLWI8/FZ9jyB6PsvaW2qVU/LUwxyg252iS15dyDlCF/0vewBBaMsbDrXXd9Vzl3y1RScEDuXGr3t/T+Sv8DIGLamzSAvu3ZKP1FScWXlont3or5kSjaSSaQVnT3mtiMWbFBcGYf3d/DDe7GJhPaOTZt4u9sePxgQFBTE5ytUPYKARKIYWrWxcuqtwTTR09GcP6ljry4tFAlOIISKC8r2bbgZ/ZQ4KgNj5pINIzp0d5J5l6SPkQm7Zx3+mkSsH27hYLr8xHyXHjUuvfkBQXBCFRCcUEVubm52draLiwsEJ5QAL3uqgOCEKiA4oQoITiiNx+PFxcVZW1vDd65MPB6PTqcjCE78TuLi4oYOHZqWlsZgMEaPHu3r69uqVauaLj5+/PjcuXNFIpGHh8f9+/cV3L8VHh7er18/cfabMWPGXLt2rfo1lZWVbdq0SU5ORgjZ29tHR0fXNJfC5/NdXFyqtgWIOTo6vnr1Shxaa0gcDqdLly6xsbEIIQaDkZKSYmkpY03epk2b1q1bhxDCMOzixYteXl5y+tywYcPGjRurDmsNZshkYGAg3t8pfmh5ebmGhqJLRcWEQmH//v0fP34sPhw1atT169drunjGjBmnT59GCLVt2zYqKkrBT9NyVAUnwsLCBg8erGJvqkhKSiKTyQ4OsldzstlsQlone3t78T6VhglOwIcf0GhIJJK+NNgQDX44VGdM118qAx7nAV66p/EGRGTAcO5itouEfZ9FLeN/jfg2nydiN+QwXPXarGy2lEH+vspegAsOpByOLKivMt1THTru6TCGTv4+ASrE8Y1v72x5/49IHUF3fQ2NMyNGEeIQQpHIPypi6f17lcrmi9Rm0HZMHrTFy5NBk5q6jU75suZOzLw1mzIzM9evX6/E+6hIJMjPjIl9uCv++akvn+O3HQ3fd+qJglWy9Y20NxyY/Mf64RqaUtPxRfml6xdeCNgYUllR4zZPMeeuzY/G7hq/agSJLPVe8S01d0XvDfvmHqss49T1KwIAAAAAAAAARfj5+aWlpSGEOBzOxYsXXVxchg8f/vTpU8JlBQUFc+bMmTNnjkgk8vT0vHv3ruKZ5Xr16rVz507xn4ODg48fP064gM/ne3t7iyMTRkZGoaGhclZ5fvjwgRCZQAglJydXLfNvSAwGIzg4WFzamsPhjB8/vnpU7/bt25s2bRL/+e+//5YfmUAIhYSESB6WlpY+ePCgTqPKzMysikwghHAc//DhQ516QAiRyeRr165VbXO5ceNGTclaDh06JN7nYWtre/v2bdUjEz8RHR0dwvRsA2cYg+AEAADIxRiItBdItZQfQxVXGmk0MphodOxougWT+HnO4qVEZS8WiIiJeupVCx0n3+YrtCnf3+2EuOh4+ukn+TWm41TRQMtWpz2m6tOkXhrOp0YvfRXMEaqh2BSFRFrl0W3/gEEa0mvAbyXEj70a9JWtfPhnWLuW5xaOtzHSk2wsKquYe/zmjXfp69atz8zM3Ldvn4VF3dNz4XhxTvyHJwffPzl0/lLwzD/PJ6fn1X4XQhiGDRrT/ujNRa3bSW30wXH8bvCreaMOfIj5LL8HugZt1rZJe59tsm4htcoGx/E7gQ/ntFke+6jOr5IAAAAAAAAAUCtCSQORSHT79u2ePXu6uLgsWLBg8+bNq1atGjx4cJMmTY4fP66hobFly5Y7d+7Udd/b0qVLt2/fLp63XbBgwfr166sSDUVGRrq7u4u3Uzg5Ob148UJO5QaEUE17es6cOUNYw94w7O3t//33X/HOhqioqH79+lXlmyosLJw/f/7IkSP5fD6FQjly5MiaNWtq7bD6Ruo6bUxPS0ubMmUKoXHOnDmE/CuKMDAwePDgQYcOHcSHfn5+K1asKCsrq7qgtLR08eLFixYtwnHc1dX16dOn4qI1oMFAWifQ0KrSOtna2qanpzfAE2Gnvyp+97RO/4fjJcsRJ1SihYIZnEG0jvJva4C0TlXS2MFv8rdJtphrdutithvDyA3w9CoZFZn+CXtKBd+rNWAI87IeN9Csf127kp/WqUpmedHs5xczyookG9saWB3u5GVAV89ih/iCfJ/Q21/YUrUi9DU0Dgwc7NFE+brf5Vze38GP7r4hrpfp0LTJ9kkDjXW0eDxeUFDQtm3bqq+pUZCmjrlVs66+K/+YOtaDpNjaBxzH711/fcz/LpcjtesCI2HDvDrNWuZJpdWSrofH4Qdtv3l52w0BX+qtGsOwQbP7zNk5VZNZt624DQzSOqkC0jqpAtI6qQJe9lQBaZ1UAWmdVAFpnZQGaZ3kg7ROv6EvX7707ds3KSlJ/mVMJtPb23vFihWqFIYMCwubN2/e169fEUJUKtXR0bGsrCwzMxMhRKfTlyxZsm7dulrX3ZeVlTk4OOTlyVhJFh8f37y5SuUblZaTkzN37tyqTQ8WFhaGhoaJiYnigskeHh6HDx9WsEb07t27V6xYUXVoZGT06dOnWl/V5s2b999//2VnZ2dnEzMGVzE2Nra0tHR3dz9x4oQiIxHjcrl+fn6HDh0S/0zQ1dXt3r27ubn5t2/fwsPDy8vLNTU1ly9f7ufnx2DUUnZRcT9LWqfqqhJqQc0J8GuC4MTPBYIT/4dz8aLJiC8RpSfpYYbBiCzvnaYhgxMIofjiE5+Kjki2WGsPbG/6N9awm+S+cbL9E3YX8YolG4eYDxzfZEyd+lEwOIEQKuCUzXt5+UPxN8lGay2DwC4TbbXVU3ujmMP5496dyMwMyUbVS1AghG6/jtt0/RGHJ7XVw0Bbc+vEAR5ONgghkUh0586dbdu2vXjxQrlHUBlMt04DLp7a62CnaDXvzNS8XX9dT/qURWi3aWqycuuYpi1q39KR9u7zrplHkt+kEdoNLfQXH57TeZh6SoPUBwhOqAKCE6qA4IQq4GVPFRCcUAUEJ1QBwQmlQXBCPghO/J5YLFZgYOCDBw++fPlSVFRUWFgoEonodLqZmZm9vb2bm1uPHj369eunlqnn8vLyixcvBgcHx8TEFBUVaWlpOTs7Dxo0aM6cOeLkSIp4+vTp9OnT09PTtbW1x44dS6VSAwMDEUJRUVFdunRRfZBKi4qKOnny5NOnT8URF0tLy969e3t7e/fo0UPxToRC4erVqwMCAng8nqOj45kzZxT5oh4+fCiZykkOXV3d/v3rvAIyMzPzzJkz9+/fT05Ozs/PJ5FIFhYWLi4uAwcOnDhxotp/okJwQkEQnAANDYITPxcITnwnyscLRyOhRACf4oAZXEWkGj+ONnBwAiH0vnBvUskFyRYH3XGuRqsabABiBdzC7Ym7cjlSy0D6mfaeYjMRQ4rmLlQ8OIEQqhTyV7y6/ihbqqSzHk3jUKcJ7obKb26QJMTxXc8jj71+RfitOcyp+fa+/TVUmIpNzS1cce5OSk6hZCOGoem92i8e6EEi/f9vLDIy0t/f/86dO8r94qZQGSNGjdu3e6vM4mbVCYWi62cjzx18RNgAQSaTRnt3nbqoD4VSy6YcAV94fU/omfVXBDxilq3uYzsvPjxbx/BHrDMEwQlVQHBCFRCcUAW87KkCghOqgOCEKiA4oTQITsgHwQnwE8nNzRW/PCcmJoo3THz69El+SqifCJ/PLyoqMjU1beyBNA4ITigIPvwAAIBiSMaY3jGESWzPFKTirCUINUJGyJq4GC6xZQ6XbEllXY0vrsNuR7UwohuubbG6iaaVZOO/uY9Pfz6Po3qJiGuQqQEdx09xkEq0VcKrnB557s7Xj2p5BBnDVnl0Cxg4WFM6n+ntxITRVy5nslg13VgrB1PDi394DXFvIdmI4+jU41czjwbnsf+fDbNr166hoaGJiYl//PGHEut9BHxO8JVzNja2kyZNjo+Pr/V6Mpk0bkb3A0Hz7JpJrf0RCkVXTz1bPvX4l/R8+T1QqOTxq0YcfuXv1L4p4dSzay9mt14WeSO6rl8FAAAAAAAAAPwyTE1Nxct6WCwWQkhDQ8Pe3r6xB6U2VCr1t41MAMVBcAIAABRGbYHp7UdIYsE4NwJnb228AVWHuZussdTqLdn0qehIMutSA49Dl6rr1/xPB22p96rwvKeHUwOFeL2Ec8gY9pfLAD+XAZLFFXgi4YpX1w/GP1HXU4Y0c7rtNclBX2qRWnxB/vCgixHSSZ/qRJNO3TZxwBYvTw2aVOTjderXMbsvRCZ8rmpxdHTcv39/enr6+vXr9fT0iB3VRigUXLp00dnZeejQoc+fP6/1ertmZvsvzR03ozthKXfih68Lxh66euoZLqol2mTX2np/1OZZ2ybRGFJfWlFOycYxuzaN38PKV760OAAAAAAAAAD8Ap48eYIQ6t+/vxprHgDwU4DgBAAA1AW9J8ZcJtVScQ5VXGyk0ciAIVIH083GGu6Sje8L9n4pu9/AI9GmaP3ptKyZttSq+ZeF/+1PPsQX8Wu6S0VTHToGdBzHIH+fB8cROpjwdF1sqBAXqeURDvoGtyZM7GcvtSOyhMOZfuvG0WpJn+pkWLuWV5ZOdDSXyqJWXFY5/8TN7beeCITfx29mZrZhw4b09PStW7cqntW0ikgkCgsL8/Dw6N69+40bN4RCeeEiGp0yY2n/XWdnWVhLFfDgcQWn9j5YMe1E9peimu4VI1PI41eNOP5+T+vuxO3Jz669mNV62b/nntb1SwAAAAAAAACAXwOPxzt8+DBC6M8//2zssQDQ0CA4AQAAdaQ1B2mOl2zA2ZsQr/ZF6A2GjNG7mO3VozevasGR6FXeupyKqAYeiSZZY1Xz5a11nSUbY0ve7UzayxFy6umhfc2bn+vmbUjXkmy8+vmNz4tL5QKeWh6hTaMdGzp8lUc3yV0aQhz3j4qYExpSxlP+KXYmBpcXe03q5irZiOPoYkTsrKPBeawyyXY9PT1fX9+MjIyzZ8+2aNEC1V1ERMTo0aMdHR39/f3lVx5r2db6yPWFwyd1xjCpqiGfYjMWjDt0N/hVrc+yaGq2+/GGJUd9NLSllgKV5LF2TDu4dtj2gqxaghwAAAAAAAAA8OtZv359RkbGnDlzGrcUNgCNAoITAABQZ5jOBkTrJNEgxIsXIEFyow2oGipJq5v5QSbVtqpFhAte5Kws4MQ28EhoJNqyZovaG0jt5IhnJ25L2FUmKK+nh7roW17pOcuBKbUFITI3ddKzUzmV6kkihCE0t13740OHM+l0yfaHaakjgi6lFis/z06nUlaP6LnFy1OTLpUHKSYta8zuCxHx6YTraTTa1KlTP378ePv2beXeZdPT01evXm1jY+Pj45OQkFDjwBjUeasHbz4y1dBEquxnRRk3YGPImnlnC/Nq+bvFSNjgOX2Pvd3Vtrcz4dTLsJjZrZfdCXyoxPgBAAAAAAAA4Cd18uRJf3//Hj167N27t7HHAkAjgOAEAAAogYLpHUBkm+8NeBlePAeJfqCl33SyfjeLw5qU7zl/hDg3KntJCTexgUdCwSgLHeZ2M/KQbEwrT9+esKtUUFpPD7XS1LvcY2YHI1vJxgRW7vinJxJYuep6Sm87+5DxEx0NpPIdpRYXjQi69CA1RZWeh7VreWXJpGaEFE/llQtO3iKkeBIjkUhDhw6NioqKiIgYM2YMmUxGdVRaWhoYGNiqVat+/fqFhobiuOwMVe4ejsdu/TFoTHtC++vIZJ8RAY/D3tb6IHN70x3/rlty1EeTqSHZXlZSvm/usb8Gb83/UljXwQMAAAAAAADAz6W8vHz58uWzZ88eOXJkWFiYpqZmY48IgEYAwQkAAFAKSQ/TD0QkiSXkwq94yQKE11c1BSVoUky7mgfQyLpVLXxRWUT2wlK+8qWblUPCSLPtp3ua9ZVszKjI3BznX8STl01IFTpUxkmPycOauEg25laWTnp2KiJXpciBJDt9/ZvjvQY0dZRsLOPx5obd9o+KENUwxa8IWxP9S0tkp3iaevBKVhFL5l1du3a9cuVKeHj4lClTaDRaXR8qEokePnw4bNgwV1fX06dPc7nc6tdoMxl/rB/+1+4JOvpSb89lpZwdvsFblgexSyrkPwXDsMFz+ga+3+3ez4Vw6r97sbNdlt0JfFhTdAQAAAAAAAAAfmosFsvf39/JyenKlSsnT568fv26trZ2Yw8KgMYBwQkAAFAWxR7T3Y+QxBJ13mucvbbxBiSDDs2hq/kBCun7JDJXWBSZvYgjLGjgkWAIm2ztNdJymGTjN072pvhtuZy8enoolUT2bzdiYfMeko3lAt78l0G3Mt+p6ylaNNrhwUMJJShwhI6+fjU7NKRU1vy+gugUyuoRPfd4D9FmSCWP+pCZM2HfpadxaTXd2KwZu23pAAAgAElEQVRZs6NHj2ZmZq5fv15fX1+JR797927GjBnW1tarV6/++vVr9Qu69Xc+dvOPzr2ItS4iHnz0GRHwMrzG9FBVTG2Mt99fu/bKMqaB1It4Oati39xjy3ttyErOVmLkAAAAAAAAAPAje/bs2ZUrV/z8/JKTk6dPn97YwwGgMUFwAgAAVEDviun8JdVSeR2Vn2yk0chmQG/V2WwXCftewKCcnxXxbSFPKHvpfb0aZTl8jNVIyZYCbuGWBP/Mii/19EQMYQtb9NzsNoxC+v4rjy8S+sbc2h8XLsSJ+ZGUfQqa26594BBiCYrH6Wmjrl7+lK9S9KWfi+PlxV5OFsaSjSXlnEWnQnaEPC3n1lh/29TUdMOGDRkZGfv27bOyslLi0Xl5ef7+/g4ODuPGjXv58iXhrL6h9vqASUs3jtTUlvqqiwvLNi6+uHfdzeKCMlSb7mM7B77b3XGwG6H9w7O4ee5/Xt15m1upnjLmAAAAAAAAAPAjGDhw4Js3b+bPn6+hoVH71QD80iA4AQAAqtGcgjQnSzbgpf6oIqixhiOTqUbHTqbbMez7Jg8WL/lx1lQ2j1hduQEMtxjibTsZQ983GRTzSjbEbbmfU4/FkMfYuAZ2nsSkfp9DxxE6kvhsVHhgXEmOup7Sx94+dMKkZoZShSJSioqGXb7o9+hhGU/5SXZbE/2LiydUT/F0/tmbodvPBL/8ICd/FJPJXLx4cWpq6tmzZ1u2bKnE03k83rVr1zp37tyuXbtz584JBALJs56j3I9eX9S2o7302PD7N2OmDdx9au+D8jKO/P6NLA02h/quvbJM14gp2V5Zxjm+6vy0Zotu7r/L5/5ACdMAAAAAAAAAQGkUCqWxhwDAjwKCEwAAoCpMZw2iSVZ7xnH2elR5q9EGJIuFVk9Xo9VIIiRQxv8anjU9tzK64QfT16TXTLtpJExyKwP/QublAylHKoSV9fTQLib2F7pNN9PQkWxMZOWOf3riSOIzdW2hsNHTuzFuAqEEhQjHL3983+/8mXspyUr3LE7xtGPyIG2GVCWJfHb5xmsPvQ9ejf8qb38GjUabOnXqhw8fQkJCevToIedKOWJiYry9vZ2cnPbt28dms6vaTSz0tgVOn7tqMI1Olbyey+FfPfVsxqC9IZdeCvhC+Z13H9v5+Ie93UZ3IrQXZBUdXnp6Vutljy9F4iIoRAEAAAAAAAAAAPwiIDgBAACqI2N6AYjiINEiwlmrmdRnjTYiWex1RjkbLJBs4YtKI7MXpbKuNvxgehh3/aPpfAomtWDkv6LXfh/WJZeprVo1gZOu6bWes1vqmUs28kXC/XHho8ID40rUU+GgqgQFWaIEBUIop6xs/p3QSTeC04qVrwE+0NXp+vIpLtZmhPa3n79N2HfJ79I/RWXyilGTSKRhw4Y9efIkNjZ2zpw5ym0iTktLW7p0qZWVlY+PT0LC/2tLYCRsxOTOx24tauVmQ7ieVVx+ZFvYjMF77wa/kh9d0DfVXXdt+aaQVYYWxDoZ31Jytk3eP9tl2bNrL6BWNgAAAAAAAAAA8AuA4AQAAKgDSQfTP4PITSSahGYau7TITxprRDI115/e1mglJvHDH8eFsQX+sQX+OF7Lwna1c9d3XdV8uQFNahq6kFe0JX7H3ez7OKqXCWhjhvaFbtPG27lj0u2JrNzxT08eTngmEKlhC4W4BMWFUWPsqxWjfv4lc8il84df/af0gywMdE4tGDu3fyc6VSq0I8Lx0Jj4odvPXo56J6yt87Zt2x47duzz58/bt2+3tLRUYhilpaWBgYGtWrXq169faGioOGBgbmWw49RMnz8H6ehpEq7Pyy4J2Bjyh9eRt9Gp8nvuNLRd4LvdwxYMoNCIm50z4r5uGr9nsceat+EflRgzAAAAAAAAAAAAfhwQnAAAADUhm2EGFxBZcp5XaET1R9xHjTYkWZrqTuhqfoBKkkrun8q6Gpm9iC8qbeDBNGc22+K8wVWvjWSjEBde/nL1WM4ptoBd042q0KTQNrYdcr77dGstA8l2vkgYEB8++onatlB0smpyf7L3Ko9udLLUJHulQLDzeWS/82ejMjOV65lOoSzw7HzHd/pQ9xaEU+xKzvZbT2aeuvMy5Wut/ZiYmKxatSotLe3q1asdOnRQYiQikejhw4fDhg1zdXUNDAysrKwkk0kjp3Q5e3/FjKX9NbTohOuT476tnnXad/bplPhvcrrVMWQuOjDzbNKBwXP6ksjEd5X4l0kr+2xc0m3th4h4JcYMAAAAAAAAAACAH4HywYm4uLirV68ePnw4Pp44NcDn88+cORMXFweJFwAAvxeyBWZwFpFNqxowTIiXLELcJ403JhlMNTv1sTrHpEql38mtjH70dUop/3MDD0abor202aLJ1l6EFE/JnJStn3d9YH2qp+e2M7S+3Wfu7GYeJOnkS4ms3LFPTuz+9JAvUsNWEgqJNLdd+/tTpvawsSWc+lxSPOVm8LL7/xRVKllmw1RXe+vEASfnjWlqZkg49bWodPHZOwtPhmQVsWrth0ajjR07Njo6OiIiYuzYsWQyudZbqnv37p2Pj4+tre3q1auzsrI0NGnjZnQ/cXvxoDHtydWiC7EvUxeNP7JleVD2lyI5fZpYGy056nP8/Z7uYztjGGGvC/oUlbCsx7pV/TelvfusxIABAAAAAAAAAADQuLC6xg9ycnJ279594cKFnJwcccvly5cnTJggeU1cXNykSZPevn3r6Og4a9asefPmMZlMWZ2B39Hnz5/t7OwQQkwm08vLS/IUlUqdNWtW27Zt1ftENpvN4XBMTEzU2+1voqSkRCAQGBkZNfZAfirCz3jhRCTK/96C0TC9w4iuZBXiesITsV/krMyvfC3ZSCPpdDLbYaLRvuHHk16ecSj1aC5HqqozhrB+pn0mWo8jY8rMmCsipjDTNyYks5w4S95Mx2Sb+4hW0gUqVPEoLW1N+KOcMuL2FF06Y3GnTt5tXEnV5t8VJBSJLke9O/TPizIOl3CKTqVM6ubq07ejpnSpajnS0tICAwOPHDnKZtce2JCJRqMNHz58+fLlHTt2RAh9Sc8/d/BR5L+fqr9yUCjk/iPcpi7qq2egJb/P9A+ZFzYHP7v2ovopjIR1G91p5paJFk2JpTiUwOPxiouL9fX1aTRa7VcDaRwOh8ViGRoaUijElFygVrm5udnZ2S4uLiQS7GyuM3jZU0VRURFCyMDAoNYrQXUFBQU0Gk1HR6exB/JTys3N1dLS0tbWbuyB/Hx4PF5cXJy1tTV858rE4/HodDpCiEajcbnE12MAAGgYQ4YMuXPnDkIoLCxs8ODBjTiSpKQkMpns4OBQ/VR0dPTZs2eFQqmlmWfPnhX/8CwqKtKvlqpa7eoWnDh79uz8+fMrKqSKbVYPTojdvXt3+fLlCQkJ5ubmu3btmjhxoqqDBb+Ejx8/tm7duqazdnZ2//33n3qfWFZWxuFwYHpdOWw2WyAQwFtvXZHxTB3hfBIqrGrBEaOUvJuPuTXiqKrDcWEK90gWN1SyEcPITelzLenDGn48XBH3WsGNmLK3hHYHht0UEy9dim69PVdwOvPVpa+xIunfiWSM5GXVdqZ1BypJPaGRMh7v6Pu3wUmJwmq/fNsYG/t26OSgp/wvflYF91zU+1tvEkXVik4bMzVn9mjr2VrGu0iNQy0ru3Hjxv6Ag5kZ6UoPqUOHDj4+PoMGDaJQKClx2UHHIhPeZ1W/jKFB7Tei7fDJ7RmatcQDkv5LDdoaEv88ufopCpXcw6vz6BVD9M1U+n/C5/NLSkr09PSoVEXDOaAKl8tls9kGBgbK7b/5zeXn5+fm5rZs2RKCE0qAlz1VlJSUIIT09PQaeyA/paKiIhqNBtPrysnPz9fU1NTSqmWBAqiOz+cnJiZaWVnBd65MPB5PXFMNghMAgEZUFZy4dOlSv379GnEkqampZDLZ1taW0I7jeMuWLQsKCmq6MTc3twFW/9QhOLF27drNmzdXb68pOIEQqqiomDNnzsWLFxFCM2fOPHjwIIPBUHqs4NeQmJjYvHnzms62a9fu33//Ve8TS0tLuVwufF5VDgQnlEbGkxmVcyiksqoWHDEqaAECkmsjjkqmTM6N5PIjOJIqoWzFGOKk+QdWb/sV5PiP/fpK7nUezpNs1CZrTTKb4KzVsv6e+471bXPCv18qSgjtDlqGa1v0b85U26/khKLCLS+ff8zPJ7STSaRxTs0XubXTUGHVeVJ24d5/Xn78mlf9lJut+WLPjvYmdYh/iESi+/cf+O/a9+5NtNJDsrW19fb2njZtmp6e3ofXGecOhH9Jk/H2o2+kPXp6516DW1dPA0Xw/knchQ3X09/LqNhB06D1ndpt1LJBusZKLmLl8XgsFktXVxd2TihBHJzQ19eHnRNKgOCEKuBlTxUQnFBFUVERlUqFPAHKgeCE0ng8XlJSEgQnasLj8UxNTREEJ357fD7/xo0b9+7de/HiRXZ2dmlpqYGBgampqYeHh6en5/Dhw1VcjVRRUVE90b1MTCazWbNmqjyrgZWWlp4+ffrWrVuxsbFsNtvCwsLR0XHChAmTJk1qlB/akZGR/v7+YWFhFRUVGhoa9fSUtLS0+/fvP3r06OPHj1+/fi0vL0cI7d+//48//lCuw6rgxJUrV/r376/OsdZRSkoKmUwWp7Eh6NixY1JSUk03FhQUGBoSk0irnaLBiZMnT86aNUvmKTnBCYSQSCQaPXr0rVu3EEKenp6hoaGwFPE3V5XWydDQcOvWrZKnaDTa0KFD1f7/Hnb6qwLSOqkiI+UfK20/EpJI44NpYwZnEdWl8QYlW07F8+hcX76oTLLRVLNzJ9PtVFIjLAb8xsnel3Awm5cj2ShO8eRlPZZQnUKNOEL+oYSnJ5OfV99CMcOx86IWvWhq2kIhwvErnz5sjXhWxuMRTplpa6/r0WtgU0elOxcKRZeeRJ989r6wrIJwikwijezQavGgrnpadVsr8N9/r1ev3fL00R2RkK/cqMSp/JYuXerUzOlR2NvT+x8U5skowN7Eznjqwj5d+7WqXmRCEo7jEcEvT625nJUso3q5hjZj2IIBE31HaerU+c0V0jqpAtI6qQLSOqkCXvZUAWmdVAFpnVQBaZ2UBmmd5IO0TgAhFBQU5Ofnl55e4y5wOzu7v//+e/LkyUo/YuPGjRs2bFDkyh07dqxcuVLpBzWw8+fPL1u2TLyank6nGxgY5ObmikQihJCBgcGxY8fGjBnTYIOJjIzcuHHjw4cPxYf1EZzIy8s7fvz4mTNnUlJSEEIYhnXp0qVHjx6tWrVq0aJFixYtlF5n/1OkdcrNzb1z545AIJBsXLp0qTht0g+U1ik3N7dp06ZlZWUyz8oPTiCE8vLyHB0d2Ww2QmjatGmnT59Wbqzg11AVnLC1tZXze0KN4POqKiA4oYqkpCQt2mcLTT8kksjdjzExg7OIWmNys8bC4qU8z15aLvgm2ahDc/Aw26tFtWz48XzL/XaP/e+T4meEdjstmwUOc00Z9fgdHVOY6fcmJKOMWIXCUcdkm9twZ30LdT0or7x8e2TEzYS46qd629lv6tXHQqmVmCKRKD8/n0JnXImOO/n4FU9ArOytq8mY27/TRI+2JFLdqlzEJaQuXrH+6cMQPlf2K0GtSCTS8OHDFy1a1LmTx+3LL6+eeFZWyql+WXOXJjOXebZ2t5Xfm4AvDL8ceW7j1Zx0GTtFdI2YY5cPG7l4MI1Rh1UREJxQBQQnVAHBCVXAy54qIDihCghOqAKCE0qD4IR8EJz4zQkEgsWLFx8+fFiRi6dPn3748GElZp/ZbLadnZ34d6h8TCYzMzPzp9jnxOfzFy1adOzYMYSQrq7u9u3bvb29NTQ0OBzOlStXfH19s7OzEUILFy7cv39/fb+yPnz4cO3atS9fvpRsVG9worKycufOnf7+/uKJeENDw+XLl0+cONHGxkYt/f8UwQmZDAwMiouLUUMFJxT6n7Rjxw7JyASdTu/ateuUKVOGDVMoI7mJiUlVwYkzZ848fvxYiYECAMDPiIc7YvrHESax8xEvxYunI/6nxhuUbLq0pr2tzhtpSFXFYPNSH2VNya+MafjxUDDKWNORix0XaJI1JdvTyzPWfNr4vFD5LEO1cje0Duk9b3YzD0KF6mR23vinJ3d/esgTEaf7lWOipbXHc8DFUWPsq/2+f5ye1vfc6X0vX/CFSj5Lg0ad79n5xsqp3VsQN2+yKjj+t55M2H8pNv2bzHtr0rK5w79hFz7FJw0YvUhTV5lS4SKR6ObNm717927TtnV6/os9l2aMm9GdRidOZCe8/7Jy2gnf2ac/J+fK6Y1CJfeb2uN0/P4lR330TYmlJlgFpSd8L05zWnQn8KGwWoQGAAAAAAAA8OtRPDKBEDp9+vSoUaMIy8YVERAQoEhkAiE0d+7cnyIyIRQKx40bJ45MaGtrP378eO7cueJIAIPB8Pb2joiIMDY2RggdPHhw6dKl9TQMHMdDQ0M7dOjQr18/QmRCvV6/ft2mTZv169dXVFSQSCQfH5+kpCRfX191RSaA4hQKTgQHB4v/QKfT161bV1hYGBERce7cuWnTpin4GMm6H2vXrq3jIAEA4GdGdcX0TyBMYoZdxMKLZyCBjKK+jYtO1utufsiGOUSykSdkRWQv+FwaWtNd9aqdvtsW5w1NtaUi/Bwh50hq4NG0E1xRfa2EYpApy1v1vdBtuq22VKI5IS46nhQ1OjzwY3HdpvXl6NLE+s7EKYs7dqZJ1xCuFAj2R78YFnTpTbaMzEUKsjHSOzRrxIEZw5sYEl+I47/meR+6svzcnZwSGemV5HC0M78XHPDk2Yv+4/wMLV0wTJklM0lJSatXr3Zq4fAk9sJS/76DxrSvvvQm9mXqvDEHd/oFy0wAVYVCowye0/ds8sFZ2yZp6WoSzuZ/Kdw399js1sv+PfcUr1YqHAAAAAAAAPDLOHHiRFVkgkajDRw4cMOGDceOHQsICFi2bJmjo4zcuffu3VuyZEmdnlJWVhYQEKDIlVQqddGiRXXqvLGsWLFCnJMfIbRv3z43NzfCBQ4ODocOHRL/OSAgwN/fX+1jSE5OdnFxmTNnjpWV1YgRI+pvN/bBgwc9PDySk5MRQtra2iEhIUePHoW9aI2l9rROycnJ4rItFAolNDR0wIABVadu3rw5atSoWtM6IYTevHnj7u7+/0di2NevXy0s1JYWA/xcIK3TzwXSOqkiKSmJSqX+v+gQ7zlePAfhEpPpJCPM4AKiKLqxriElsy6/L9hDKJHdVHdCG6PlmGJRbdXl5eUxGAxxngQhLgr5FnorKxRHUr+zLDTMFzrMbaJpVX/D4AgFhxKeNEAVCoTQ55LiNeGPojKJdZ4xhEY0b7m2R099xbYbi9M6MZlMTc3vM/UCoSjo+buD956Xc4lVLjRo1Gk93Wf16UCj1O1rEQpFYY8/7g+8lfT+SW76SwG/sk63S3J3dx89wouXb/LicWL1s3QGdfjEzuNmdddm1vI3wC4svbrr9q2Au9xK4peJELJ1tp6ydkz3sZ3l9ABpnVQBaZ1UAWmdVAEve6qAtE6qgLROqoC0TkqDtE7yQVqn3xaLxXJ0dMzPzyeRSPPmzVuzZo2ZmZnkBTiOX716dcmSJTk50tUNMez58+edOnVS8EHbt2/39fU1NDTs3bu3/Cvd3NxWr15dp6+iUdy/f79qvtfV1fXNmzcyL8NxvH379jExMQghCoUSERGh+F+aIjgczoMHDwYNGiT+NHHmzJnp06dLXqB6Wiccx319fasiK+bm5qGhoVVT1uoFaZ0UVHtwIjw8XPzNtm7duo0bN0qeUjw4ERMT065du6rDoKCg8ePHKztm8HOD4MTPBYITqpAKTiCEuJF4yVyp+ATZDDO4iMjWjTI8+bLKH7/KWycQSU03m2l6dDTdRiVp1XSXGkkGJ8Q+suKOph1n8dmSl1FJ1PFWYzzN+tbrYGKLvvjGhHwuKyS0N9Ux3uY2orX6qlAghO4mJ6178riwgljL2khT07dr95EtWtZaJkJmcEIsj122Lywy7E189V/+NkZ6f47oWT0HVK3Kyrnnb0Zfuvn8a/LznLQoTrlCu5tlMjMzGzJwND/PPCdDRpyDqasxdka3EZO6VE8DRVCQVXR1Z0jYsX/5XBnlu1t2bjZ9s1fbXs4y74XghCogOKEKCE6oAl72VAHBCVVAcEIVEJxQGgQn5IPgxG9ry5Yta9asYTKZV69elVxaTZCRkeHp6ZmYKLUoqm/fvv/++68iTykvL7e3t8/Ly9uzZ0/9ZTdqSOXl5c7Ozp8/fxYfXrhwYdKkSTVdfOrUqZkzZ4r/7Ozs/PbtWzJZbcv1CPh8vq6ubmXl98+GKgYnhELh1KlTL126JD40MjJ6/vy5zP00agHBCQXV/uGnsLAQIaSpqVnXXU6Svn79Knn47ZvasmEAAMBPg94V0zuEMIkZT2EOXjQZCb/WfE+jsdTq3cvytCZFaqVJTkXUk6wZFQLlswypwlm35d+t1jVnNpNs5Iv4FzIvB6QcrhASZ/PVyNWgya3ec2c38yBLV6FIYedPUGsVCoTQIMdmj6ZOm9bWlVDxoqCiYvmDf7yCr6YolttUJhMd7a0TB5yeP87JwphwKqOgZMGJW7OPXU/LrVv/2lr0eZO7Bx+bP2PWXHfP1c07T9c1UfL1Licn58TpQ+fvrSukPhLQif/NSlmVp/Y+mDV0393gVyKRSGYPYkaWBvP3TT+dsH/wnL4kMvFVJ+5F0so+G1f135Qck6bcOAEAAAAAAAA/mkuXLpHJ5CtXrsiJTCCEbGxsQkNDdXWlStaFh4fn5eUp8pTDhw/n5eUZGRnNnj1bpeH+MAIDA6siEwwGY/jw4XIuHjNmTNUqro8fP546dar+BkalUi0tLdXVG47j8+bNq4pMMBiMW7du1V9kAiiu9uCE+Nu1ZcuWqoRKnj17JnkoWV4bAAB+I/QemO5ehCRWFgiz8aLJSJjVeGOqkS7NsbfVWQN6K8lGFi/l0dfJBZzYRhmSAU3ft/nKkZbDSNJ1Dl4Vxfz1cWNKWT3ONf+/CkX36XayqlCMCj/2QX1VKHTpjPU9el0ZM96p2qal6KyvAy+e84+K4ArrXLStiru95dVlk7Z4eeprE1edvEzKHL37/PZbT6pnf5LP1Ehn7R+DArdP7tmrX6uuc9r0XmJq14lEVmb5vEgkeh378lHMqQ8F53IqYvhCqV0UedklARtD5o0+GPHgYy1DsjFectQn8N3u7mM7Yxhxw8mbh+8XdFi9dtj29A/EPFoAAAAAAACAn8vHjx/j4uKWLVs2cODAWi92dHRcs2aNZItQKIyKiqr1Rg6Hs3fvXoTQihUrfo2NX1wud/fu3VWHvXr1kv916ejotG/fvupw586d8teNqUiN+2LXrFlz/PjxqsPAwEAPDw91dQ5UUXtwQpygTZWkLjweLygoSLLF3Nxc6d4AAODnxuiP6e2Tjk9k4UXTkEihZRoNjEE26mF5wpo5SLKRKyx59m1+RumdRhkSCSONshy+2mmFPk2qwnMBt2Bz/PYbWSGEuhTq5WrQ5GZDbaFoZ2ER5jV5XY+emlSqZLtAJDr6+pXn+XPPMj4r3TkJw4a1axm2etqkbq4kktTXIhCKLkbEDtt+9vbruNpSPxK1dDQ/vNlr0/KhTZu1dHAd7T7Az8Z5EI2hZLKLbzlf3qX9E5FyMC4njM2RSgubkZK3ZXmQ7+zTKfG1xIRsWlqtvbIs4PkW1z6tCadwHH8ZFuPjumLT+D3ZabnKDRIAAAAAAADQ6KKjo/X09AghBznmzZtHmIVXJMvL4cOHs7OzDQwM5s+fr8wofzwhISFZWd/XSnbs2LHWW3r16lX15+Tk5AcPHtTLyBBCCIlTtKkuJCRk27ZtVYcDBw6cMmWKWnoGqqs9ONG0aVNNTc20NOWXo/r7+xO+w21tbZXuDQAAfnqMAZjuVqmfwMLPeNFkJMpvvDHViIzROpj83dpwkWQpbBHOe5W3/kPhAULR7AbTQsdpi/OGNnouko1CXHgz6/bepANlgnrcnyfeQnGx+4yatlC8L1bbPhgKiTS9rdujqdMHOjYjnMpglXjfujHz9q2cslKl+9fRYKwe0fPq0knu9sTdsnnssr8u358UcPlDZo7Me2uCYah3F6fLB2YsntFbX9/IslkvN09fB7exmjpKrkvg83lfCt69SDn5X/rZ7JKPIvx7+Cf2Zeqi8Ue2LA/K/lJLKqrmHR13/LvO/8Fap/ZNCadwEf7s2osZLZfsm3usKKdEuUECAAAAAAAAGlFiYuKsWbMULwKkpaXVrVs3yZZas7xUVlbu2rULITR79mwmk6ncOH80VWmOxNzc3Gq9xdXVVfKQsB5dvajSC/WUk52dPW3atKqiy9ra2kePHlW9W6AutQcnNDQ0+vfvn5SU9PbtWyUeEBUVtWXLFskWJpPZtWtXJboCAIBfh8YoYnxCkI4XTUei4sYbkxyYk960jqbbyBhDohFPLDnzMme1EOc0ypiYFObyZn9MtvaiYFK5g2JL3v31cUNiaVK9Pr2tgVVNWyi8np5S7xYKM23tw4OGnBg6wpJJfNV+nJ7W/8K502/fCOu6x0GCk4XxmQXjDswYbqFP7P9DZs7kgCC/S/8Ul8moUC0HlUIeN9jt6uFZYwe7UWk0U9sObfsuc+m92NjaHSMpWTCtuPzr+68hTxL2JWQ/qOT9P4qA43jEg4+zh+0P2BhSXFjLxwm3vi4Ho7f5P1hr38aWcErAE9wJfOjtuPD0mqByVj3WLwEAAAAAAACo3Y4dO3bu3FmnW9q0aSN5qKenV9OVYsePH8/OzkYI+fv729vbe3l57d27NzU1ta5D/XGw2ex79+5Jtjg5OdV6V8uWLSUPw8LC6i+zU1V9C1UsXLiwpOT7KrQVK1ZYW1ur3i1Ql9qDEwghcZX2ZcuWCYV1m2qJjrF/WA8AACAASURBVI4eNGgQl8uVbBw+fDiDwajpFgAA+F1ojMZ0NyEkMbUtSMSLpiIRq/HGJI+Vdt9elqc0KaaSjVnlj8KzZlQI6ra4Xl0whHma9V3bcrUJXSoTZRGveGvCzhtZISK8Hjd2VG2hsGdKZT78/xaKx+rcQoEQ6mNv/+/UaYs7dqaSpSb3S7ncv58+GRF08V2OSv8KPVvZh/zpPa9/JzpFKtgjwvHQmPgh289ciIgV1vGlU5epsWRG7/N7p3m0c0AIaetZObab0G7gXzbOg+iaShay4gs5GYWvIpIOv/58KYcVL17/IhAI7wa/mjFoz6m9DyrLufJ7cOvrcjRmx9oryyyamhFOccq5wbtCl3XacHHT9YrSusVjAAAAAAAAAD8RY2NjycNmzYi71SVxOJwdO3ZUHaanpwcFBS1btszR0bF79+6nTp0qLy+vr4HWm5cvX/J4UrUGraysar2radOmZInPpIWFhR8/1lIOUGkkkkIT13I8ePDgxo0bVYcaGhoLFixQsU+gXgr9G48ePbpLly7h4eELFy5UMD4hFAr9/f179OjBZrMl2xkMxoYNG5QYKAAA/II0xmE6f0m1CBLw4h83PqFHd+pleVafLrVQooSbGJ41rZj7qbFGZa9lt9l5XSfDDpKNIlx0M+u2f+LuYl79Juppa2B1s5ePjC0UpfleT09uef8PR8hX17M0KJQlnTrfnjDRrVrppo95eaOuXvZ79LCMV7dC1pIYNMp8z843/5zSvw3xvZxdyfG/9WTkzvPPEzPq2q2NpcEO35H71o9tamOMEKLSmZbNerl7+rbqOkffrIVUfE5hOMILy9LffbkRmXwkPf8FT1iBEKqs4F099WzawD23LrwQCuXFUTAS1n1s55Of9i056mNoQQyTlJdUXNpyY2rThVf8b/G5avvnAwAAAAAAAPw4JMMJVCrV3d1dzsUnT56UrM1QBcfxiIiImTNnNmvWLDAwsF6rQ6vd8+fPJQ8NDQ01NTVrvYtCoRDiOtHR0Woemfps2rRJ8nDatGmqlFUG9UGh4ASGYQcPHtTU1Dx69Kinp6f8gFhpaenhw4dbt269evVqwp4JhJCfn5+Dg4Py4wUAgF+MpjfG9JVq4cfhxbMR/oMuu9CgGPewCLTU6iXZWCnIf5I1K7Psn0YbFVljgYOPj/1MGklq12ccO+Gvjxvelbyv16fTa9xCgZ9PjR726OirgjpP6MvR3Mg4eJzX7v4D9DU0JNtFOH754/s+507fTIhXpf8mhnq7pw4+MXd0UzNDwqn0vCKfwBsLT4Z8K2bLvFeO9i42p3dPXbNooKGeFkIIYZiuiWOLLjPc+v9p2awXhVb7S7BMFbzipNzHTxMC3n25UVLxFSHEKi4/6n/HZ0RAxIOPuNxsVxQqefCcvmeTDszfO13PRJdwlpXPPuF7cZrTH3cCH4rkhjoAAAAAAAAAPx3JYEOPHj3k1Kvg8Xj+/v7ye/v27ZuPj0+3bt3S09PVNsR6FhMTI3moyLYJMVNTqYQKnz412lJF+R4+fBgZGSnZMm/evMYaDKgJpfZLEEIIubq6BgUFjRo16tGjRy4uLh06dOjTp09paSlCKDo6ms1ms1isjIyM6Ojod+/e8fmylxlOmjRpzZo1ahs7+MmVl5dfu3ZNsoVKpfbt21dbW7uxhgRA49CagfByVBbwvYUfixfPxPRPIUzJGdt6RSFpdDbbGVcUGFd8HKH/T/4Kcd5/uWtY3OTWhguVWwuvuq5GXey0bA+mHP1a+f0ts1RQujspoJ9pHy/rsYTqFOol3kJxMOHJqeTnkhUgMsuLvCPPjrFx83PxZJDVUM4LIYQhNKpFy9529juiIoM+vpecgM8rL1/x7/0u5hbre/RspsCyl5p0dLS+tmxy0PN3h/55UcaRWmrwNC4tOiVzes92M/u0J+SAko+EYQN7turZudmlW68u3vqPyxMghBjaRjbOg5q06F+Y9e5bSkR5iTK5sES4MIcVn8OK19Ewb6Lvaq7n/PVzwZblQc1drGYu9Wzdzk7OvXRN+sjFgwbM7H370D+Xtt2oYEtlc8rLLNg399iN/WHeG8Z3G9MJwxrn/zYAAAAAAABAvZKSvtcpnDFjhpwrg4ODCwsLFenz+fPnnTp1unnzZpcuXVQdX/0jxFGaNGmi4I2GhlLr2H7YwhuBgYGSh46Ojq1bt0YIiUSiyMjIx48fR0dHZ2dnV1RUmJqatmjRYvTo0X379iWTlayS+DNisViPHj0i5EniqZCPQQmY/EWFBMHBwTNnziRkalLQ5MmTT548qZZKJuCnlpycLCeRX7du3cLCwtT7xNLSUi6XC/u2lMNisYRCoYGBQWMP5KeUkpJCpVJtbGwUuZjGP0znn5RsEZA6VNL3IuzHLdKTww3/VOovxKVmrk3pPZ2Zq8kYXcXOCwoK6HQ6k8ms6408ES8k/86T4meEdhuG9QzLqUZU4m4AtfvIyv47/sHn8iJCu5WG7poW/d30FV2NoqCYnOwtL56nlhBLqdPJ5Omt28x0aUNT7dWqsKziRPibsNgkUbUXBhMdrTm93Qe2cVSi24Li8kshMfefJRK6LSv5WpD5X37mGz6vltIRclDIDEu91jaGHTRoegih1u1svP/obe1gXOuN7MKym/vv3jv2iM8VVD/b1M1u7Moh7Qa2VXpgvzwOh1NaWqqvr0+pS9QKiOXn52dnZzs7O6ueWvc3BC97qiguLkYI6esrWQroN1dUVESlUpV4XQEIofz8fE1NTS0trcYeyM+Hx+MlJCQ0adIEvnNl4vF44pwzNBqtej4PRRTzKsr4yr+LAuUYM5gMcsO9Q7LZbGNjY/EkrK2tbWJiYq0zllwu99u3b6mpqQkJCS9fvgwPD//27ZvMKxkMRlBQ0PDhw9U/brXS1taWzG01ffr0U6dOKXLjkCFD7ty5U3Xo4eFB2KCgLsOHD799+3bVYUVFhYZ0/gA5CgoKLC0tJefZV65cuXHjxmPHjh08eLCmgEqbNm0OHTrk4eGhyrDFqv6Wrl696unpqXqHSktJSSGTyXZ2Mhbtde/e/d27dzXdWFhY2ADzgXULTiCEUlNTvb29o6KiFL9FR0cnICDA29u7jmMDv6YPHz64uLjUdNbKyoqwrUx1ZWVlHA4HPq8qh81mCwQCCE4oJy0tjUKhWFtbK3i9Fn5IE78k2cLDOrGx7ThSz3L7+sAWxn2q3MTHpeo6MMnNW2mso2EqfVgqKChgMBhKb6WKKYu9XnSLK5IK+GuSNcYYjGyj1VqVgSmCKxKezPzv2rd3QulfsmQMG2fRZrp1ewZJna/dfJHoXNynM58+8kTEulD2uror2nVwNzGVeaPi4r8VHHj4OjFbxnKh9nbmPr3c7Iz1lOg2+XPB6eDX8al5hHY+t6wi/31+xsu83GxlhosQQghDmIG2rZW+q6lOczKZ3G1Ai2GT2hub1bhZ+/+P5vPT4zPCT72ICn4lFMios9XSo9mo5YNadFEmJPPL43K5bDbbwMDgt1ptpC75+fm5ubmtWrWCDTpKgJc9VZSUlCCE9PSU+TEOioqKaDQa7PxWTn5+vpaWliL5zQEBn89PTEy0srKC71yZ+Hy+ODuNEsGJPE7p6phbz/PS6mdoQB46meLt0Glxy97kBnkXCg4OHjt2rPjPZ86cUWLSUiQSRUVFHThw4Pr169VLTWhpaUVGRrZt++MubGKxWISfIQsWLDh48KAi944ePVqyyrSzs/OHDx/UPD6EkGrBifPnz0+dOlWyxc/PLygoKC0tTUNDo3Pnzubm5nl5ee/evcvLk/pASiaTjx07NnPmTBUHXxWcuHDhQr9+/VTsTRVpaWlkMrn6wlkcx5s3by5+FZQpNzfXxMSknkdX9+CE2JMnT/bt23f37t2aMjiJNWnSZOHChT4+Prq6xFTO4Lf1+fNncbBOS0tr0KBBkqdoNNr8+fPVvveNzWZzOJwG+Hb6JZWUlAgEAvi0r5ykpCQqlSozOl0TnL0JVZyTaqK5Y7r7EVnVyeX6UynIjcpZVsJNkGykkXScDRfZ64xUOsVTXl4eg8GQk/ezVjmc3IMpRzMqMgntrXRaTLKe0ERTzTsYqntX9NXvTUhqaQGhXZ+mOcOxy1SHjnS1rgzKYJWsD3/8NONz9VPtLCzmunfoY2+vSv84jkJj4vaERRSWVlQ/62pnMaNX+56tlHlE1OvU/afDs3KqvRLhOJmfXZbz6m1MlHKvK2IMKtNSv621QTs6TattB/vhkzp37OFU0/wvj8crLi7W19fPTS+4tPX6o4sRuEjGo5s4WQyd6zlwVh+GlqqbhH4lHA6HxWIZGhrCzgkl5ObmZmdnu7i4wM4JJcDLniqKiooQQrASRTkFBQU0Gk2V15XfWW5urpaWFoR2lMDj8eLi4qytreE7VyYej0en01HdgxM4wsc+OfGxWPZaeNAwlrbs7ePUrQEe5Onp+eDBA4SQi4vLmzdvVFlbExcXN2/evGfPiHv3ra2t379//8POiGZnZ1tYWEi2rFixYufOnYrc6+XlFRQUVHVoZWX15csXNY8PIaRacMLb2/vcuXOERisrq5UrV86cObNq3x6Px7tw4cLSpUslEwVhGHb8+HEV4xNVwYmwsLDBgwer0pWKkpKSyGSyzCLQjx8/PnHihEAglTkgJCREvOOkqKioAbboKRmcEKusrHz9+vXz58+/fPlSXFxcVFREJpMNDAwMDQ1bt27dtWtXOdl7wG+rKjhha2vbMGWC4POqKiA4oQolghMI4Th7Paq4LNVGMsT09iDaj5uzUiCqiM71y66IILSbanR0M/5Li2qpRJ+qBycQQnwR/9KXqw9zHxPayRipp3GP0VbDmZT6zcPAFQoC4sPPpLwQVvtta66hM795j1E2bcmYOicibycmbH72NL9CRkF1d3OLRR079bCxVaX/0krukQcvL0e9FciqES0OUfRoaV/X1U58vvDa3Tdnr78sK5fxAZIkZGsIUl+/+Ke4iJgsS3EkjGyi08xK39VQ287eyWz4pM69BrWh0Ylz6FXBCfG27uQ3aWfWBv13L1Zmn9p6Wp7Tew2b52nR1Ezpgf1KIDihCghOqAJe9lQBwQlVQHBCFRCcUBoEJ+RTOjjxqSR7dHhg7deB+mShqfvYc0l9P+Xt27dubm44jpNIpMjIyM6dO6vYIY7j+/btW7lyJSF3v6+v79atW1XsvJ6kpqY2bdpUsmXdunUbN25U5N5x48ZJFpFlMpnKlQColSrBCTs7u8+fP1cdMhiM5cuX+/r6ykwn+O7duz59+khWFmEwGNHR0XJSv9TqpwhOyGRgYCBO+/kTBCcAUAIEJ34uEJxQhVLBCYQQjrPXoYog6UYMac3GmMsR+mEnrfC4osC4YuLbPBmjO+l5N9efSapjMWq1BCfEYopjT6SfLhMQ5+sZZPpAM89hFoPrtVA2QuhdcZZfzK3qWygQQpaaej5OXUfbuKlx8zKrsnLrk8fXk5OqR0QQQi2MjBd26DjQsZkqz8vIL95+60lkwmeZZ5uaGU7v1W6Qa3MKuW7/XdllnIu3/rsSGsOXlU8JIaERvSAz4cnb2Nd1HrEEbbqRhZ6LlUFbIyMjz5HuQ706Gpt9X81ECE6Ixb1IOvXXpXdPPsnsECNhrr1bD57dt+uojqQ6fsm/GAhOqAKCE6qAlz1VQHBCFRCcUAUEJ5QGwQn5lA5OPM9LmxF1vt7GBRSiRaHFDPWt76dUZSVasmTJ3r171dXt7du3x40bJ/m/TlNTMyUlxdzcXF2PUKP4+PiWLVtKtmzbtm316tWK3Dty5Mhbt25VHf6AwYny8nImkyk56V3rvhDJTF9iXbt2jYggLsFUHAQnFKToh5/s7Oxz584FBwcrV00IAACAwjBMZyPSnCrdiKPyQLx4NhLVmA2wsWEtDXzam2ykkqSWIQhxblxx4OMsb0Lep4bkru+6qdX6ljotCO0cIfdm1u3VH9a+Ln5TrwNoo295o5fPnGZdq+dxyqooWRcbNvLx0UfZiep6HJNOX+bW7tLwka5mMl6C4wvyF9wNG3rpwv3UFKWXJ9gY6x+ZPXLvtKE2RjIyHafkFP51+f7gbacvRsRW8uSlfyTQ0WbMm9z97B7v7h2aygrWkAu4ppp248fN3jZs5ASlU1SXcQuSch8/SQh49v78kYCz0wfu2b7qasL7r3Juadm52a7HG7aE+Tq1b1r9LC7C3zx8v2n8nunN/wjeHVpWLGPbCgAAAAAA+ME561swyD9utb/fRHsjYlp8tXvw4IE4MtG6dWv1bmsYNmzY2bNnJfPHVlRUBAcHq/ERalR9A4HiC4wISf5/wOpBycnJhOX44lI0cowZM2bAgAGSLZGRkfVU6BtIUig48ezZs1atWnl7e48dO7Zjx46SldwBAADUAxKmsxbTO4Qw6aRD3Gd44VDEl51h5kdgwxziaX3DUqsPob2Em/Aoa+rbgp0CkYxyBQ3AiG7o23zFsmZ/mDKI62pzOXn7kw9tTdhRvTqFGtHJlGWt+tzvt2iKQ0caiZjPNImdt+Bl0LgnJ8JzktT1RGdjkxvjva6NHd+liYyS7J/y8+aG3R5w4eyN+DiZGywU0bd109urpx2YMdzFWkZSo2/F7O23nnhuPnn4/ouSco7i3dpYGmxbNSLo4Kyxg90YdBmfD78WUgowd0+vbd5zVtja2io3eBEuyGHFv/586Un8odNnj80fv2fR+MMPb8cKZG/aQAihDoPcDkZvO/zKf/CcvnQNWvULvqXmHlt5bpzFbH/vA6lvPys3MAAAAAAA0Ch0qIx1bQaRGqQaM5DJmKHt23pA7depoLKycv78+QghbW3tq1evKp4jSEHjx4+fN2+eZEtoaKh6H6EuTCYxxTGHo+inNnFBgio/YHAiNzeX0GJtLeNzMcGKFSsILRcvXlTbmEANak/rxOFwmjdvnpGRUdVy5MiRuXPn1vPAwC8L0jr9XCCtkyqUTeskQZCOlyxCAsKaejLGXIa05qg2uvqVXf7sTcH2SgHxhUCLaulm5Geq2anWHtSY1kmSEBc+zA2/kRVSISSGSTCEdTHq5NVkrC61fkuWfatgHU2MuJ7xRmZUwM2wydKWfVRZMSQSifLz85lMZtU74utvWUdev3qcnibzehtdPZ927ca2dKaokEzmTXrWqcevn8WnyXyt0KBRR3V09u7hbq5ftyIfJeyKsEcfr919U1BUJvMCXaaGoznvc3zEnbDbhASvdVJVkcLBplWvwa1HTe1qbCpv+2pJHuv+6fDQow9yM/JrusbR3X7kokG9vLpSqMqX1/u5QFonVUBaJ1XAy54qIK2TKiCtkyogrZPSIK2TfEqndRKLZ+Xc+/qphFdZD0MD8thpG460aatHU3O0gGD58uV79uwhkUjBwcEjR46sj0ew2ezmzZtnZ2eLD7W1tUtLS+vjQSoSCARUqtRSsL/++mvz5s2K3Nu5c+eXL19WHbq7u79+rVLq3Zoondbp+vXrY8aMkWx58eJFp061T0QQKlU4OTklJCiZBALSOimo9o+OHz58kIxMoGqbdwAAANQXih1mGIyzN6JKya2gQrx0J+K/xXT9iVsrfhjmWt37a7h+KjqayrqKo++Vk8v5WRHZC6y0+7oaraaT6/2XXHVkjOxp1tfDqPPNrNuP8h4L8e9jwxEeVfDiddGbQeaeQ80HUUn1tafbQlP3b9ch3k07HYgPv58VR5jMf1P4ZUrEmS4m9stb9W2lp57kpO0sLE8Os3z97duR1/9VD1FksEr8Hj088urVvPbtlQ5RuNlZus20TMjKP/c05m5solAkVS67kse/GBF75fm7gW2dZvRu39TMUMFu9XQ0J4/sMH6I+8OohIu3XqV/IdbtYJVWvi5FVHq3RX6Dy/Nir1+7XKRU0WwRLsxhxeew4uO+GcQmtr1+/lm/IR1He3e1d5Jd6VrPRHf8qhHjVg6PvhNz88C92Ecfqq/2SI5J2zHt4PFV5/tP6zV8/gDjJop+1QAAAAAAoLG00DVroSv7DRD87G7fvi2uMOHv719PkQmEkI6OzsKFC//66y/xYVlZWWlpafVtCo2OQqEYGBhIfnpSfOeEeOa6io1NvSfjqqvKSmJ8UVdXoTWIQ4cOPXDgQNVhYmJiRUXFD7g15FdS+wREQYHURIC2tvaoUaPqbTwAAACkYQxMdxumuwNhDKl2zr944ehqmyp+IFQSs63Ryh6WgUyqLeHU17KH9zNHpbFvNMa4EEJIm6I1xcZra+u/2+q5EE5xRdybWbdXvPeNLHiOI6WLMtTOgWm0r8PYkD7zBli2rH72eV7amPDAuS8uJ7KIu0+U1s7C4uSwEdfHefW2s6++Wf0Lm+X36GHPM6dOv33DFQqUe0RzS+OtEweErZ42qZsrnUpcACEQikJj4kftOrfwZEhs+jfFu6VSyQN7tjq/d9q+9WM92jlU32rPFwj/+1T8Kd929Oy9m7Yd8PDwUG78CKEKXlFSzuOHH3f7H/hzVL8Fy6Yci3jwUSgUybwYI/2PvfMOaOpqG/i5mRAIe2+QGZYyVARFFMFRq6iIWuteta3W720dbW372l21ta2tddaBCycqCgoKKjhYyt57h7ACIft+f+R982K4CSE3DOv5/ZXce3LPiZLk3PM7z/MgE+f6/Xh39/GCAxFbZmtqa/Rv097cefHH68sdNu9++4esxByVBwaBQCAQCAQCgUBUpqSkZMWKFSiKbty4sX/2HvWydu3avpUnWlpahrQ7lZEpiK38Ni+ZlqNQTvQPsFAyUC84OFjmiMzCOETtDCwnxo4d2ze6/JtvvrG0tBzKIUEgEAikH5oRiMEFQLR+5aCwEmUtBL2XRmhMSmGkMS7U+jxDfwMBeSUQgS/uymJ++7hxC0fYOFJjs9Aw/5fz1p2u/7LSlP1da+O3H644/u/8b0u7y4Z0DM46JgfGR54PXjPeyE7mFApAclNJxIPDHz2/VNPTjvVqVfAxNz/+9vy4d96d7eTcX1HUs7v2pCRPO/X33y+yuEIVFYWVoe7O+VPvfr72vbCJOpqy6/UoClIKKlYcvLji4MXkfOw0UJggCPD3sv1pV8TJfSvnzfCi9JMfAID80pY76dwxE9bv/+P8unXrVN7hgqIoq7vyZe3VQxc/Wbl8Q9S0L2JOPGR3yo3ut3ax2Hxg9YW6Ix/9tdHO3bp/A7FI/PRW5o6wr9cwPrr2621uz6AzDEAgEAgEAoFAIBDVYLPZCxcu7OzsjIiIOHjw4FB3Z2pq6u7uLn06alOeenh49H1aX1+vzKtQFO3s7Ox7xM3NTZ3DUgf94ySIRKVy7coIG9AvTASidgaWE+bm5suXL5c89vPz27JlC57+0tPTf/vtNzxXgEAgkDcUsjtidANohL9yEOWhnZ+inZ8AdBAFh4cZIkJhGGycbhVtoOEhc6qJk5pQs6i442Tf1E/DjLsO4xuPr9bYraCTZCNty3sqvy744feyQ6081pCOYZyB9enJK08EvuuhbyFzSoyi8fUFsxMPfpF9q4WrtlylbkbGf8x+6847KyJcGcR+kQgNbPaelOTJfx/7KyO9V1VFYaBN2xwecHf32h3zp5roYuxSya5s+PBE7IJ9p29kFAjlhCZg4mhnvH1T2OW/1q9ZPEkHK1ihrIp5JamuWezz48Frv/52EM9cmStgVzKfXH343eatq6b7rfrli6vVZXL3PdF0NOdsCD2Ss//Hu7unRAYQSRjT39qi+j+3/b3EasOBTYdrCpWa/UMgEAgEAoFAIBCVEQgEkZGReXl5ISEh586dGx5VIL0HIRAIxsbGw9CjCsjIibq6OmVe1djYKFMQOyAgQJ3DUgd2dnYyR5hMucUC+9K/MAOsLDXUKJVX+sCBA66urgAAe3t7pH8yhcGQmZl5584dPFeAQCCQNxdEG9H7HdH5XLZiUO91tC0KiGpGaFhKoUtxDLH828f4MxLhlc3sIpSby/o9qW55O69wpMZGRAghJsF7vb57y3wWCXnl3xYF6PO2jB25n1+svcwVDa0BmmTicGnqukMBS111TWVOCcXimKrMsLu/f5sTz+L1qKtHFyOjn8Nn3pajKFo5nB9THwWdOHrg6ZPuV2efyqNFpSyfPC7+szXfLg23M8GoMlLWxPrsfMKc7/+OfpTN5Q9ChBjqaa2NmnT18Mbtm8JsLDCqQbI6es7fyrnxVLjyw19ORcdERETIFHxTHhSgrO7K9LKYT39YNT1w4eYle58mF/UvMiEBQRCfUK/dF/8vuvLPd7+I1DXCSC/b08mJO5K4znPbjrCvH156Ih6Mm4FAIBAIBAKBQCBKgqLo+vXrExIS/P39Y2NjNTQw9jYNBYaG/yk4Z29vP2orFoSFhfV9WltbK+8epy9960UDAHR1dftHG4w4dnZ2Mv/sSibXolAoMimhjIyM1DkySD8QZf7sAABMJnPOnDmZmZmHDx9et26dyv2tXLmypaUF+ok3maqqKnt7ewAAgUCQCbMikUg7duzYunWrenvs6uricrkmJibqvewbQkdHh1AohN/FqlFSUkImkyV/8OoFEWQQ2P8HxK+af0RbrP0tSg2T86LRQq+QmdO+t5GTInMcQYj22gsZeptJBE0AQEtLi4aGxvBvUmjmtVxpuJ7entn/lD5Ff57ZnClGQQjA5ekHRIyi9xqLDhQ+qOVgBJDSSJSldr7rHAPpZCr2y8ViJpNJp9MHNQmu7eo6nJlxuahAppa1BH1NzeUeXqu9x9Kp2J0qgxhFHxVWHbufnleLXUhDX0tzcYDnkkneelqDu2cQo+jTrMpzsRm5xdilLAgIMtHHPjzQNj3t7vHjx8vLywc9+j4gADHQtvN0mvzeB6tnLRqvSaMoaCzgCZ7ezLz22+3Cp6Xy2pg7mMxaOz18TYiO4agrlDcouFxuZ2enoaHhqA1dH800Nzc3NjZ6eXkRVCpK/4YDJ3t4kKSNNjDAsLyQAWltbaVQHNbsOwAAIABJREFUKHBPpWo0NzdraWkpmQQc0hc+n19QUGBjYwM/uZjw+XwtLS0AAIVC4fFgLs03ne3bt+/du9fd3T0lJUUqDIaBd95559y5cwCADRs2HD58eNj6HSzu7u4FBQXSpyUlJU5OTopfcvbsWWmKHQDA0qVLJe90KJg3b96NGzekTzkcTv9iEvIICQlJTk6WPj106NCmTZuUeaGJiYk0zMLa2rqmRsVtoG+99VZcXBwAIDY2dvbs2apdRC2UlJQQicT+QSEAgG+++eaPP/4QiUR9D3Z0dEh8QVtbm74+xhZD9aKsnAAAdHd3b9my5eTJk1u3bv3uu++U/2uQkp+fP378+ClTpkA58SaTlZXl6+sr76yhoWF+fr56e2Sz2TweDy6vq0ZnZ6dQKBzOn/B/EuXl5WQy2cbGZiguTgDtOui/KSDj1cMIByzsRj6QDa0YfbQKH5fx/hSgHTLHNQnmjtQP9IjjWltbqVQqnT4ya7Wl3PIb7XGN/Kb+p6wolm/rz3bQUL9zkkEoFt9hFp2qy2RihUrokKhLLcctNPekEmRzB4nFYhaLpaWlpcIOnYae7gvFRdfKSgVYikKXQol0do1ycaGTFS3HD0huXcvFZ4VPy7GTGmmQSbO8xiwe72ZMH/T4K2rabj0ofJRRJa+EtYONwZyprnpU9rlzZy9dusTl4oqGIRM1LA09FkUsXbV5rpHpACtTVTm196MfP4p5JuBhB4iQqaQJb/vM3jjNxt0Kz6hGEC6Xy2az9fX1oZxQASaT2dzczGAwoJxQATjZw4Mkk/Iw3Hn+I2GxWBQKZaSmK687TCaTRqNJFpEhg4LP55eUlFhaWsJPLiYCgcDa2hpAOQEBYO/evdu3b7ezs3v8+PEwF9ANCgpKTU0FACQlJU2bNm04ux4Uu3bt+uGHH6RPz58/v2TJEsUv+eSTT/bt2yd9ev369Xnz5g3R8PDIiR9++GHXrl3Sp8uWLTt79qwyL6TT6d3d3ZLH77zzTnR0tNLjfQWpnIiOjg4NDVXtImqhvLycSCT2T3WFoqitrS1ffpqEpqYmU1PZvA5qZ2A5IRAIpP8lAICkpKQPP/yQSqXu27dv+vTpyvTB4XAaGhru3bu3f//+tra2mTNnQjnxJlNZWeng4IB5ikAgSNSXenuEm+nwACMn8FBWVkYmk21tbYesBxGRe5jEPQxeLdggJvkKtfaiyCjNaylFgLKLOg9V99wAQOaXCLGihZvwl2lrGo/gVkQUoE/bn19uvNYlxKj04K3jucQi0ogy5N5OIBbdqM/9o+RRG5/T/6wBhfau/fh37PwofRSFapETfWnoZp/MeRlTUMATYSyja1EoSxnu68b66OKIogAAlDSyzj5+EZ9TKhZjTEVIREKYp+PK4HEOJoPeEtjE7LqZlHcrKb+bg307amasM3e6x2Rfq/g7Nw8fPpybmzvo0b+KjqZ50Pjw7Z9uGT/ZVXECzI6WrqQzD+OOJDJr5RYyGTPO7u3N4VMWB5DIShVtGz3AyAk8NDc3Nzc3e3h4QDmhAnCyhwcYOYEHGDmBBxg5oTJ8Pr+oqMjKygp+cjHh8/mSJA1QTrzhHDhwYNu2bcbGxo8ePXJxcRnOrjs6OoyNjYVCobe3d3Z2Ns4M+UNKRUWFs7OzdOP8tm3bfv75Z8UvCQ4OfvjwoeSxiYlJdXX10CXLwiMnqqqqHBwcpOveVlZWtbW1A75KIBBQqVTpq86dO7d06dJBjvo/SOXE1atXZ82apdpF1EJZWRmRSMTM6rFly5Zjx47JswOjJXLi6tWrCxcuVGOXUE684UjTOtnY2Lx48aLvKTqdPhTLGfB+FQ9QTuBh6NI6vQLvAdr5CRB3vnKQYIDo/QwogUPbtTpo7c3KZH7DFlTLHKcges7am1xNIkdkVFK4It7tpvhbjXcEYoHMKRJCmmYydZHVfE3ioEMJBwtHyD9bkX605HGXAGOnvzlN9z2XyQttxxERAlCHnJDQyGYfycq4kJfLxaqJTSOTF7t7bPYfb0zDteGxjtUZ/Sj78tNcngCjFwQBU9wc1k33H2snWyp8QHo4/LgHeedvpLe0YhcS19KkzJ7msext/9rqkiNHjpw9e7anB1c9DxKR6mzrt/m9zes+iKRqKKpvIRaJn9/Ouvb7neykXHkzMQMzvRkrp857f6ax1WsTuwblBB5gWic8wMkeHqCcwAOUE3iAckJlYFonxfD5fCqVCqCceLP59ddfP/roIyMjo6SkJC8vLyVfdfTo0dzc3N9++w1n7/v37//4448BAA8ePJg6dSrOqw01y5YtO3/+vOSxo6NjaancbLQAAB6PZ2hoKL1v+u677/pGJ6gdPHICADB//vzY2Fjp0/z8/AHLY7x8+XLs2LGSx2ZmZtXV1RSKimkDpHLi1q1bc+bMUe0iakFBWicAAJvNFr56y+/g4NDR0QGGS04MfPPj6Og41IOAvJkQCAT9V4FrGRCIKlBDEMMbgOz9ykFxG9q2Fu3+TSaoYhRipOkTan2eob+B8Golaj7akcf+IbVxK0eIkVtp2NAgUhdYztvr9V2gUYDMKSEqvNuc+K+XOxOaEsXo0P4700iU9c6B98K2fOAarEWSnRs1cjq/yL41N+nQ9ZqXYqWzNQ6IOZ3+ZXDI49XrNvn5a/b7fuYIBCdfZE89eeLfKQ+ae7oxr6AMVoa6O+dPTfhs7XthE+masqEYKApSCire/f3iioMXk/MrBvXmtGiUxXN8Lv25/ut/zWU4mfdv0NPLvxSXFbn56PXkhq0ff9XQ0HD48GHpTFQFhCJeQUXqB5+8Y25sv3LxR1Xl2AUwAAAEImHiXL8f7+4+XnAgYstsDS2MGJS2po6LP15f4fjB11E/ZyXmqDwqCAQCgUAgEAjkjeLgwYPbtm0zMDC4d++e8mbiwYMHW7du9fb2HripQpqamr7//nsAwOLFi5U0ExwORpT8sLFz507p5piysrKcHEW3HklJSVIzYWhouHnz5iEdm0zGISHWtjkF7N69u+++n5MnTw74krS0NOnjjz76SGUz8RpBp9NllmeHOdZnYDnh5eU1ceLEYRgKBAKBQFSEaIEYnAO0Fa8eFYHu39H2jbJBFaMPIkJlGGycbnVGn+ouc6qR8/hu7aLijpPoiFoWQ4rBJod1n7put6XJVhBhC7uja85/kf91Ebt4qIehS9H8wG3qvbCt650DqURZW1DBbt2ZeX3e/b8SGgrV2KkhjbYjcPLjNeu3TgjQ7jczkyiKKX8f/zQpsalbdUVhSKdtDg+4t3vdjvlTTXQwdlBmVzZ8eCJ24f4zNzKwS3bLg0QkTJvkcvSHdw59szTQb0z/WZZQJL6fVrx+59kdP8a5+0x/+vTZ3bt3161bhyeBeHt3/elLvzq5OIz3Dr107paCltYuFpsPrL5Yf/SjvzbaMjBKTQj5woeXnuwI+/o93+1xRxK5PXD3HwQCgUAgEAgEIpcDBw5s2bJFT0/v3r17Sm48qq+v//zzzyWJdxYtWtS/QUJCwv79++Pi4sQD3YlwudwFCxawWCwGg3HkyBHFjYVC4d69ey0tLbW0tAwNDT///HOcJfFUw8vLa82aNdKnZ86cUdD4xIkT0sf79u2TpFCTR2pqanh4uIuLS1RUVFVVlQpjkwl+UlAdARNfX9+NGzdKnx45ckRSaksBp0+fljxgMBjbtm0bVHcQ1VCqIPbJkydXr16tri5hWqfRCZfLzczMDAwc8iQw0rROdnZ2lZWVQ90dgJH++IBpnfAwTGmd+tJ7A+36HKC9rxwkmiN6vwGy6vvBhw0UFZV1xeS3/SkUy+4cMdTw9jX+TIeCHYc4bKAATW19crH2cocAQ/mM0/NebrvEhDoc3zaNnM5DxY+uVGeLsII23OmmW1ynBlu5qrfT9t7eUy9f/P0iqwsrQJ5MJL7l5LJ14kRbXT08vQhEojvZxUeTnle1YE8cLQx03p3is2iCpwZl0PF2tY3tV+5k37iXw+Njb7qxNNUNn+IcOcePTCLcunXryJEjiYmJg+1FBgMd8wXzI7/d+7mJiaJKMKgYzb6fG3c08fHVZ2I5Bb21dGlhK6cu2DrHzH40/qjBtE54gGmd8AAne3iAaZ3wANM64QGmdVIZmNZJMTCt05vMv//976+++goA4Onp6eqq6G5ILBZ3dnb29vY2NDRUVVVJVkejoqIuXLgg0/Kbb77ZvXu35PH48eMPHTrk4+ODec3m5uaIiIgnT56YmpqmpaXJq7cqZefOnT/++GPfI6Ghobdv3yaTFWWIHQra2trGjh0rKcmgra1dVVVlaIiRWvbly5e+vr6SAhWzZs2Ki4tTsMU+IyMjICBAGutgbm6em5uLeVkFTJw48dmzZ9KnNTU1knL3ytPd3T1hwoSCggLJ0/fff//gwYPyGt++fVuSf4lMJicnJ0+aNGlQfcnwuqR16o+BgYHE4oyWmhMAgN7eXktLS8mwEASxt7c3NTXV0tKSPNXTG2ANor29nc1mt7W1SdKWQTkx2uDxeKdOndqzZw+CIMoUh8EJlBOvF1BO4GEE5AQAQFiBdnwAhK+miUQoCH07oK0c1pGoSo+gPqv1u2bOU5njBITkpLvc3WAjARnhyEqemBfXGB/XGM8Xy27cICLE6SYhC63m04a+EAUAoLKb9Vfxw5u1uZjZnCaZOGxjTPfUH3S1BsV08/nROS//ykjv5GHs6yERCHOdXbdMmGCnh2sSI0bRhwWVRxKf5dZg5/XS19JcEuj9zuRxurRBl1/r6OLcSsqLictktWMXmdDTob013SNyto+RgXZhYeGpU6eOHTvGYsktYa0MRALJd2zgZ7s/eXv+ABPTxormuKOJd44ldbGwq2UgBGTcNM8560ODFkwgEEfRQjaUE3iAcgIPcLKHBygn8ADlBB6gnFAZKCcUA+XEmwmKop988sn+/fvxXARzEZnBYBQW/i82nUgkbty4cfv27ba2ttKDXV1dJ0+e3LNnD4vF8vT0jI2NHXAdgMvl6ujoCASypQ2//PJLiV8ZZtLS0qZPny4J3Vi2bFl0dLSMeOjs7AwODn758iUAgMFgpKWlKQ6bWLFihUwQxi+//PLRRx8NalRGRkZ978JSUlKmTJkyqCsAAIqLiydPnsxkMgEACIJcvXp1/vz5/ZvV1tYGBATU19cjCHLo0KG+IReqAeWEkiglJwAAW7du/e2338zNzRMTEwcsHiKPy5cvL126NDQ0FMqJUUJ3d/fx48d//PHHxsZGoHTlepxAOfF6AeUEHkZGTgAAUA7a+Rng9ksmo/k2ovM1QHAVSR428uuvlPP/5Is7ZI5rk619jT831vQbkVH1pY3fHlN3Ja31KQpkf0m1SdrzLeaGmk6TVKgeakq7Wv4oSkmoL8D8RZ9k4vCJxww3XTP1dtrD55/JeXk4M70DK/RYoig+GD/BAfdUJquy/sT9jJSCCsyzNCo5YrzHqqm+ZnqDzsIkEIgSU4uirz2vqsO2DmQycfokl+UR4+2tjXp7ey9dunT06NHHjx8PtiMZzIxt1q1b++FHmxT/MAl4guSLaVcO3Cp/USWvjYWj2ey102evD6UbjIqVHSgn8ADlBB7gZA8PUE7gAcoJPEA5oTJQTigGyok3EJFItGnTpmPHjuG5iImJSV1dXf+ohcWLF1+6dEnmIJFIHDt2rCQ4o6qqKj09nc/nIwiyYsWK33//XZkMsRUVFZiLxXp6es3NzSNS6uDGjRuRkZGS1Elbt2794YcfNDT+sw8sPT193bp1knIU48ePj42NNTMb4AZz5syZCQkJfY/s3LlTUo1DSY4fP75u3bq+R+bMmXP58mXpqJTnxYsXM2bMaG1tBQBoaGicO3cuIiJCpsGiRYvKy8uJROKBAwc++OCDwXbRHygnlERZOVFQUODu7v7xxx/v3bsXT3/z5s3j8/lQTow4bDb7zz///OmnnyR3IxKgnID0B8oJPIyYnJDAuYCy9wD01Y0YJHtE7yAgOY/MkAZDS0sLkSqo5p+s6Lra7yRiS5/tbfQxhTDyawHlPZVnqy+Udpf1P2WhYb7MZrG3nrIV2HDysq3uQMH9J0yM71UCgoRZuG1jTLfVVvMdLEcguJif+1dGeksPRggCAUFmOjptmzjJEfedc2F9y5mUrLjsIrEYY95CIhJmjXVZO91/jOngwoQBACgKMnKrL8VlpWaUYzZAEODnaRs5x2eS7xgEASUlJSdOnDhx4oRk643KIAjBd+z4j3dsi4iYr/jeozSz4upvcckXUoUCEWYDigZ5SmRA5L/edvCyxWwwbEA5gQcoJ/AAJ3t4gHICD1BO4AHKCZWBckIxUE68gWzYsOHo0aM4L7Jly5Zff/21//Hq6uqgoKC6ujrFL58wYcLPP/+sfCIggUBgaGjIZmOESqelpQUEBCh5HfWSmpq6ZMkSyZu1s7MLCwuztLTMzs6+efOmSCQikUgffvjhN998Q6MNvOVxz549X375Zd8jcXFxs2fPVvyq+Pj47OzslpaW58+f961NLcXa2jo0NNTW1tbMzGxQwQ3V1dWRkZHp6emSpzNnzoyIiLC1tWUymfHx8TExMQKBwMHB4ejRo9OmTVP+sgqAckJJlJUTAIDg4GAvL6/ff/8dT38HDhxISEiAcmJkiYuL27JlS2BgIJ1OP336dPd/S5hCOQHpD5QTeBhhOQEAEOShHR8C0auzKISG6H4LNN4aoTEpS0tLi4aGho6OThMnNYv5PUfYKNNAg2g01ugTK+3QERleX1CAprdlnq+NaeVhbMB312Est11ipWk5PIPJZNX8kp+Uwarpf4pEIMyx8vjQLcSKhqsmRH8kiuJwRkZzD0ZNbAKCTLWz3zZxkgfu7+FaVsfZRy8uP8nlCTEqRhAQZLKb/frp473tzFW4eGlly4WbGYmPi4Ry6j042ZtEveU7Y7IbiUjg8/mxsbFHjhxJSkpSfiqFiRaNvnhx5Jq1q4OCghQ0a2/uvHvyQeyf8cxaudmlnHwdIj6cHbI0iEQm4hmSykA5gQcoJ/AAJ3t4gHICD1BO4AHKCZWBckIxUE68gezatau8HHunkfLs3r3b09MT81RjY+MXX3wRExPT1dUlc8rBwWHOnDnvvvuuv7//YHs8fvz4pk2bJFUZdHV1HR0dMzMzAQCXLl3CrMs9PHR3d+/fv//IkSMNDQ3Sg9ra2pGRkR9//LHy2XR6e3tnzJiRmpoqebpp06ZDhw4N+Kp9+/Y9f/5cmetraWn9/fffSg5GglgsvnDhwu+//56eni6pnCGBQCD4+/uvWbNmxYoVKoRlyAPKCSUZhJw4d+7cX3/99fDhQzz9xcfHx8XF4TQcEJx0dXVRqVTJr3XfaufDLCf6QyaTd+3a9dlnn6m3R3i/igcoJ/Aw8nICACDuIPbsJAgeyR7WWCzS3AVGuniDAqRyAgAgQrnFnSfK2WdRILtqbKoR6G2wXYM48h9wvpif1Jp8q/kOVySb5oiIEIMMJ0WYzaWTBp16SAXEYnFC+csTjZnFbIyt/WQCcZ6V1/vOkw2pWurtly8SXSsu/EOOokAACLa1+9BvPH5F0dbde+lp7vm0HHYv9t3mWDvzlVN8JrvayS/PJpcmZseV21kJj0rZPdgXN9ClzQ31XDDTW0dbAwBQV1d34cKFv/76C/8PqOMY59VrVq5YsULBD5ZYJM6IfxH7R8KL+3ny2uib6U1fPnnue2FGlsO9YAHlBB6am5ubm5s9PDygnFABONnDA5QTeIByAg9QTqgMn88vKiqysrKCn1xM+Hy+JKkOlBMQ9SIQCEpKSmpqarq7uykUioGBAYPBGGyFZxmKiooePnxobGw8Y8aM3t5eyWTm2rVrmEURhhMURQsLCysqKgQCgYWFxbhx41TINCUSiRISEqqqqsaNGzdSsSCYsFisoqIiJpOJoqipqSmDwRiwoLIKSOXE9evXZ82apfbrK48CObFz587ffvutr6rpy6iTE5KBEokq7sWrrKwUCoVOTk6qvRwyRFRWVjo4OEgeD4+cyMrK8vX1lXfW0NAwPz9fvT2y2WwejweX11Wjs7NTKBTi/Ll9YykvLyeTyTY2NiM9EFQLnNNCjwDwyu+NADh3Id+KgCp7zIeB1tZWKpXaN1lnt6i8lPdrt1g2gRIJ0bKhLLcgz0XAyK/odQq77nXdf8ZO71+IQpOgMU136hSdQCIY2l3tYrGYxWLRtGjpvc3Hap7X9srW7QAAaBBIC8w9llmOo5Oo6u1dKBbfra46kZ9X141dzNnfzOw9z7EM3N8qPTxBQl5FzLPC1m4OZgMHY71F/q7TGXbEwSz18vn8zs5OqobW05f1N5IKGppl90ZJ0KCSpvjbvz2dYWGqAwAQCAT37t2Ljo5OTk4Wi7EDL5SERCRND50eFRU1Y8aM/hlvpTSWNSeeepR8Lo3Hka3KLoFIJvrO9Jq2PNBjiiue8QwKLpfLZrP19fWhnFABJpPZ3NzMYDCgnFABONnDg2Rn3DDcef4jYbFYFApFmdzikP4wmUwajaalpebdEm8CfD6/pKTE0tISfnIxEQgE1tbWAMoJyOtGV1eXpMR0dnb22LFjR3o4ELxI5UR0dHRo6EimfJDU0rCzs5M5jqKora2tpMoIJk1NTaampkM7uEHJCZxs3769qqoqJiZmeLqDKAmPx5OGLI145ASFQvn000937dql3h7hZjo8wMgJPIyKyIn/QhCmE9gfI2jrq0f1RFrfi8lTRmhQiugbOSEFRUWVPVeKOv8Sintl2htSvb30d9LJdsM3RPlUcWouNlwu6S7tf8qUarLAfJ6fns/Q9S4Wi5lMJp1Op9FoYhRNbCo+UPSgjoOhKHQpmstsfd91GK89BIriVmnJn5kZ1Z0Y/QIAAqysPho/cawp3jLdfKHobk7p8QeZNa3YHZnr098JGhvhx9CgKLVczufz29vb9fX1KRSKGEWfZVedi83IK5HNKiaBgCATxtktm+fn4fwfydfY2Hj27NkjR45UV1er9o6k6OnpLVq0aNmyZYGBgfLa9HRyHl56GnvwTm1Rg7w2juPsZ66dNm1ZIJWm5v/l/sDICTzAyAk8wMkeHmDkBB5g5AQeYOSEysDICcXAyAnIa0pycnJISIiJiUljYyOcEP4DeC0iJz799NNff/1ViJU2GYzCyAmc3Lx5c8GCBVVVVZaWw5R3G6IkRCJRss0T1pyA9AfKCTyMKjkBAACiZrRzK+BnvnoUAbR3EZ1PwRBv5x8smHJCQregLov5XUvvM5njBITkpLvc3WAjYRSkq0IB+qwt/WLtZcxCFJ667u/YLLHUtBiKrvvKCckRvlh0oTLjcPEjFg+jbLUhVWuTy+Qoez8KQc1/A0Kx+HpR4R/pz6s62jEbBNnYbhk/0R/3xEAkFie8LD1xP724AbtItYE27Z3JY5cEeutoDpBCtK+ckB7MKay/cDPj0fMysZxZk5er5ZK5fpPHOxIICABALBbfv3//yJEj169fFwgEmC9RHgaDsWLFilWrVsnbtIKK0ed3sm/8GZ+e8ALFKhgOANAxpM9aO23upnBTO2Oc41EAlBN4gDUn8AAne3iAcgIPUE7gAcoJlYE1JxQDa05AXlNWr1598uTJL7/88quvvhrpsUDUAKw5oSTDJyfOnDmzYsWKPXv27N69e3h6hCgJlUqVhPBAOQHpD5QTeBh1cgIAAIQoey/o+RvIJB0ij0V0Pgdk7xEaFQYK5AQAAAC0sis2l/UrXyybdUebbOOqv9pGezYBGfnlUYFYcKfp7s3GOK5I9r6IgBB89MaGmYa66biot9P+ckJCr0gQXf78aMnjLoFsVQwAgCFVa4Ht2Eg7XxstNU8+xCgaX1b6y9O0srY2zAZOBoYL3BiRDHfDVwesAlmV9SfuZ6QUVGCepZJIE51t3vZzm+bhSCJir/9iygkJDc2dMXGZNxNzuTxs36BL15w60WlmsLunq6Wk3EVTU9OpU6eOHj2Kv0AfkUgMCQnZsGHDvHnz5OV7bShvvn0s8c6xpC4Wdk4tAIAtw2rKooDQd4Mtxqg/PhfKCTxAOYEHONnDA5QTeIByAg9QTqgMlBOKgXIC8jqSkZEREBBgYWGRk5MjSe4Eed2BckJJhkpOdHd3S7YKcjgcFouVmpr65ZdfMplMKyuryspKeMs6qqDT6d3d3QDKCQgWUE7gYVTKCQAAALwktHMHEHe+ehQBGjMR+g5AHBXxbQPJCQAA4IraclkHqtlx/U/RSGZOessddBYQkSFPZTMgbGH39fqbiS33xShGNQJzDbPpJiEhJlMoBPUEfMiTExJ6hPxzFemHix91CzFu1QgIMtHYfrGdb6i5K0mtK6RiFH1QWXngWVpeSwtmAzKRONnGdqEbI2yMI86uC+tbzqRkxWUXieWEEejSNGZ4Oc31cxtnZylTNFuBnJDQw+HHPcg7H5veIl8AmBnrhAa5zpnmYWNhAP4bSHH06NHY2Fj8d8iGhobvvPPOypUrfXywk4PxuYKUmLTLv9yqeFml4DpDYSmgnMADlBN4gJM9PEA5gQcoJ/AA5YTKQDmhGCgnIK8dTU1NQUFBDQ0Nd+/eDQoKGunhQNQDlBNKopSc+OSTT/bt26euLkdD0XlIX6CcgCgAygk8jF45AQAQ1aMdW4AgR/Y4ogFoKxDtzQAZ4eKEysgJCY2cx9nM7znCpv6nqESDMTqLnPSWkwkjX2uxvrfhXM3FnM48zLM0omaQUeBs83BDCt6bTMVyQkI7n3OiNO1M+TOuCDu5pJGGdoSN92I7X2u1BlKgANyvqPjt+dOcZoz/LwkmWlqznZyj3D1cjXAlIKpldZx99OLyk1yenASaAAB7E4OZY53n+rlZG+pJjgwoJyQIhKJHz8vOxaYXlsl9IwAAOyvDaZNcZoe4m5voAgA6OjpiYmJOnz6dmpqq0nt6BVdXt1WrVipI91SaWXH1t7jkC6lCgUjBdSSWYsaKYHMHvJYCygmIfZu9AAAgAElEQVQ8QDmBBzjZwwOUE3iAcgIPUE6oDJQTioFyAvJ6kZeXt2DBgubm5piYmPDw8JEeDkRtQDmhJCMgJ8LCwhISEtR1NQh+oJyAKADKCTyMajkBAEC5aNce0HsJ4xTRDNH+F9CcBwCCcXZYUF5OAAAE4p68toMVnZdRgBGaQCXqO+m+M0Z38WhQFNkdL8/WXGjmYkcPIAAZq+cVbhbqrsNQuQtl5ISEpt6u46VpFysz+GLsxeuhC6RIranZ9yT1RRN2oWkJniamEW5uEa4MPY0BCkUogMXmXEx7eeZhdjdX7q0pAUG87czDvJ3f8nGjkQnKyAkpOYX10defp2WWK5hPERDEw8UiZJJL2GRXPR0aAKCwsPDixYt///13TU3N4N/TqxcnEKYGT125amVkZKSmpmb/Bm1NHfdOJcf+Ec+swyh/0hf8lgLKCTxAOYEHONnDA5QTeIByAg9QTqgMlBOKgXIC8rpQV1f3yy+/HDx40N/f/9SpU8qvHUNeC6CcUJIRkBMIghQVFTk7O6vrghCcQDkBUQCUE3gY7XJCAv8p2vUtEBZhnCJ7IPTPAMVv2McEwCDlhIQufnlR+4na7ruYioJC0HHUjXLUW0YhjPAKghAVPm/LSGhKrOiR+x3ooGUfbhY63sCPNPjKGcrLCQmNnM6Yqqwr1dktXLl5ikw06Attx0Xa+VjQ1Jn/NKOhPiY/73ZZaQ+fL6+NJok009E50t19opW1yq6M3cuLf1F8K7Mou6pewcSHSiJNYdgFO1nOGMegDVQ6uy81DW13HxYmPi6qbcQu/S2BTCZOHGcfNtkt0G8MlUKSpHs6ffr0lStXOByO8t1hoq1NXxIVtXLVSsxIcCFfmJHwIuXykyc3Mno6FfWFEBBGgEvwooCghROMrQwHNQYoJ/AA5QQe4GQPD1BO4AHKCTxAOaEyUE4oBsoJyGtBcXGxu7u7n5/frl275s2bN9LDgagfKCeUZATkBADgm2+++eyzz9R4QQgeRkpOaGpqBgYG9j1FJBI//PBDtX9i4f0qHqCcwMPrIScAAEAMemNR9k9A3IpxkhqC6HwBiFbDPCYV5ISEHkF9aee5iq6rYhRjvZtEoNnR33bRW6VJwpUySC1U9lQnNN97ynouQrEDF3TJOpONAsNMp+tTBjEhGKyc+M+rUPQpszKmKvNeQ6FIztxAGkgxw8KViKht/ZQnEiZVVJzLy0mrqVEwKTHTps93dV3q4WWDo0BcUwf7dlbR1ef51UxFFkFHUyPMG7sohWIqa1vjUwruJOez2nsUNKNSSIF+Y2YGMyaMsycRCepN92RvO2b9hrVr1q7BTPck4Aky775UxlKAwcdSQDmBBygn8AAne3iAcgIPUE7gAcoJlYFyQjFQTkBeC1gsVmNjo4eHx0gPBDJUvBZy4vLly0ePHhWLX9nfmZKSIqkkPRrlhL6+vp2dnaHhILbRFRUV1dXVBQUFafTJybBs2bLVq1erMFzIUDDMcuLly5djx46Vd9bc3Dw7O1u9PbLZbB6PB5fXVaOzs1MoFA7qUw+RUl5eTiaTbWxsRnogSoEALg2co6HRCJBd00cBqRfM70HWo2D40iK1trZSqVQ6na7ay3kos45/pUkQL+73dgAACCCbkUOtKUupyMh/M7BF7Cfdz1O7nvaIsZeziYDoTnML1gmypSr1tyQWi1kslpaW1qDkhBQmr+dea+m1xtwWvtzldUMKLdzYeZ6ZuxlVxf8gTFo4nITqqmtlpQ093fLaEBDE08holp19uK29Jo4V8KrWznv5lQm5FR0croJmVgb0aW52oe52FnqDeKdiFC0uZ6ZlVz9Mr2R3K7ol1qZR/Dytgic4eLmYIwgoLS2NjY09f/58fX298t1hQkAI3l6+K1cvnz9/ngZWXiwhX5ibXPjsVnZWQi6nq1fx1SydzSbM9QmKHG9iq+gjw+Vy2Wy2vr4+lBMqwGQym5ubGQwGlBMqACd7eJDsjBuGO89/JCwWi0KhqDxdecNhMpk0Gk1La+Szbr528Pn8kpISS0tL+MnFRCAQWFtbAygnIBDIiCKVE9HR0aGhoSM4kvLyciKRaGdnJ3McRVFHR8eeHrk3/k1NTfIKHKqRQciJf//7359++ulg7zarq6sDAwM9PT2vXbuGeW8M6U9BQcGyZcvUcilDQ8OkpCTFbYZZTpSVlTk5Ock7O3v27IsXL6q3x66uLj6fD+9XVQPKCTyUlZWRyWRbW9uRHsggQMRNFMEfJEEcALK/DihiJKBsEpDnA0AchpGoZSsiX9xew7lexYkRohg7xAkI2VxjmoPWu1pEazy9qAUhKszozEpqS67jyl2VttW0nqo/xV/Xl4go+i/AKSckiFA0o63mWn3Og5ZSBYEU/gY2EZZeISaOagykEKPoy5bmG6WlceWlvfJrWWuRydNs7d92dJpgaalyuiexGM2sbLjzsvRBYSWXL7cvAICrhfFMb8dwL0c92iAmMwKBKCu/7uHz8kfpFTyF1zc21A70tQ8NdHayMxaLxSkpKefPn4+NjcWf7kmDSgudNuuDretlohX/N0ie4OX9/NTr6c/jsge0FNauFpPm+4csCzS1w4g9gnICD0wmU7J7DsoJFYCTPTxAOYEHFotFJpNh5IRqMJlMTU1NGDmhAnw+v6ioyNraGn5yMeHz+ZIbWCgnIBDICCKVE5cvXx7ZUudlZWVEIhEzq8esWbMeP34s74WjK3Li+vXrpaWlqvWRl5cXFBQUEBAA/YSSZGRk+Pv7q+VSJiYmzc3NituMVFonU1PT6Ojovqd0dHTGjRtHJpPV2yOM9McDTOuEh9cnrVM/BC/Qrm+B4AXGKbI7Qv8MUNTzHaUAldM69Ycn6ijvvFjWeYEv7up/FgEES+1pDP1NOpRR8T/131xPz0QoRuUMAIAeWTfEJHiG6XQ6CftmXrW0TvJo6u26WZt7tuJ5Uy/Gv54EEw36PBuvpfb+6q1IwebxbpUWXy0syGhoUNDMQV9/rrPrYncPCxwbV7u5vPt55TczC5+V1iiYGVFIxABn27f93EI8xpCJg7B0XJ4gLbMiPqXgWXalUIT9PyvBzspw2iSXmcEMSzM99aZ7MjexWRK1dPunH5mZmWE2wJ/xCaZ1wgNM64QHONnDA0zrhAeY1gkPMK2TysC0ToqBaZ0gEMho4LVI68Tj8Z4/fy7zVRkRESFZKB5dcqKysvLy5csqd3Ps2LH169eHh4ffuHGDQqGofJ03BIFA0NqKlfl98BCJxAHv02BBbIgCoJzAw2ssJwD4byGKvUDMxDhJDUF0doOhDDhQo5yQIBRzKtmxxe0nuKK2/mcRQDCjBTIMNuhTGerqEQ/t/I4HzJR7zfe7hdgJjkgIaYKh/xyzmdY02XIg6pUTEkQo+rC59Ez5syctFfLmDUNUkQIAUNbWdqUw/3JBfqv8MAICggRYWy/z8JrhMDhtIEMts+3ak5d3C6qqmR0KmqlclKKT3Zv8tDQ+OT+3WFFpbgCAyxjTmcHuoYGuBnq0oqKiCxcunDx5srq6ehCdYYEgBJcxXivefXfrx5vk/YWobCmgnMADlBN4gJM9PEA5gQcoJ/AA5YTKQDmhGCgnIBDIaOC1kBOYjMaC2F988YVQKPzuu+9U7gZF0cDAwCdPnqxdu/bYsWMqXwcyFEA5AVEAlBN4eM3lBAAAALQX7TkKeo4AtN+0HiEDzaUI/SOADEmeZbXLCQlCcW8l+3pJx6leIZZ0AcBEc4KHwWYDjVFRl0wgFjxrS49rjK/rlZvryVnbMdxshp++D+G/PmAo5ISUmp62S1VZV6tfsHhyE1OaatLftvZaZu9vrtZAChGKPq2tPZeXc7e8TCiWG3ygS9WY7eS8zNPLQ6WvfT6f397erq+vX9PGvplZGJuez2IrWp230NeZOc5l4QQPGyO9QXXU3NqV8qzszoO8ksoWBc0IBMTXwyY8mBE8wYlCJiQkJJw6derGjRv477SpZK0A/2lbPtocETlTXpvBWopJ8/393/Z283GBckIFoJzAA5zs4QHKCTxAOYEHKCdUBsoJxUA5AYFARgNQTiiJUnJCLZw5c2bFihUAgEuXLi1atGh4OoUoA5QTEAVAOYGHf4KckCBqQrv3g97Y/oUoAEEP0f4A0JarvRDFEMkJCWKUX8W+VdR+jCPETnxnqOHtbrDRRHPCUPSuAiXs0oTmxIz2LLGcXE8mVOMQk+AQ42AtEm1I5YQEgViU1FgcU5WpIJCCiCAT/hNI4UYcVHDBQHRwuXfKSqJzXhYwsQ2TBCcDwwVujMXuHgaamspfXConJIGeYjH6vKz2RkZBYm5ZL1+g4IUMK9O5fm5zfFz1tQbRHQCgsrb1flpJfEp+Q3OngmYUMsnf23ZmMGPyeMeebrYa0z3paZuGTAnf9sn7k6eOl9dmUJbCxs0yOHKSTMYnyIBAOYEHONnDA5QTeIByAg9QTqgMlBOKgXICAoGMBqCcUJLhkxM1NTWSqrCenp45OTnD0ylEGaCcgCgAygk8/HPkhARBDtr1DRBkY5wijUHonwLqFDX2NqRyQoIYFdZ2xxe1n2ALsFPlGGp4u+qtMtdS5/vCQwuv5UHLw/stKRwR9uqwBpEaYDhxhvE0Sjd5SOWElOrutsvVWVeqs9t4ches/xNI4TDeXFPN/5slLNa1ooKL+XntvXLLOFOIxCAb24VujLAxjiQl1nxl5ISUoS5KIUbRvKKG+0+KEx8XtStc/adrawT6Okyb5BLg41BSUqyudE8AACM965mhb3+86wNvH1d5bfDXpYDIA8oJPMDJHh6gnMADlBN4gHJCZaCcUAyUExAIZDQA5YSSDJ+c4HA4WlpaksfZ2dljx44dnn4hAzJSckJTUzMwMLDvKTKZvGXLlpkz5eaXUA14v4oHKCfw8E+TEwAAgAJuPMr+EYiwsgxRQxCdzwDRVi09DYOckIACcX33/YL2v7r42LpUj+riqrfGSns6AOrc/q8yXBH3CetZfNO9Bm4jZgMEII4aY8JMp08w9UeGZcwjG0jBF4kSK8qvFBakVFeJ5Kd7MtXSnuXktMTd00XhF5o8OSGlubP7Xk7p9ef5xQ2K4jZULkohFqOZeTXxyfkpz0p7uYpiNYwNtKcGOE8LcPFwMb9///7p06evXLnCkV+WQ0kQBLEwcp7/9sLtn31oY49dOhtASzEEQDmBBzjZwwOUE3iAcgIPUE6oDJQTioFyAgKBjAZeCzlx9erVI0eOiESivgdTUlIEAgH458mJrKwsX19fyeO///571apVw9MvZECGWU68fPlSgZoyNzfPzsbal40DNpvN4/Hg8rpqdHZ2CoVCQ0PDkR7Ia0l5eTmZTLaxsRnpgagZBHBp4AoNPYmA/tvVSRwwvwesRXEXomhtbaVSqXT6kBS06A8KxO3C9Gr+uW5xKWYDLYKdJXmBCXkaAkbFuiEK0DJu+aOutMLeYrR/ui0AAADGZKNJ2hMn0P0oCPY6u9qp7e243VIU11zUKeTKa2NM0XrL1G2embs+eXDpjwakhcNJqK6KrSirY7MVNHPVN5jv6BhmY0cjk/uf5fP5nZ2durq68uSElKrWznv5lXfzKtp75L5ZAICpjtZUN9vZXmMs9Qf3x8wXiHKKGpOfVTx/WSsUyZUuAAArM91AX7vJ/nZaVPTGjRuXLl16/vz5oPrChEgg2Vt6zX1r3rr3lhqayF13E/KFucmFz25lZyXkcrrkhrBIsHQ2mzDXJyhyvIkt/FGWhclkNjc3MxgMKCdUAE728CDZGTcMd57/SFgsFoVCGbbpyj8MJpNJo9GkWxghysPn80tKSiwtLeEnFxOBQGBtbQ2gnIAAwGaz79+//+TJk6amJg6HQ6fTLSwsJk2aNGXKFPxfPiiKJicnJyYmVlVVEQgEW1tbPz+/t956659Rfa26uvrGjRvZ2dnd3d3m5uZOTk4LFy40NzcfkcHweLwTJ048ePAgOjp6wNs0PDQ1Nd2/f7+ioqKlpaW5uRlF0dWrV8+aNUu1q0nlRHR0dGhoqFpHOjjKy8uJRKKdnZ3McRRFnZycJGvCmDQ1NZmaDvn2suGTE+vXr5eWwt6zZ8/u3buHp1/VEIvFMTExv/zyy9q1azds2IDzaiKR6MaNG3FxcYWFhTwez8rKisFgrFq1ytnZWS2jxckwy4mysjInJyd5Z2fOnHnp0iX19tjV1cXn8+H9qmpAOYGHsrIyMpksyWj3zwMRt1AEv5MEcf0LUaCIjoCyUUCOwlOIYqS2IrL4GSXdxzsFBZhnaUQLe61lVhqzEUTNNTZUpoXPTG57lNr+hI/yMRtoEDQC9CaEGk41IA/T3jq+WPSQWX6tPuc5q1reJINMIAYbj4mw9BpvaKP28I78VubloqK48tJeoVBeGyqRFGxjE+niNsHSsm/3yssJCWIxmlnZcOdl6YOCSq5AbncAAFcL45nejuFejno0DWXfCQAAgO4e3pPsqvtppdkFdYpnbTYW+jOCXEIDnVtb6i5fvnz27NmamppB9YUJmajpYu+7aOHide8v1tWXexcn4AnS47MfXX2Wk1Q4oKWwdrWYNN8/ZFmgqZ0x/hH+M2AymY2NjR4eHlBOqACc7OEBygk8sFgsMpkMIydUg8lkampqwsgJFeDz+UVFRdbW1vCTiwmfz5fcwEI58SbT2Nj4/fffHz16lMvF2Eikqam5fv36nTt3qrzafvPmze3btxcVFckct7S03LFjxwcffICoNVh8OGloaPj4449jYmJkdtOTyeSFCxf+8ssvZmZyo6vVDo/HO3Xq1Ndff11XVwcA4HA4moMpKKgk+fn5p06dunv3bk5ODoqiBALBxcWFwWC4ubktWbLE3d1dtctK5cTly5fDw8PVOuTBUVZWRiQSMbN6hIeHp6WlyXvhPydyQiQS/fHHHx999JG0r/379//f//3fUPerGmKx+MqVK1988YXkK+bHH3/cvn07ngveunVry5Yt/YsrIAgyZ86cw4cPW1hY4Lk+fkYqrZOpqWl0dHTfUxQKZeLEiWq3oDDSHw8wrRMe/olpnfohyEHZ3wF+JsYpkgNC3wWoU1W78LCldcKklfuiuP1kI+cR5lktkoWj3jIHnYXE4YpIGBCOqPcRMzW++W4rj4XZAAHIWD2vcLNQho7b8OR6AgBUdrOuVmdfrspu58tN+2OjZRBp57PAdqwhVc0bJ7lC4f3KinN5OWk1NQrmOuZ0+jwX12WeXtY6ukCJtE7ykBaleF5aK5Y/uVK5KAUAoIXFTn5a+iCtOKcIK6/afyEgiIeLxcyp7tMCnJ89fayudE8AAE2Krrdb4MZN6xcvn0XTpvZvwOVyOzs7dbR1Xt7PVzLjk5Ovw4zlwZMXTTSyfNMTU8C0TniAkz08wLROeIBpnfAA0zqpDEzrpBiY1gmSnJwcFRXV0tKiuBmdTj958uSCBQsGdXE+n//+++9Ltl/TaLQtW7aEhYWhKJqbm/vzzz9L9gbNnj371KlTr+NCyu3bt5ctW9bZ2QkACAsLW7dunZWVVXV19fnz52/cuAEAMDExOXPmTFhY2FCPpKen59ixYz/99FNDQ4P0oNrlxMuXL7dv337v3j3JkrW/v/+yZcsWL16slqXa1yKtE5fLffr0qfDVXX0RERGSheJRJCeePn2qQglrNpvN4XCKi4tTUlIkgkvKw4cPJ0+ePNgLDjUCgeD8+fPffvttSUmJ9CAeOSESif71r3/9+uuvAABNTc0dO3ZERUXp6emVlJT89ddfFy5cQFHU2Ng4Ojp6GD7VCoAFsSEKgHICD2+EnABggEIUlEmIzueAJDdeSh4jKyck/FdRPO4fHQIA0CAaOOm946i7hIgMbiP80IEC9EVHTnzjvQJ2obw25hpm001CQkymUAjDZFb4YtH9gSpSkAnE6eYui+18A0zs1e5OKtvbY4uLrhTm13V1yWtDQBAfc/MFboxZ9mN43d0qyAkpkqIUsen5RfWKilLQNalTGQ5v+zEmONkMdltVVR0rKbX47sOCuqYOBc3IZOJ4b7uQAOdxbiY3Yq+dPn06NTV1cD3Jga5hPH5cyIaN6+dGTtGk/e8fSiInDA0NJcHsytelQAgII8AleFHAm2wpoJzAA5zs4QHKCTxAOYEHKCdUBsoJxUA58YZz5cqVqKgomV3/8kAQ5Ndff/3www+VvDiHw5kzZ05ycjIAwMLCIjEx0c3NTXqWy+VGRETEx8cDALy9vZOTk/X09Ab9BkaOo0ePvvfee5J/uv7LodHR0StXrhSLxWQy+dq1a0O32s5ms0+cOPH99983NzfLnFKjnOjt7d2xY8eff/4peb+2tra//PJLRESEWi4u4bWQE5iMxoLYn3zyyb59+9TVJYPByMvLG1XxTXw+/8KFC3v27CkvL5c5pbKcEIlEixYtun79OgBAT0/v3r17fn5+fRscP3583bp1AAAqlXr79u1p06apOny8aGtr9/T0AAAsLS1lNNJQAOXE6wWUE3h4Y+QEAAAAtBdwzqDdfwK0p985EqAtQrT/DxAG8as2GuSEhA5ecVHHibruJExFQSXqj9GJdNJ7h0wYLbfWYrH4Rf3LDF72s450vhg71xONSAsymjTbPNyQMnz3tBXs1ms1Ly5VZXXw5eb8sdU2WGTrs9B2nAGVpt7exSj6pLb2SmFBfFmJgnRPdCp1upXNYk/PAFs7nD2WNbFuZhbGpuez2IrW5c316bPGuS6Y4GFrNOhbl+Ly5jsp+fdTi1kd/T93/0ObRg3yHzNtkoueJu/SpZiTJ09WV1cPtq/+IADR17ae5Dd9/aY14fMmUDXIMnJCCrQUygDlBB7gZA8PUE7gAcoJPEA5oTJQTigGyok3mczMzMmTJ/f2/ud2g0Qiubu7W1hY9Pb2VlVVVVVV9X8JgUC4ePHiokWLBry4WCxetGjRtWvXJFd++PBhQECATJuuri5PT09J/MTkyZMTEhKGIg3RUHDz5s2IiAjJSv26deuOHj3av82OHTt++uknAACNRrt7925gYKB6x9DR0fHzzz///vvvPT09CILw+bI3s+qSEwUFBVFRUXl5eZKn69at+/XXX2k0Nd+BQjmhJMMtJ6hU6v379ydNmqSWq6mFP/7447vvvuNwODY2NsXFxTI/XSrLiffff//PP/+UPL548eLixYv7t1m9evXJkycBAHQ6PTk52cfHR4WO8EMikSTfPiYmJv21pNqBcuL1AsoJPLxZckKCuAXt/h1wYgDoV7+XoItobQC01QDBqELcn9EjJyR08cuLO07VsO+g/d8aABSirqNOlKPeUgph5AcsFouZTCadTheShQ9bU+81J7Xx2zFbEhCCt65nuFmouw5j2IbHEwkfNJXEVGWmtVTIa0MhEKcNWSBFF48XV1p8tbAgo0+AcH8cDQwWurkvYrgb4ZukisXo87LaGxkFibllvXyBgpYMK9O5fm5zxrnqaw9uwi0Wo3nFDfEp+YmPi3p6sXWUBF265tSJTmFBrg01+efOnb1+/bpkdwJOiASyhYFbaMic5asWuXqbm5gayysDCC2FAqCcwAOc7OEBygk8QDmBBygnVAbKCcVAOfHGgqLohAkT0tPTAQAODg67du2Kioqi0+nSBrm5ud98882lS5dk1kJ1dXVLSkoGnEj88MMPu3btkjzeunXrgQMHMJtFR0e/++67ksfvv//+wYMHVX5Hw0ZNTY2HhwebzQYAGBsbV1RUYH459/T02NvbM5lMAIC5uXlOTo56F4tqa2t37969du3aCRMmiMXi9957T7JqKkUtciIpKWnhwoWS1FUIgnzxxRdfffUVzmtiAuWEkgyrnDA2Nj537tzIFijvz5EjRxwdHUNCQhAEKSoqCggI6Oj4X5IE1eRETExMVFSU5PHMmTPv3LmD2ayxsdHBwUFSnMfR0TE7O3v4Z2YCgUCauYJOp3fJT3mhLqRyQktLa/bs2X1Pkcnk9957LygoSL09wvtVPEA5gYc3UU5IEOSh7G8BPwPjFMkeoe8C1JABrzHa5ISEHkF9ccfJSnYsimKECZMINDv62676azSII1lDXionJFs/hKgwq/1FfNO90u4yeS+x17INMQ4OMppEJiiljtRCObv1es2LmKqsTvmBFHbahgttxy2yG6dPUfM2FgBAaRvramHBpYJ8lvx6DEQEmWhtvczDK2yMIwnfknE3l38/r+zuy9JHRZVi8QBFKcK8ncK9nalk7CV+efAFwvSX1ffTipOflnJ5ikSImbFOaJDr9ElOxfkZZ86cuX79ukCgqL2SkIka5vouYaFvr9mwdPwUFyJR7r8YtBT9gXICD3CyhwcoJ/AA5QQeoJxQGSgnFAPlxBuLdC1u06ZNP//8s7xV7PPnz69evVrmb+O9996T7jDGpKSkxNvbW7KCRyaTy8vLra2tMVsKhUI7O7v6+noAAIIgiYmJI5grRUlmz54tXbr86quvvvzyS3ktv/zyyz179kgeL1my5Pz580M3KhaLZWpq2jdDF345cf78+ZUrV0rufRAEOXny5IoVK/AOVA6vhZxITEw8fvy4TBq02NhYSdjKP0dOUKlUT0/PpUuXbtiwYfTPPDZs2NA3dkkFOdHW1sZgMKQhCElJSQq+hlatWnXq1CnJYwXedegoKirqmyCvpaXF2Nh4SHvMycnx9vaWd9bKyiozE6uyLg66u7u5XC5cXleNrq4uoVAIZ72qUVFRQSKRbGxsRnogIwMVpGqJfyGCxv6n+MCvh7BFCBR5+9bWVg0NjdH5q8FFm+v51xr5t8UAYz2XiGiYkcOtyIuohJH52kFRtLW1VVtbW2beVsurf8ROfdGTI8IyKwAAOlHbX9s3iB6gS9IdlpECAABfLEptq7rZXJDRITevIBkhBBnazzVl+OpZqj2QQoSiWc3N18pLU+pqhWKMsBgJOhTqNGubhU7OzrgnZ61szsOS2oTc8rJm7IgWCdoalIAxlmEeDuNszRygSmIAACAASURBVAabC7OHw3+eU5uWVZ1d0CASyX1TAAArM91AXztfhuHT1AcxMTHp6enKzAwHRIOsY2XkHjZ9zqJ3ZjLGWiEEuW9AyBfmJhc+vZmVlZDL6ZKrqQAACAFx8nOYONfH/62xBuavU/ZeJWEymc3Nze7u7qMq9+nrApzs4UGyMev1Soo9emhra6NQKKNzujL6YTKZWlpaak+j8SYgEAiKi4utrKzgJxcTgUBgZWUFoJx48wgLC7t3797OnTu///57xS0vXLiwdOnSvkd0dXVbWloUlJ2bP39+bGys5PHs2bMli87y2L59+969eyWPvb29MzMziUSiUu9hJLh9+7Z06RxBkOrqanneBQBQVlbm5OQkbfz48eMhzY5jZWUl0TwScMqJK1euLFmyRFr8+dtvv/3000/xDlE+UjkRHR09Y8aMoetoQCoqKohEoq2trcxxFEVdXV377tGXobm5eRh2/wxCTtDp9HfffdfLy0tPT0+ZLV26urpaWlp6enrOzs5k8vDtxMTJ3r17+9oIFeTEzp07f/zxR8ljKyurmpoaBTeZiYmJ0j9QMpmcl5fn7Ow8+FGrSHl5+ebNm+/evSs9smDBgn379g3pRu/S0lIF73HKlCk3b95Ub49sNpvH48H7VdXo7OwUiURQTqhGWVkZmUzu/wPwBoEKKKLLFP4hBPRPHUPkk+bxyZtRBHupt7W1lUql9g3CHW3wxO3VnEs1vVfFAOOeh4CQzaghDrQVNKLlMA9MLBazWCx5d/tdwq5HHWkP2x93i7Dz+ZAQkqe2+3SDEHvNYf3Trehh3W4suFafyxbKvYe0penPtfCYZ+GhS1Z/EfLWXk5CZcW14uLSDkXOYIye/lxHpwgnZz0NvGOoaGmPzymLf1nG6lYUOmCqqxXqMWauj4u1waB35rLaex5lVD5Orygoa1Iw4yMgiJujaZC/g7O1xt34W9HR0aWlpYPtCxNtqtEYK7+FEZHhb0908bJUMCMS8AQv7+enxWak334xoKVwGe84aZ7fxHm+hhZDvpFn2GAymY2NjR4eHjByQgXgZA8PkrD9YdgW94+kra2NTCaP5unKaIbJZNJoNC0trZEeyOsHn88vKiqytraGn1xM+Hy+ZM8llBNvFE1NTVZWVlOnTr17964ys6m+e4UlKNhbXFBQ4OnpKf7vTqa//vpr48aNCi6enJwcEvK/bAFXrlxZsGDBwO9hhJg8efLjx48lj318fAbcMezi4lJSUiJ5HB4eLikAPkSMHz9ekqdLAh45cffu3bfeeksaL75mzZrjx4+rYYjykcqJmJiY8PDwIe1LMWVlZUQiEXOxNzg4+MWLF/JeyGKxhmE9UFk5ceDAgbS0NH9//6Ee0IjTNzccGLyc6OjosLW1lSZH2rRp06FDhxS05/F4+vr60lo9a9euPXbs2OBHPTjEYrGdnV1HR4cknVx/tLW1vby8UlNTh6J3aVonY2PjP/74o+8pCoUSGhqq9ukpjPTHA0zrhIc3N62TDGIm2v0b4FwCoN+G/f8UolgFENktKqMzrVN/eKL28s6Y0s5zAnF3/7MEhGStHe6qv5ZOHr6Ffpm0TpgIUeFT1vM7TXdrOLXy2thr2YaZhgYYTiQiw7dUKqlIcbr8aRZL7sCkFSkmmTiofQB8Pv9JRXlSQ/2t0pJ2LlfuGIjEUIcxC1wZwXZ2ONM9SYtSJOWVcRTmYlK5KAUAoLGlMym1OO5+Xk1Dm4JmBALi62ETHsww1RHGxJw/ffp0YyNG8NNgQQCiS7N0tZ2wOCoqbO54dx9FH4c3NuMTTOuEBzjZwwNM64QHmNYJDzCtk8rAtE6KgWmd3kyuXLkSFRWVk5PDYChVTq+8vNzZ2VncJ3L62LFja9euxWy8Zs2av//+W/q0qKjIxcVFwcW5XK6+vj73v3cTU6ZMSUlJUWZUw8+zZ88mTpwofbpt27aff/5Z8Us2bdp0+PBhyWMEQfLz8/tmZFEvU6dO7ftPp7KcqK6u9vPza21tlTy1tbXNy8sb6h+g1yKtU1dXV1JSkjSaRMLq1asltQmHJ62TsrmMp06d+iaYCQCABr6NkCdOnOhbtmHy5MmK21Op1EmTJiUlJUmenj179qeffhrqGQaBQKipqRnSLpRBS0srMjJypEcBgUCGHoIxovM10FyCsr8F/PRXTok7UfZe0HsZ0d4GNGaN0PhwQSXqMww2Ouktr+i6VNx+ii9+pXKPGBVWs+Nq2HfMaIHuBpv0qK4jNU4ZSAgpyGhSkNGkEnZpQnNiZnuWCJVN/lPZU3244vjF2sshJsFhptO1ScOxdkAlkmZaMmZaMvI7Gi9WZt6qy+UIZSs888Wi+PqC+PoCB7pRhM3YxXY+uhS8VdH64qpvEOAw5rPgqUkVFVcKC1KqKkX9dnLwRaLbpSW3S0vMtLXnu7otcfe0VTWvAoGATHS2mehswxMIUwoqbmQUPi6qEmElmCqoay6oa/755qNJLrZh3k5hXs4aFGUncuYmussjxi+PGF9Z2xqfUhCfUtDahqHTxGI0Pac6PaeaSiEF+gVevL5WzG08d/bshQsX8FSlQgHawal7Wlj3/N+xhvvtGQ4Tly1fMnOBv40DRiZJMpU8ca7fxLl+A1oKVIzmpxblpxYd+tfJf5KlgEAgEAgEAoEMlqysrNmzZytpJgAAY8aM8fHxycj4X6FE6cq1DL29vVeuXJE+1dLSkuY1koeGhoaPj09aWprk6aNHj6qr/5+98w6Iq0rf/7nTmWEGGDoDAwy991ASSgIphlRjXDUay37trmtZSyw/dV1317aW1d2ou8Y1xhRjNNWEACENQu8dZhjKUGcoU5h+f3+MjpOplxkgYM7nrzmHc+89F7hw7vuc9334S7OmwjfffGPYTExMtHlIZmamXpxAUfTAgQN/+ctfFmRyAMxLJR6VSnXrrbca/nw///xzKI3rYDAY27dvN+p8+OGHdeLE4oD1nRb7473csVJgDgsHDhwwbCYlJdk8ZMWKFXpxQi6XHzt27P/+7/8cmQMEAoEsRYgxCPNboChFZ/4CNNdvilfz0KknASkLYewBhKUSvp8TRBwtwvW+EMbtPPHxzsmv5Jrr1rUo0A7LLg/LrvhSV0UzH3Qjx9yoeZoSTg8Lp4eNKyZKx8rKxi9J1MZLkCnV9A9DJ04KzqS7pxX6bAig+i/OxGJcff+ctOmFuHWnB5sP8Wrbpszs3+eKJ95vLf6ko2y1T/i8J1KQ8YSNYeEbw8JHJOIfOzoOtTTzp83U4hyRSPbWVO+tqY7z8r4zLm5rRBTV3gU0mUhYlxC+LiF8bFpS1NR9orqtfWjMdJhKo7nYxr3Yxv37j2V50ZwtqdHpYWzsJgXBAR6P3p3z8K7slg5BaUVn0eX2aXM1lBRKdWl5Z2l5J8OZkpWy9Uzxs8Lhzm++2a/3RrMPLaoeF3dfbOy+2vKd11thidHZd9x165pNCaxAM/l5UKWAQCAQCAQCgWDkzjvvtF5qyZSsrCxDccJS3vnp06cNt+nExMRgyXONjo7WixMoih47duzpp5+e0/QWAbVafeTIEcOeuLg4m0cZhYiPHj26cOKEg0FaHe+9915dXZ2+efvtt69bt87x00LmC0ziBIvFIhCwyhjLHUdEuc7OTsNfdyKRiMVAwuip/uGHH24ScUIqlX733Xc2h+FwuLy8PHd390WYEgQCWXDIaxCPlUD2FSr5N0Cvj4Mry9GJbcDpVoR2HyAsnvvOPELAUcNc7gymb+PNHOua3j+rHr/+66hOovCmpgfRt/jR8vAI+cZM1ARPssfvAm7b6rf5irC8aKR4WD5iNECNqq9OVJRPXItiRGS4p6e6JdMXJZGCRiDdHpRye1BK0+TQEV7t6cGWWY1x4SOFRq1LpIhw8d7Ail7rGxXKMLMf3258nOmPpKY9lJJaOTT4XWvr2Z6u2euTXnU0j402l4y+dflSfjBnLSckJzCIQbbz5+vl4nx3dtLd2Untg2Mna9t/qu+cEJvZtyKeVZysbT9Z2+7v7rI6JiQ3OjiZwyJis9rDIUh8FCs+ivX4Pbnlddzzl9vLa7kKpZn7mpHIdZkWvl4uWesefvCxlwa49QcPfltSUuKIdbZaIxdMNQvKm0urv/F+LSIjOX/jloLUVWGR8f6mL3t6lUIpV9Wca7h0tKLiZI1ZXwpDlSIqPSxtQ1LquoTw1BAcHhZKgkAgEAgEAvktExsbO9dDfHx8DJuWMhsMjVoBAGw2G8vJjSodXbhwYQmKE42NjWNj122HwpLeERkZiSC/2gR0dnYKBAI/P7+FmKHj4Wgul/vnP//ZsGfPnj0OnnOZMjo6evnyZSwvcY5sR7MDTJ4TNxVFRUWGLiVz8pzYu3fvo48+qm+y2Ww+n2/zqNra2tTUVH2TwWCIRCI8tuDCcqSrq8t6bT5TQkNDS0tL7b6iRCKRy+XQNcE+ZmZm1Go1LGZqH1wul0gkBgQE3OiJLEVwYIaO+x8df8KMEQUACjR2eGqtAsml0ZZrEWcUqIXay0OaI3LUfMl+PHByw6V74lczkHgAMO97x4DOENvZ2dlurzC+sv+q9FqbokNrUutJBw7BBRBYcU6x8ZQYZ/zi5cPKtKoyEffkWEePTGhlmA/JOcOVncsMjqZ54bDnFAAAAFAqldPT0y4uLpY26cjU6suCobP9fXVjY1aWUHgEiWYyV/qyVvn6sR0zStWiaNPAeHFbXwVXMGtOP9BDJuIT/L0yQvzSgnzc5+hLoVRp6loFl6r7GtuHNVpri0MiAR/J8fD3xI/1N5YWn25tbZ3ThSzhTPbwdoni+CQnpkYnZATFpgQwPS3+aqmV6tZLnVWnGxrOt86KLVqD6KDQyBEZIYkFsbG5Ee6spWscOj4+Pj4+HhkZCT0n7AAu9hxhamoKAOBqb226mxyRSEQikWBpCPsYHx+n0WhWLLIgllAqlT09PX5+fvDJNYtKpdKVVoeeExDrvPvuu4YRPz6fb1Z4iI2NNVzxYnFlAAB89913t99+u77JZDKFQmuvMDeEf/7zn08++aS+SaVSMRbzYTKZk5OT+uaRI0cWqGz71q1bT5w4oW/a4Tlh5BdSUFBw/vz5eZufVfSeE1999ZUlr/XFgcvloih69913Dw0NzenAxTHEXsB8CLVaLRaLGQzGbzjOboQ+Y0sHxogki8UybM7MzLS0tCQkJMznzJYSdiwORkZGpqam7P5FkkgkekcsyFwRi8UajWZeyvzdhEilUgKBYMl5/qYHmQb3UfC5XtT/0IgtRl8jIy1Bbi0K9YFp5aZJRYEWpd2QKToIGaQGg6Rp/NUJ/EklYpyLoAGzE9qyCW0ZEfVw1a5iaLLIqO+8XFer1erWlGpzG/yxwARumwm3ZOHSa1T1LepWJWqcrKBFtXzVAF81cGbmXBCeHUmICCeEOiEOmTZhJJvslx3g1zUrPDfFvSoeUKJmxK0RpeTHsbYfx9qYBKcVzn7pzqxYqhcem0qhUqmkUikej7fydy/LjZnlxhyUSc8PDZYOC0Tm/q9pULRZKGwWCve2NAXR6ekeXumenmEMl7mKJTpC3JxCVkbtXhFW1Td2qUfQNizSmttcolBpqnjDVbxhBAHB7ozkAM9ktlewOx3jRWNCXGNCEmck0TUtgsomAW9wyuwOFpVa09w12twFAPAMz3o8a61kmFdbVXHBaNfVXJEoJiRjl7ljV2p72T5no7wZkYEcVmSiX2SCLyfSE08wjtdz0tmcdPaOlzd2XO1pKGptKeuUS8wvMORSRWNJW2NJGwDAJ8QzcmVoZFZoaGogkbK0/rVJpVKpVCoWi6E4YQdwsecIEokEAHDzvLLNLxKJhEgkwg1/9iGVSrVarUZj5l85xDq65YpEIoFPrllUKuO1KwRiFoFAoP8cHR1tVpmYmZlpb2837PH3x1Tn1tvb27ApEokGBwcxHrtoXLt2zbCJfXpeXl6G4kRzc/PS9JTt7e3dv3+/Yc8f//jHxZ+GTCa7sXEhqVSqUqnGx8dtD70eu0MKc2L+xQkURQ8ePLh3796Kigq1Wo3H4yMiInbu3PnUU0/95lX9qqoqwybGp9rT0xOHw2kNrC9/2+IE/ZcNpDQabePGjTbH02i0Xbt2YSl7Z4mZmRm5XO7l5WX3GW5mpqam1Go13IpoHwQCgUgkBgcH3+iJLGWiASgEilJ05q9AY5xqRiaMeRG+9KIdAk5bEOpuQLBhO7ZUiUPBQyPSK62Tn00pOky/rEImxvE/juN/ZJA4gfTCIPoWMt6hvQlarXZ8fJxOpzu+FTEbrJJr5BXCyrMj5wVyMykgWqDlavq4mr6zyvOhNM4KZlqWRzqd4FCiABaiAdgGsiVqxZnBlm+51R3To2aHidSzZ6d6z071MoiULC9Onk/4Wr8oGsFa3VKlUjk5Oenm5mazvGk0AOtS07QoWjEw8H172089XXILS7c+sbhPLD7M63VzcsoLDC7gcHIDg2h2lU9NSQCPAmDdlAIAgKKAOzHDnZg5Wt/rRnNKCw3IjQ5eExviTMEUus1YkfgEAKMTMxcre3660NLFs6g6jAqlo0IE4FOjV6fn0iRTw83VFcVTU5OWxtsEBahIyhdJ+e2Ccy79LJ/6KF+XGLqza3QiOykzJCM3kh1i/N88ISn+d0/catOXQsdI7/hI73jZ1xV4Aj4yPSxzU0pyQXxocjBil2g0v4yOjtLp9OjoaChO2AFc7DmCSCQCAMA0WfuYmJggkUgMxnJN9LyxjI6O0mg0mHdiB0qlEkVRNpsNn1yzLHJBEsjypb+/X/95165dZsf09vYaxusA5lif6bKko6NjqYkT3d3dhk3sVR+8vLw6Ozv1zY4OM++5S4G9e/cahtddXV31xXK0Wm1zc3NVVdXIyIhMJvP29o6IiMjPz58Xlwsj2Gz2jfVyJhAIeDz++++///bbb7HoDXqjwcXZqWxbnJBKpaOj5t/56XS6p+d1ZZ2np6d/97vfnTt3Tt+j0Wja2treeOONzz777NChQ7m5uQ7OeMmi1Wp5PJ5hD8Y/Ong8nslkGrrGGz7hv2E8PT2NjHcgEMhNCnkN4pENZg+i0q9NJQqAyoDsECo7DMjZCHU3IOfMbxGkRQABOF9ajg9tlUB6kTfzw6isAgVmyiXNKLnNwn+2ivb6UFcG0jf5UlfhkBu/s5uCp6z2ys3zyqmfbLw8cbVpukWpNfO+p0W1XZKeLknPoYHvYl2i05lpyW6JVPzCFmpwJpB1jhR1woEf+xtLhjuECvNpyDMquc6X4vWGUyu9Qtb6ReX5hLuS7Cx7ZQgOQVay2SvZ7Fdzco93dpzr7akWDGm05sthTc7O/tDR9kNHG4VAWMlmFwSH5HM4ntQ5Jwb9akoxNPZTfefFNi53VGRp8KR0tqixq6ixi4jHJ3NYOVFBudGcQE/b1Y28PRi3FybfXpjc0zdefKWjoo7bw7e410ap0gxNOQGnFZF5yQTVkGKys7nuilxuxhYCIyhAp2SDU7LBzpFiFydW11BU5ZXYLz+gsgLdU1eGpa4Kj08LJhukPhj5UpSfqK451yAUWJRJNGqNzp0C7DnA9HVLXZ+QujYhuSDexRNGGCEQCAQCgUB++2g0mosXL+o+Ozk5/f73vzc7zCjQBwDAaK5Aoxkv8g3jfkuEvr4+wyZ23wiju7NjS/4ioFKpjNImCgsLiUQij8f79NNPv/76a9Npu7m5PfHEE3v27LG7QvJSZtOmTZs2bcIykslkLqbKa1ucuHDhwubNm81+6YknnvjnP/+pb8pksrVr11ZXV5sdPDIysnHjxqKiopUrV9o31yWOQCAw+sn5+mIt0GG0uVW3fQkCgUBuIhAioO5GqHcD5TVU+hVQlAFgVCEBBYpLqOISwAci1NuB0x0At8xiiAjAsWirWbTVSs30oLSELz4llDeaDtOiKoG0TCAtI+LofrScQHqhl9OKG67HIABJdktMdktUapWtM+2VouoaUZ1Ca6aKjhpVN0w1NUw14RBcFD1ylUdmslsSFb+wa7tk94Bk94DXEwvbp0cuDHeeHmzhScxXdJVr1CXDnSXDnXgESWD6r/aJWM+KYtPmYdehm5PTfYlJ9yUmTSvkV/v7i7ncEl7vjIVKhnK1uoTLLeFyQQkIY7pvDAvP53Bivbzn+mOOYnlFsbye2ZQ9JJqu6Oova+Ve6+pXWNgLo9JoKrv7K7v73z1xyd/dJSOMnRvNyYoIJBFsVIQIDfIMDfJ85O7syWnZtXpeeS23qrFPIjV/azgcQUsOJPoExq/NFo93yEWd/J56rQW1Bgsoep1KwRLF87mC499ew+NxkfEB6XkRSRmhoVG++tQHEoWYtTUta2saAGCYO1pX3FxX0lRztkEmtqiUiIYni74qK/qqDAAQGO2fsTk1OT8uLjuKSL7x6iAEAoFAIJDFBAVo6VjZNWG1QmvD1Aoy7zBJzI2+G8KdQxfncuXl5XoTiD/84Q9GVZj0DAwMGPVgzPcyrTapM3laOszOzhpF500FFUsY3d309PS8TWv+KC0tNdptn5eX98QTT+zdu1dXUZBKpcpk16VcT05OvvnmmwcPHjx9+nR4ePiiTvcmxrY4sWnTppdeeumvf/2rvicgIODBBx/csWOHUU7KM888Y0mZ0CGTyXbt2tXU1PSbzHs1/YOFvZ7GsniqIRAIZOHBAVIWQsoCmj7ZxOcU9CQCTN4KNHxU/C6Q/As4bUao9wFCyI2Yp0OQ8C4cxq0cxq0zSu6g5Hyf+KRMbaZikkor5otP88WnqQTfAOf1wYxtzsQbb65OwpGSXBOSXBOUQTZUCi2qbZ1pa51pIyCEOJeYFczUFLckp4VUKXAIEuPqG+Pq+0RUXs/M+IWRrgsjnfXCAbOFwDUoWiccqBMOvN9aHEr33MCKXu0bEeM6D7YfLmTKxrDwjWHhGhStHxaU8LhFvT3cSYtb+LtFwo8qKz6qrGDRGTmBQfnBnJzAQOIcS0izmC63ZcTdlhGnUKnreYKyNm5Jc8/IlMXCpoPC6aPC5qPXmikkQmKQX240Z218mLeLjRctNxfqLXkxt+TFaLVoN2/sSk3v1dreLu6o2VrrBKKTm18S8EticjZMDNZPDTdOC+dmv2aEXqVoHz7nQQ/xYUQra+Wt9XwAitzcnZOzQjPyIpMyQ53pv3qf+HK8Cx/yLnyoQDGrbL3aUVfSXFfc1FPHs1Idnt82yG8bPPz2j2QqOSYrIjk/LrkgPiyF48jMIRAIBAKBLBf28789P1p6o2dxk8KT8hummp4N/2OcS8wiXO7w4cO6Dy4uLoa22EbMzMwY9WDcU28qTiy1WJ+pCwL2dAEK5Tq7waWmu+goLi426nnmmWfEYnFeXt7jjz++du1aFxcXsVhcXV39j3/8Q+dcraOnpyc7O/v8+fPx8fGLO+WbFEyeE2lpaboPrq6ub7311kMPPUQgGB9YXV39xRdfGHWmpKQ89dRTCQkJEonk2LFjH3/8MZ/Pf/fdd998803Hp77UMHW0x/5UG/3NWppPNQQCgSwe+CAJ8pTG6Q90QhEq3Qc0JjFNVApkh1DZEUDKQGj3AvLqG55bYAcMEiea+XAU80GhvKlffLpfclatNVMrX6Ye7pz6qnPqKzdyFJteGOi8kYR3WfzZGmGqUlSLas1WfFKj6vqpxvqpxkVTKQAAoQzPUIbng+ErBbLp4uGOspGuyvE+DWp+/36PePyTjoufdFwMoLlle4ZkOrNy3ObBJQuPIKl+rFQ/1gsrs/unp0t4vWe6u+qGh816WQMAhsQzB1uaDrY0UYnEDP+AAg5nLSfUY47GIWQiISOcnRHOfnFbXs+I8FIbt6K7v7pn0FKlKblSfa2r/1pX/9s/loV4u+fGcHKjgxOD/Kx7aONwSESId0SI9+9/lyWaklU28MpruVUNfRKZGZmKTHVlha9mha+WzYwKhxonBupmLeS1YESLasZmusZmunAIwd052MclSq2NKDnZUHKyAYfDhUT6JGWEpudGRCeyEdzPd0F2IiUXxCcXxIO/7ZocnW6+1FZX0lRxslY0bFE0UsgUdcVNdcVNYM8BX453ckFccn588tp4Z9c5l+GCQCAQCASyLBAqRcWjF270LG5qNKjm6OAPiyBOjI2N7du3T/f573//u7u7u6WRs7PG2bd2G/sttVifUdIAmEvmhNFen6V2azpKSkqMeoKDgz/++GNDxwE6nb5mzZo1a9a8//77zz//vD7he2xsbMeOHbW1tb/J7fVLDUziRGVlJQDAx8enpKTErIMHiqJPPPGEUc7+Pffc8+WXX+pljMzMzLy8vK1bt/7rX/969dVXF8Jg5MZi+lRj/4OlyyfSszSfaggEAllkUEAD1HsR6j1AUYZK/weUFSa1nrRAWY4qywEhGKHuAk63A2T5lYZEAM6DkuhBSUzw+NOw9DJffGpEdtWsKcWkon1S0d4s/NjbKT2QvsmPlodDMP0fX1D0KsXuwF11k/VVoprm6VY1aqaykF6lIOKIsYzoFczUVLdkCp5iOnIe8aO67A5J3x2SPqWcLRvpOjvUVj7Wq9RqzA4ekE5+K635FtQwu89ne4duYMWs8goh4uaWxGAWtovL/YnJ9ycmT87OXujjlfC4ZX08mUpldrBMpSrlcUt53FdLS5J8ffODQwo4IaFzd7wM9XEP9XF/YE3alFRe1dNf1sq92MabmbVYo6B3VNg7KvyytFrvob06JoTuZMNDm+n6azpFXXNf2bWO1p7xbt6YqQRDZXhTGesCItfOiPqEg00Tg/UqCx4hGNGi6nFx97i4G48jMGnBPi5R3oyI7jZBd5vgyJeXGG7UhDROUmZIek6ku9evJu1u3i45OzNzdmb+8V9oTz2vrriprqS56VKbWmnRGm6YO3r689HTnxfj8LiQxKDkgvjk/LiEvBi8rYpYEAgEAoFAlhGCWQFq/LoBWWyGZgWLcJWPP/5YF8TLzMx86KGHrIw0FSeMkgYsADlQkQAAIABJREFUYVqyX2Gh4uuNwu5bAwCorn+RWYIu9DoLZMOeHTt2HDp0yHS3vY5nn31WIBD84x//0Pf09PQ8//zze/fuXdiJQjCKE+Xl5QCAffv2WfIWP3HiRFVVlWFPQkLC559/bvQjLyws3L179759+yorK7Ozs+2d8xJFLjd+27f7qcbinA6BQCA3DThAXoOQ1wA1D5V9A2a/A6hJ7Xg1D535CxB/CJxuRWgPADzrRszTUfAI2d+5wN+5YFY9Nigt4YtPTik6TYdpUeWw7PKw7DIJx/B3LmDTCz0oiYs/W1OoeKdVHlmrPLJkGlndZIMVlUKlVelUii9xXy+aSuFKctrGTtjGTpBrVBXjvLNDraXDnWKV+TcEkUJ2vL/peH8Tg0jJ8uLk+YSv84uiEuZhX4Wbk9OtUdG3RkXL1epagaCY13u2p3tEIjE7WIOiNQJBjUDw9tXLbBeXNcGcguCQdH9/Ag43p4u60ijrEsLXJYRrtWiHYEynUrQNjloar/fQxuGQhEDfvGhORjg72t98HV49OBwSG+Eb4EN1d3efliiqGvrKa7mV9Tzp7PXvKgjCcA9muAcHxhVOjXYJh5qEgmat2qH3GY32Z5Wi7VeVInJmUna5qOVyUQuCOxEa6ZuUEZqUGRKXGkT4RVFAcEhYCicshfO7F7bJpYq2is66kuZrJ2v4bYOWLqTVaLtrud213MNv/8hwpyeuiU3Oj0/bkOjF9nBk/hAIBAKBQJYCXmSvGz0FCPCieC70Jfr7+z/66CMAAIPB+Prrr3FWl9amW6tN6zWZRWWyD8nulIsFwvRGMN4aMLm7JWgfzePxjNSg1NRUS8qEjrfeeuvEiRM9PT36nn379r3yyiv+/v4LNUsIAACLOCGXy6uqqlJSUjZs2GBpzF/+8hfDJoVCOXz4sNnQ/Pbt2/ft29fU1PTbEydMH0Xs2SFGT/VS+4MFgUAgSwJCMMJ4FTj/Ech/QKVfAo3JnhpUAmRfo7JvADkXod0HSJnLsdYTAMCJ4BXmcmeYy50zyl6++AxffEKuEZkOU2pnuDPHuDPHGKRgf9raQPomGnFJqDJUPNUBlSKFgse6JrYPCp642id8tU+4UqupmeBfGOk6O9Q6LjcvD8yo5GeH2s4Otb3ecCrDk7PGNzzfN9KdPA+FfSgEwko2eyWb/Vru6i6h8Ex3VymP2zI2amm3Xv/09FcN9V811LtRKJkB7PxgzrqQUOc55qHicEi0v3e0v/dj6zMFopnyLn5FV/+VDp5MYT6HQ6tF63mCep4AnAYspktmOFYPbXdXmi6dQqPRtnYNX63trW7id/ZeJ4fgcASmbzTTN5qj2iYcah4frJ8Z70UtlN7CiF6laMef86KH+7hEuzsH47R4fTqFE5UUnxacnheZtirc0+fX8mgUGllX9+n//rZLb6NdW9QonTZTaU3HjFB86buKS99VAAD0dZ9SNyRS6Uvu3QwCgUAgEAgWvCleWe4Z5cJrN3oiNy8IQLb7bVnoq/zhD3+QSCQAgH/961+hoTb8t+l0ulEPxiwB02FLLdZn962ZjlxqtwYA6O/vN+oJCLDh4EihUJ599tlHH31U36NUKr/44os33nhj/ucHMcC2ONHR0SGXy9evX29pwNmzZ2tqagx7nnzyyYiICLODWSwWAEAodKjW8NLE2dnYRhJ7xpbRU429yhsEAoHcdOAY19d6KjcZoQWKC6jiAiBGIU53Aaety7HWkw4GKSTO/Q+x7o+Pz1bzxacHJSUa1ExNnhklr035efvkf5iUuED6Jn/qusWfqln0KoVULaufaqgS1TRNt2hQMyWV9CrFPtz+GEbU4qgUJBw+y4uT5cXZE7e+XjRQNtJ1XtDRZ8EOQa5Rl410lY10vdFwOoHpv4EVs84vysdpfiqQhru7h7tnPpWROTgzc7m/r5jLvdzPV2nM156alMvPdHed6e4i4wmpLL/8YM4toWE+zsavFjbxYzLm5KE9JJo+em3OHtp4PC4+ihUfxXoUgOGx6apGfk0T3yidAk+keAWleQWlqZWyyZH2icHGqdFOB1UKtUYhmGoWTDUT8BQvepiPS5SHcwiC4GZlysqLnZUXOwEAvv7MpIyQFbkRKVmhRNKvS2K9jbZWo+1t6Ksrbqo4VdtW0YlqLdZ50Nd9IjuRYlZG6my0Q5ODEavWHRAIBAKBQJYaD3Ee8KF4VwgrZ9TGNsiQBYWCo7iTmJv8Nia5Jizohb777rsTJ04AAJ588sldu3bZHG8awTetm2IW06JJpqe6sdh9a8Dk7pbarQFzdt9YEiDuvffeF154wdAFvbS0FIoTC41tcWJ4eBgAwGazLQ0wSptgMpkvvviipcE6b/rfZPDd1CMF+1NtZKYN7VYgEAjEFr/UelK1orOHwOyPwDRqr2pHVa8CybuAsg2h/R7g/W7EPOcBBOC8nNK9nNITPZ4XSMv44jNjs1Um9hsABVqhvFEob2xE3nPDpwURNwU6rUGQJVETn0bAqlIotUojlSKNmULGLaxKgUOQFHd2ijv72ZiCdqHgLL+5SjxYLzJf20eDonXCgTrhwF+bzobSPTewom/xjw2hz09VH38G487Y+Dtj42UqVcXAwOnurlIed1phfjmh0Kiv9vdf7e//88WyMKZ7PoeTH8xJ8WPNNRxu1kO7pndQrcHqoZ0Zxk4L9cfbKjbl6+WydW381rXxltIpCCSqJzvFk50yryqFXKdSEPEUTwOVAgAwPCgaPio6c7SaTCFGJ7KTMkMyciPZIb/Wc8Dhcfq6T9MT4sYLLXUlTVVn6scHLW6yUcwq9Tbabt4ucTnRyfnxmZtTmL5ujtwFBAKBQCCQxQGP4LeztmxnLfjmfcgNgc/n6/bFr1+//v3338dyiJub8SoOY6xvcnLSqMfmzv1FhkKhUCgUw9vBHsY08spdarcGAJCYFM5lYvDwc3JyWrdu3dGjR/U9VVVVKpWKSCTO8/wgBtgWJ3QFuYyi53qOHz9+9epVw56XX37Z9NHVU1tbCwDw9rZRtng5YvpbjvGp1mg0RoKeFSkIAoFAINdBjEGIbwLnp8Ds96hsP9CMGA/QzgDZ16jsACDnILT7ACnrRsxyfiDinAPpmwLpm2Tq0QHJT7yZ4xKVcbIqAECDKibUVyYmr7SKPVm0/CD6Fley+XTGxUevUkjU0oapRkwqRd/iqRQAgBC6x12sxMfdVo+rZSXDnWUjXZXjfRoL8fEe8fgnHRc/6bgYQHPL8wnfwIpOdg9A5qOYGJVIzOdw8jkcDYrWDwtKeNzzvb29k2aqe+noFgm7RcK9NdXuVGoOO6gwLDw7MJCEn7M05aCHdlaYf6If093WVcymU1yr58l+SafQqxTK2WnhUNPEUJNYyDcV5OaE6leVwsmTHmqoUijkqvprvfXXer/8oEiXTpGUGZKSFUZ1/vX3zcWDrrPRBgDo6j5dO1VTV9yklJuviAUAmByd1tV9+ugxJDQpWGejHZ8TTSDdeB97CAQCgUAgkJsNuVy+Y8cOoVAYExNz+PBh6/YDesLDw416TLfkm8VUnAgMDMRy4GISERHR2Niob5oG9C1hdHdL8NZMf76mBW/Msn79ekNxQqlUCoVCHx+f+Zwc5HpsP4p+fn4AgM5OM56cSqXy+eefN+zhcDiPP/64pVOhKHr48GHwGw2+BwYGUqlUmezX2sS6NBGbTE1Noeh179tL8KmGQCCQJQ3OHdAeQqj3A0UxKv0KqOpMRmh+qfUUgzjdAZy2AWRh7ZcXFCrBO8L1vgjX+yYV7XzxqQHJWYVmynTYrHq8Z/pQz/QhBokTSC8MpG+m4G3GjRcJZwLNRKVoNqsBmKoUK5ipJNw8eFNbh0V13R2SvjskfVIpuzjSfXao7epYr0prvtTSgHRyf2/l/t5KXydGtnfYat/wbK/QudpWmwWPIKl+rFQ/1gsrs/unp0t4vSU87rXBQY3WvF4ilMl+6Gj7oaPNiUDIDGAXcDgFnBBP6pwzVs16aLcPjaIWBAJDD+14ts/qmBAsHtrAIJ1CqVI3tg/VNPEN0ylITi6+odm+odmK2SnRUPM8qRSzOpWChKd60EP8XOOYzkF6SUmfToHH4yLjA9LzIpIyQkOjfA0LNOnrPilmla1XO+pKmuuKm3rqeKiF7w6qRfU22hQaOTozIjk/LnNLGjtqSZjEQCAQCAQCgdwMPPbYY7W1tWw2++zZsy4uLrYPAAAAEB0djSCI4TJPIBAkJSXZPNAofI8gCIfDmdOEF4GYmBhDcWJoaAjjgUZ3FxISMp/Tmg9MpQiMrt1xcXFGPRMTE1CcWFBsixNRUVEeHh4//vjjO++8Y/T0vvjii11dXYY977zzjhVv96NHj9bU1BAIhJSUFLtnvGTB4XBRUVG61BAdGJ9qUzXVVJiFQCAQiG0QIqDcglBuAaoWVPY/MHsKABMTZlUrqnoVSD4CTrci1HsAfnkvMtzIUW7kqHj3P47KrvElpwXSi1rUzD7uGSW3WfjPFuGnnk5pgfSNLFo+AbdUfDgMVApJw1QTFpViP//bJLfEdGZanEsMAVnwTehuJOo2dsI2dsKsRnVtnHd2qLVE0ClRm7eVGp6dOdJXe6Sv1oXklOcTttonIsc7lEqYHymF7eJyf2Ly/YnJk7OzF/p4JTzuRX6f1IJt3axaXcrjlvK4r5SWxHh6rQnm5HM4cV5zTl21w0O7oW+4oW94rh7aJCIhLT4wLT7wUQAEo9PVTdelU5CdXH9WKWRTIsH8qBRKjUynUlCIdG9GpLdLlBv114R0jUbbWs9vrecDUOTm7pycFZqRF5mUEeLM+PXZITuRdDba4G+7RCNTLZfbK07VVJ6uE4ssbjqTSxW6uk//2XNAb6Odsi6B5rLkXAQhEAgEAoFAfjO88847+/bt8/T0PHfuHBbvAT0MBiMgIMDQXXlw0Hz1VyOMQoKRkZHYFZFFIzo62rCJMYw5PT1tVF8nIyNjPqc1H5j+lKemprBoDFFRUUY9GJNsIHZj+/uLw+F27979j3/847bbbvvuu+9cXV0BAHK5/M033/zggw8MR+bm5u7YscPSeXp6eh5++GEAQFxc3G/ScwIAEBMTY4c4MTAwYNjE4/GpqanzPDMIBAK5qSDGIi7vAvrzqOwgkB0AWpNiONoJIP0cle0D5AKEdh8gJt+IWc4bOITkS8vxpeUotTODkmK++JRQ3mTWlGJstnJstrIB964fLTeQXujltALMRw2iecGZ4IxRpZBpZq9OVFydqKDiqUluCYumUjjhiat9wlf7hCsS1bXC/gsjXT8NtU7IzYehp5Wzx/ubjvc3UfCEDE/OBlb0Gt8IBnF+8nXcnJxujYq+NSpaoVHXDAmKeb1ne3pGJOYTzLUo2jw22jw2+lFlBdvFZU0wpyA4JN3f347EDlMP7dKWnuHJOXhoF8SF+rjatsvz8/45nUKhVDd1DNU08a9U9/YNCgEAZKpepZgUCVomhprEwr653ogRcpWYL6zmC6spRIY3I8JIpQAATAolJScbSk424HC4kEifpIzQ9NyI6EQ2gvv18WH6uOrqPulttOtKmpsutqpV5rNtgIGNNg6PC0kMisgMYSf5xsXGgXlIuYFAIBAIBAKB/MzBgwf37NnDYDB++umnyMjIuR6enZ194MABfRNjrK+vr8+wuQTD9wCAnJwcwyZG3YXH4xk2iUTiEtyDHhISgsPhtAbp5uPj41h++gwGg0gkqlS/7sTy8Jgff0GIJTC9yT///PPffPNNcXFxbGzsLbfcMjU1VV5eLhAIDMeQyeSPPvrI0hmqq6u3bNmiSxFIS0tzcNJLltWrV3/99df6ppHqYAmjP1ixsbFL0OYeAoFAlh84T8T5SUB7BChKUOl/garReACqAvKfUPlPgBiLUHcDp80Y/y0uWUg4Bodxa5Dztv6x+mmkQqAokqrMLJ1VWglffJovPk0leAc43xLE2EInLqFygnqVQqyWNE41VYlqGqebteZVCtkNUSnIeEKWFyfLi/Ni3PoG0UDZSFeRoJ0vMW8IIdeoy0a6yka68AiSwPTfwIrZwIr2oszPP3oynrCSzV7JZr+Wu7pLKCzlcUt4vbUCgaWEgv7p6a8a6r9qqHelULIC2PnBnLWcELrlnFeL1zXw0B4UTpe1cS+2cRfCQ5tM+iWd4u4cfTpFRR13Vq4iU910KoVcKhIONY7318pmRq2fzSZy1Yx1lUKr1Xa3CbrbBEe+vMRwoyakcZIyQ9JzIt29fv2BGtpoz0rk7de6rp2qLT9RPdo3bum6Wo1WV/cJAHDghR8SVscm58ev2Jjk6b9U6rBBIBAIBAKBLFMuXLhw//33k8nkkydP2hdD37Jli6E40dLSguUoo1hffn6+HZdeaLKysjw8PCYmJnTN0dHR8fFxT09P60cZ3VpmZiaVuuSSgJ2dnWNiYpqbm/U9GKUXAACdTheJRPrPWJy0IY6A6QXe29v7yJEjhYWFQ0ND//nPf8yO+fDDDxMSEkz7h4aG3n333U8//VSt/rm2RkxMjN3TXeIUFhbi8XiN5uctcs3NzSiKGhYpNouR5Lh+/fqFmh8EAoHchCCk62s9nQTAZCOzqgWdfh6I3wXUOxDqPQDndiMmOp84If5e9AfivR8Typv6xaf7JWfVWpnpMJl6tHPqq86pr9zIUWx6Idt5Axm/hO6d/otKMamcrBLVVomquyW9qLlKPnqVgkagJrompDPT4l1i8cic7aDnCh5BUtzZKe7sZ2MKembGzw61Xhjpap0aNjtYg6J1woE64cDfm89Fufis9gnf6B/Loc/bNpxwd/dwd/dHUtMEYvFFPq+Yy73Sz1dqzG/bn5LLz3R3nenuwuNwST4+G8PC14eE+dm1N8Lf3eXu7KS7s5OmZfIrbb2X27jXuAKh2Mzvmw69h7YrjbIilJ0bHZwXw2E42c4psZROQaExWeGrWeGrZTOjwqHGicHGWfGYHTdiiF6lcCK5eNHDTVUKAMDMpOxyUcvlohYEdyI00jcpIzQpMyQuNYhgUMDKyZmiq/v02If362y060qaas41yGZmLV16ekKss9EGAOjqPmUUpiSvTSBRiA7eFAQCgUAgEMjNRk1NzdatW7Va7dGjR42yBLCzYcMGEomk/KWYqmHFFCu0t7frPzs5OW3ZssW+qy8oeDy+sLDwf//7n76ntrZ2w4YN1o9qa2szbN5+++0LMjmHycvLMxQnKioq7rzzTiwHGlqMZGVl4ebDShBiBcSSd58pdXV1u3fvbm1tNeqnUCjvvfeekQ+2SCTav39/UVFRUVGRXpbQsWrVqqKiIow+JItPUVGRoTzw9ttvG5l+WycnJ+fy5cv6Zm9vr03Hm+3bt//444/6Zl1dHRZrneVLX19fcHAwACAoKMhImFkgZmZm5HK5l5fXIlzrt8fU1JRarYZZbPbR1dVFJBJ1v/CQuTI2NkahUBgMxjyfVzuGyg4B2X6gNeMgDYBOzNiI0H4PCHNO+F0iaLXa8fFxOp2u38CiQZXD0kt88amR2XIUtVhkBocQvZ0yAumb/Gi5OGQpRkJFyslqqyqFHrtVCqVSOTk56ebmRiLZaRQxKJsqHe48O9TaIBrU2lplhdI9V/uG5/mEJ7sHIPNdYmtWrS7v7y/hcYu5veMyqc3xYUz3fA4nP5iT4seybypyuXx6etrNjdkzJrLpoa0Hh0Mi/bx0KgUWD21DdOkUV2t6qxv5StXPC07p1NDEUKNwsEkuFdp1H2Zwpnh6MyK9GZF0irXlhBOVFJ8WnJ4XmboyzMvX1ewYjVrDbeRXnKy5drq2p56Ham0vxclOpJiVkcn5cckF8aHJwTY3vtyEwMWeI+j2BsJdgfYxMTFBIpHmf7lyczA6Okqj0Uw9SyE2USqVbW1tbDYbPrlmUSqVOjNUEomkUJj3CYPcDDQ0NBQUFIhEoi+//PK+++5z5FQ7d+48evSovjk2NmY9vWB0dNTQ3kBXJ9+RCSwcxcXFa9eu1Tf/8pe/vPzyy9YP2bZt2/Hjx3WfiUTiwMCAt/ecne0wsnXr1hMnTuibMpkMezz5ypUr2dnZ+mZiYmJ9fb3No1AUJRKJ+n3ncw0LG7Jp06bTp08DAE6dOlVYWGjfSeaFrq4uPB6P3becyWTqqh+JRCI3twXfvzgHcQIAoNFoTpw4cebMma6uLqlU6uXllZGRcd9997HZbKORDQ0Nzz33nKXzHDhwYMm+PDgoTnz55Ze///3v9c3Dhw/blBD9/f31FeuioqKMFMjfHlCcWF5AccIRoDjhCAslTuhAlUB+GpX+F6g7LY75udbTFgAWfAP+/GIqTuiRayYGJOf7xacnFe1mj9VBxNEDnNey6YUelISlY0phiFApqhHVYVEpnAm0BNd47CqF4+KEHpFCdmm0++xQ29WxXpXWoiakw4/qku8budonPN0zCI/M894cDYq2jY+VcLlnuru6Rbbj9Uwnp9zA4AIOJy8omEqcg0ylEyfc3d31rnGCyZnyThse2ob4MRlZ4YGZ4exVkcFU8hwurU+nuFzVwx/6OQtbl0sxPlAvl0xgP5V1aBQ3D1qo2VwKI3z9mUkZIStyI1KyQokk88nK0+MzjWWtdSVNlafrJobMVwYzgunjGpsdlVGYkrEphc6EEb2fgYs9R4DihCNAccIRoDhhN1CcsA4UJyAAgIaGhvz8/MnJyU8++eSxxx7DeFRTU1NTU9Pdd99t1F9TU2NYo/6bb77ZtWuXlfOcPHnSMFWivLw8MzMT89wXm9TUVH06SE5OzsWLF62P9/PzGx7+OVn83nvv/eqrrxZubo6IEyiKxsbG6qOsOBxubGzM3d1G3dT+/v7AwJ+LHpPJZD6fb7f0AsUJjMxNnLgZcFCcUCqVISEh+kJm99133759+6yMHxwcDAj49eX2v//97wMPPDDHKS8zoDixvIDihCNAccIRFlac0KOsQWVfA3mRmVpPOnBegPo7hLob4Mxvgl6CWBEn9Mwoe/niM3zxKbnGWtCWSvANcF4fzNjuTPRfgJnOA3apFHFWov/zKE7omVHJy8e4F0Y6iwUdUrXS+mBXklOuT9hqn4hcnzAn/Pznr/RPT5fwekt43MrBQbXWvEWEHgqBkBXALuBw8oNDvGg0myc3FSf0YPTQ1kMmEpKC5+ChbYg+naKqsU+l0gC9StFfN4+5FFQK3Y0a7E2P9HAOQazqSWQKMTqRnZQZkpEbyQ6xuBpprmq9eLS8v3645UqHCoOQo7PRTi6IT86Pi8+NIRCXmYw6v8DFniNAccIRoDjhCFCcsBsoTlgHihOQpqamNWvWCIXCDz/88I9//CPGo4RCYUZGxq5du15//XXTr65du7a4uFj3eceOHYaJFKY89thj//73v3Wf8/LyLly4MIfZLzrfffedfl81Ho8XCARW1lQNDQ36ci84HK6lpSUqKmrh5qaP7+uQSCQ0DG8ler755pt77rlH3/zkk0+MCv+Y8v3339922226z7t37zaseTVXoDiBEShOGHPmzBnD35i//vWve/bsmdMZPvjgg2eeeUb3mclkjo6Omr6i69m7d++jjz6q+8xms7u7u+cxGrI0geLE8gKKE44AxQlHWCRxQodmAJUdArOHgXba/ACEDCi3ILQHASF8MebjGFjECR0o0Fo3pdCjM6UIdN5IwrvM62TnjbmoFM4JrnGWVIqFECf0KDTq8nHuheGukuEOocJGnSUKnpjhGbyBFZ3vG0knztmz2iaTcnnFQH8xl3ue2yNR2pBMcAgS4+m1JpiTz+HEeVncOmRFnDAEi4e2IXPy0L5uPgpVc6fgak3v5aqekfEZAIBkanCcXyscalLKZ7Cfxzo0Kt3bNdyVGOLuzMHZys7RpVMkZYakZIVRna/7sY6Ojg4PD8fHx6vkqtbyzrqS5rriJp1Ltk2cnClRGeEZhSlZW9O8g2x4GP4mgYs9R4DihCNAccIRoDhhN1CcsA4UJ25yGhsb165dOz4+/v777+ujczapqam5995729vbu7q6QkNDTQdUVVVlZmZqtVoAAI1GGx4eplswbFMoFGw2e2xsDABAIBCqqqqsFG9va2v797//3dPTExAQ8OCDDxrmZywaWq02IyOjurpa1/zXv/6lD1Sa8sILL7zzzju6z48//vgnn3xi5cxSqXT//v19fX1JSUk7d+60w7yhoKCgpKRE35xrrFyr1a5cufLatWu6ZnR0dFNTEx5vbcV+5513Hjp0CABAp9Pb2tr8/e3fpQfFCYxAccKYY8eO7dixQ998/fXXX3vttTmdQS6Xx8XF9fT06JqnT5/euHGjpcErV64sLy/XX3r79u1zn/IyA4oTywsoTjgCFCccYVHFCR2oDMyeQGX/A+oei2NIKQj1XkBZt5RrPWEXJ/RoUMWw9DJffGpEdhUFFoPFeITk5ZQeSN/kR8vDIdaizzeQCYWwdrLebpViQcUJPRoUbRANnB1qOy9oH5m1ESXHI7gEJmsDK+YWVownZf4jOGqttmFk+HR317nenmGx7ZyGAIbLKnZgfjAnJzCQeP3KHqM4oWdaJq/s7q/o6i9r5U6IbbtizNVD25Dr0imU6ukJrnCoUTjUrFJI5nQeK9CozqGBiWS1P4PIxuNsZL3g8bjI+ID0vIikjNDQKF8EQfTihOFrm2hkqrao8drp2rriJsmk7W8R+MVGOzk/PnV9IpWxRD3e5h242HMEKE44AhQnHAGKE3YDxQnrQHHiZqaioqKwsHBycjI3N9f6HnmJRKJSqaRS6eDg4NWrV6uqqlAUzczM1MfoTHniiSc+/fRT3ee//e1vL774otlhX3zxxUMPPaT7/Nxzz+lD+aacOnVqx44deqttHA733nvvPf3009bvcSGora3NzMxUqVQAgNDQ0Pb2drPr+ampKQ6Howtb+/v7t7a2WvkPKBKJMjIyuru7dc1NmzYdP358rvpEdnb2lStX9M3h4WFDMw8stLa2pqenS6WNpd8CAAAgAElEQVQ/L6S//PLL+++/39Lgvr6+yMhI3d+Njz766Mknn5zTtYyA4gRGoDhhzMGDB++66y59c8+ePX/961/nepLi4uL169frBNVVq1YZWmQbcunSpdzcXN1nm0lhvxmgOLG8gOKEI0BxwhFugDjxMyhQVqDSr4CiDFgKbePZCPV3wOl3ALcU0wjsECf0zKpHB6WlfTMnppVdVoaRcAx/5wI2vdCDkujATBcWvUrRJbGsNgEAAKATnONd49KZaQkucWqVehHECUN6ZsbPDrWeHWrrEY9bH4lDkCgXn9U+4YUBccHONoql2keXUFjK45bwemsFApsLRBcyZSWbnR/MKeCEMMhkMHdxQo9Wi3YIxuzz0I5iec/JH1qfTnGpsmd0fHpG1CccbJoYbFQpbAszGCGRyFGhiZ7OEajYk4C3LaK4uTsnZ4VGJfm6+xHTM1PNvrNpNdrehr664qa6kuami61qlQ0XEwAAnoDnJARmFKZkbk4NTQpGcEvRP2a+gIs9R4DihCNAccIRoDhhN1CcsA4UJ25aysrKtmzZIsaw28YS//73vx955BFLX52dnc3IyGhqagIAeHp6NjU1mQbKdXtNJiYmAABr1qw5e/Ys0YKFG4qivr6+o6Ojhp0Ighw/fnzz5s1234LdvP/++3/60590nz/99FOzRh0PPPCArnY9lUq9dOlSSkqKlRM+99xz7733nmHPwYMH77jjjjnNKjg4uK+vT9+sq6uzkoZiiYMHD+7atUsXAHd1dW1oaNC7Shii0WjWr1+vS9S47bbbjhw5gszpNcMEKE5gZKHECRRFu7u7JycnXV1dg4ODl1Gpor/97W8vvfSSvnn33Xfv37/fjvO88sorb731lu6zWVvs6enpjIyMjo4OAEB8fPyVK1csZYT9xoDixPICihOOAMUJR7hx4sQvaPio7AiYPQS0Fja2IzTgtBmh3gsIZtJ+byCOiBN6dKYUfeITCo01k14GieNPKwhkbKYR/Oy+1kIzoZionWzAolK4kdySGYmR+LAk30Qyaf4rKVlnQDp5YaTr7FBrvXDA5uIslO652jc8zyc82T0AWQDTcqFMdpHfV8LjlvXxZCob/gd4BEny9c0PDsn1D2AiiB3ixHWXFsuudvZdbONd7eiTKmzUmwIOeGgDAASj01dqestreutb+0VjXOFg08RgvcpWxS3s4PH4iLDYYJ8EVOyjUdieG4IgoVG+SRmh6bkR0YlsS3LCrETeeKHl2unamnONo3wbmpYOF09GQl5Mcn58emGyB+s3GMmCiz1HgOKEI0BxwhGgOGE3UJywDhQnbk5OnTq1c+dOuVxu9xlIJJJAILBumDwwMJCdnc3n8wEA6enp58+fNwzldXR03Hbbba2trQCArKysU6dOWQns6oNjRkRFRbW2tjoYFrcDFEUff/xxnVUGiUT66aef1qxZo/+qQqHYs2fPBx98AABwdnY+cuTILbfcYv2E69atO3/+vGHP888///bbb2OfUnt7e2xsrNbAJ+/Pf/7zq6++iv0Mej7++GO9+0hkZOSFCxeMhCWFQvHAAw98++23AIANGzb88MMPFMrcErVNgeIERuZfnJidnX377bc/++yzkZERXY+zs/PmzZvfeOONsLCw+b3WvKNUKletWqWvswYA8PT0bGlpseNVR6vVPvDAAzrjFCqVeubMGX2SBACgs7Pznnvu0V0oMTHx1KlTLBZrPu5gGQDFieUFFCccAYoTjnDjxQkdqBjIvkNl3wDNgIUROEDOQah3AFI2QJaEEj8v4sTPp0JVI7KrfPGZYdllLWoxTIwAnBd1RYDzel/qKjJ+6b4kC+TDVaKaSmH14OyQ9ZFMotsK97RE1/gIehhh0QtYDc/OlAg6ioc7qif4GtSGJQOb5pbvF5ntFZrszqbg53+qMpXqEr+vhMct5XFFs7M2x4e6uq0NCc0OCkr29SU7Nh+FSl3ZM3CpjXe5nSeYtG0RQSERMsLYKyOC0kL9Q7znllkilSlrmvgV9dyK2l5uT+t4f93EYINGZf/LrRE4HC4+Lik0IJGkYokEWizLb1cmLWVlWGJ6SFxqkA/L4isBv22wtqixpqih6VK7QmY7/oIgSEhiUMq6hPjsqNhVUb+Zuk9wsecIUJxwBChOOAIUJ+wGihPWgeLETcg333xz//33q9VqR06yffv2Y8eO2RzG5/O3bdvW0NAAAPD399+zZ8+KFSs0Gs0PP/zw4YcfKhQKBEEeeOCBTz75xHp0WywWu7i4mF0Wtre3R0ZG2n0jdqPVal955ZW///3vKIri8fiHHnpo27Ztfn5+9fX1b731VmdnJwAgPDz80KFDWNIXHnrooS+++MKwZ+/evQ8//LD1o0Qi0djY2MTERGVl5bvvvmuUWYLD4R588MHNmzez2Wx3d3c/vznskNu/f/8jjzwik8kAAD4+Pq+//vqOHTs8PDykUum5c+feeOONpqYmBEGefPLJd99911K+y5yA4gRGbIsTY2NjupQlU3x9fWNiYgx7+vr6Nm7c2N7ebjqYQqF8/vnnhibpS4SZmZmqqqrJycnOzs4jR440NzcbDWCxWHfddVdSUhKTyUxOTvb0xGozqNVqX3755bfffhtFURwOd9ddd+Xl5bm7u1+4cOGzzz7T/cHavXv3J598clMtyKA4sbyA4oQjQHHCEZaKOPEzWqC8ZqPWE44ByGsQyi2AlA2QeVjK2M08ihN6VFqxQHqRLz4zNltl8TsAAAJwruQIX2q2Ly3HjRwJFmBH/7wwrpiom2y4KiznSfnWR5JwpDDn0FiX6BhGdDDNTPLvgjKtnL0w0lU20nVptEemtpFDgEdwkS7eWV6cTE/OCo8gwtzt5qyjRdHW8bESLreUx20eG7U5Ho/DRXt4rmSzVwUErmCxiFZ952wyVw9tpjM1ju2THOyXEc6ea90nXTrF5WsdZWWlo/0NIkGrRj1vKgUAICIiMitttTs1oq9VIp62rfcAAJie9JikwJikwJjkQJ1BhekYjVrTfq1b507RU8fDon/g8LiACL/YVZExWZGJq2M9AxakVtjiABd7jgDFCUeA4oQjQHHCbqA4YR0oTtyEpKWl1dTUOHgS7Eawum3ZH3zwwcyM8QaanJycN998MycnB8t5du/ebVisBUF+DtIeP358y5YtmCc+z5SUlDz77LONjY1G/d7e3k8//fRTTz2le75s0tPTk5SUJJH8bPAWERFRV1dn8xX11ltv/eGHH7Cc39XVVRdAx05HR8err776/fff65fKVCpVJ1cgCLJ+/frXXnstIyNjTue0AhQnMGJbnCgrK8vPzzdMotFBoVBeeeWVl19+Wd8zNjaWnp5uWAvMCBwOd+TIEUO76aVAeXk5dsnk/fff37Zt25zOf/Xq1ZdeeunSpUuGnQiCrFu37pVXXlm1atWczvYbAIoTywsoTjgCFCccYYmJE7+g7kRl+8HscYBaDlbiXAFlA0LZCEgrbohv9kKIE3okqoF+8Wm+5IxUZSP5gErw9aVl+1FzPJ1ScEsjp8SUoVlBpai6UlQtmB22OdiT7BHnEhvnEhPDiHLCL+p+81mN6vJoT7Ggo2ykawbDdn4GkZLuGZzlxcn0DA5aAHcK/tRUEbe3lMetFgxpTJaIptBIpHSWf6Z/QGZAQJSHJ86BLPVpmfxqJ/9iG7e8s29Kikkz8GTQ0kL800ID0kL8Az3nsLaWyBTVjfzLlZ2nz5zhdVZPDrepVZi0BIzExcXlrMz3c4se42s6W4ZQLaZsZjd359iUwNiU4PjUoKBQb7Oln0TDkzVFjTVFjXXFTdPjtpNOdLCjWHHZUXGrouJyor3Yy+z/PlzsOQIUJxwBihOOAMUJu4HihHWgOAFZHCQSyenTpysrK8fGxqhUakRExIYNG4z2cFtHqVR++OGHpaWlnp6et912G4vFSktLAxaKwy8y165dKykp4XK5SqWSxWLl5OTk5+djlCX0dHd3v/POOzweLykp6aWXXlqEMDcWBAJBUVFRc3Pz+Pg4giBeXl4xMTHr1q2bUx4GFqA4gRFMZZ0+/fTTJ554Qt/Mzc195JFHNm/eTKPRDIdt27bt+PHj1k/l5ubW0tIy7z/vpU9vb+/ly5cHBgYAAMHBwatXr7556jgZAcWJ5QUUJxwBihOOsETFCR2oGMweQ6X7gMZqgB7nCsh5iNN2QMoAYJ63sVthQcUJPZOKdr741IDkrEIzZX0kHiG7UxJ9adn+tHwnwhL9UzwnlQKH4AKpATGM6CTXhDB66EJYPlhCg6INooGzQ21FgrbRWUxefx4U51R3dpYXJ8c7zMdpnh+oKbm8fKC/mMst5vWKsb3800ikRB+fVQGBK9nsWC9vu793WhTtGJqDh7YOdzo1heOfFOyXHOw3p4wKwej0paruYz/+VH75/PhAo1KONeKPhaCgoA3rNwazYqXjpN424cQo1pM70ciRcf5JmSExiYERcf4Eohk1tK91oPJUbV1Jc/PldpXChn2IHqavW+yqyNisyNhVkaHJwYtf9XiuwMWeI0BxwhGgOOEIUJywGyhOWAeKE5BlikKh0FWCunjxIsbcC8hSBooTGMEkThw+fFhnp87hcD777LOCggLTMT/99NPGjRuNOnfu3PmnP/0pLi5OJpMdO3bsxRdfFIlEjz322Keffjovs4csR6A4sbyA4oQjQHHCEZa0OPEzGiA/j8r2A2W1lUpHAACA9wGUWxBKISDGL0Klo8URJ3RoUOWw9BJffGp0ttKKKYUOBODcKNG+1GxfarYrOWKh52Yf3Gne5ZGrLfK2EYXtykUAADqBHucSrcuocCG6LPT09GhRtGlyqFjQUTzc0ScRYjkEASDcxTvLk5PhGbzCM8gJP5/Fx1QaTeXQ4Nnurgs8nkAqwXiUF42WFcDO9A/ICmD7O/Cwj0yJL7XxLrXzqnoGZpVY4+9eLs4rQgPSQvzTQv0D3F0xHiWRKirrucdOFpcUn+N3VcolE/bO2gxubm6FhYU5mWtpBP/6Cl57Y79apcF4rBONHJPEjksJik0Jiog1I1TIxLONF1prihpqzzcNddsW4fS4ernEroqMz46OzY4MSQjC4RdPasUOXOw5AhQnHAGKE44AxQm7geKEdaA4AVmmtLa2xsbGkslkkUi0CK9ykIUGihMYwSROPP300x9++GFkZOTFixfNLvpVKlV0dHRPT49h56uvvvrnP//ZsKehoSErKwtBkPHxcfiY3bRAcWJ5AcUJR4DihCMsB3HiFzQjQHEOlf8ElHW2VAo/QC5AKLcAUsrCqRSLKU7o0aDyMVnVsOzysOzyrHrc5ngynulDzfSl5vhQswi4JbQkUCqVk5OTbm5u0+hMy3Rry0xby3SbTCPDcqwX2TPRNSHZLSGCHr6YNtrjckmtsL98jHtxtAtjOoWhQUWaRyARNz/1x+Ry+fT0tJpCbhwbu9LfX8bnDYsxzQcA4EWjpfqxVrHZeYHBvnS6fRPQatEOwdi1rv46nqCWOyiR2xDM9HgyaEnBrMxwdmKQX6gP1kJYgtHpEz+VfX/0aFV5yczkHML9NmEymYWFhdu23hrMiuluG66v6G2t71diznsgkYlh0X4xSYFJmSExSWwS2ViIEo1MdVX3tJR31hU39dTzMFaUAgA4OVOiMsJjsiJiV0XGrooiUW6kv44hcLHnCFCccAQoTjgCFCfsBooT1oHiBGSZ8tZbb73yyit33HHHwYMHb/RcIPMAFCcwgkmcWLFiRU1NTXV1dUpKitkB+/bte+CBBwx71q5de/bsWZyJGeMzzzzzwQcfnDt3bt26dXZPGrKsgeLE8gKKE44AxQlHWE7ihB6NACjOo/KfgLLWxkg8C5DzEaftgBg777O4IeKEHhRopxSdw9JLw7LLk4oOG2rN0iv6pBcnSKSffTK0qJYvG2idaaufbOiW9KK27gjcUBvtAelkxTi3fIx7daxXrML0Nu6EJya5B2R6crK8ONGuPo5UqdKJE+7u7gTCz9pM//T01QH+lf7+8oH+KTlWW2m2i8vKgMBVbHZmANuNQrFvMhqttlMw7ohQkRnOZjGxZsPU1rXs+/rg6VPH+3rbbP7aY4dKpa5Zs2bnzp1btmwdF0hb6/it9fz6ih6JGOs3E4/HcSJ8opMCY5MDkzJDnenG30+ZeLajsrvlSkdreeecSj8RiPjg+MDkgvjYrIjY7ChnV5rtYxYMuNhzBChOOAIUJxwBihN2A8UJ60BxArIcEYlEUVFRU1NT9fX10dHRN3o6kHkAihMYsS1OiMViJpOZnZ1dWlpqdoBGo4mKiuru7tb3uLm5tbe3e3t7mw4uKipav379Rx999OSTTzoyb8jyBYoTywsoTjgCFCccYVmKE3o0Q0BRjM7+AFStNkYSQgHlFoSyCRA483XxGytOGCJTj4zIysdmK0dkV9Va207CDBLHl5rjS8v2oCQsQv0rs5iKE4aI1ZL2mY6WmbbGqSaRchLLCb3InjEu0bGM6FiXGOoi2mhrUG3H9Gj5GLdinFs9wVdpMVUHcifT0jwCs7w42V6hvtQ5V6kyFSf0aFG0RySqHR660t9/uZ+P0aAChyAhbkxdRkU2O5A+Rws+PXqhoqK7v54nUKjUGA+0Q6jg8/kHvj188NDh1uZ6LHuAMEKhUAoKCjZv3rx9+3Z3d/cB7kRrA7++orexijszhSmzBwCAw+H8gz1ikwKTMkMSVnAYrsZ/IhQyRXcdr/VqR11Jc+vVDsUsVkUHh8cFRPjFropMzo9PWB3r4mFn7ovdwMWeI0BxwhGgOOEIUJywGyhOWAeKE5Blh1ar3blz57Fjx955553nnnvuRk8HMj9AcQIjtsWJmpqatLS0N9544//9v/9ndsCBAwfuvvtuwx4rz1J9fX1ycvLrr7/+2muv2TdjyHIHihPLCyhOOAIUJxxheYsTetTdqPwnID8F1Lb+3OlUCqctAB/k4DWXjjihR4MqhPIGgfTSkLR0Vj1mc/wNLPpkXZwwZEwxXj/ZWD/V2CnuUqO2g9030EZ7VqOqFw7oMirapoYxxssDaG66dIosLw6DiCl9wYo4YYgGRdvGx672918Z4NcMCRQaTFIBHkGiPb1WstmrAgJTWX5kvJ2Fs64TKrgChXrOQkVWeKAf0/afpomJiTNnzhz49lBpyXk15qvYBI/HZ2Rk7Ny58/bbb/f19QUADA+K/j97Zx7eVnnm7edotxbLsmzJkmzJm2RZknfHSewkkBACoWGH7hfQ0gIfndK9Q+dqh2k6pUNbaEuZtoTCFGhLU2gaSjYgEJLYDt5jR5Ll3ZItyZK8SJatffn+UFCEY0vHkuLY4b3/4Mo5OstryTLnvPd5nl/PhyOabn1fx5htyoH/UIL87JotJYoacVVDcW7eUvUSDARHe/XqZp26Vdfz3gXnLN4oEQAQFPNrd1coG+WV1yn4klz8OyYNuthLBSQnUgHJiVRAciJpkJyID5ITiI2Fz+d75JFH/u///u+b3/zmr371q6s9HETaQHICJ4nlxNGjR/ft2/f8888/9NBDl78aCoUqKiq0Wm10jVgsHhgYoK1Qg//uu+/u2bPnV7/61Te/+c1Uxo3YuCA5sbFAciIVkJxIhWtETkSJWAr3vyCoT7DlRUtxJxALkjvVOpQTscz7Rsyus6bFMzOevtU0fdqVQVqmIjPt4JcTl3YJ+YYWhtUOrWZeO7aY6PMFAAAWiVmeKVdlKqqzKjmUK361F8uMd7FjWt9qHT1rGTK75/HsQsQwOTsvElBRnyOhrBxQgVNOfGyXQEBttXSaTM0T+naj0R/EVeFBI5FUPF69ULStQNIgEpGJSWZmJC0q8rnsmkJhbbGosUwi5CT4MzU3N/fWW28dOXLk6NFjLtdickO9HAKBsHXr1ltvvfXuu+8uLS2NrDRPzmq69doeQ1frsMWEq7gngiA/W1EjVtZK6hpL+cKlv5OhYMigM2paBtQt/b0faGwTuDLYI2QLOJGKCmVTmUSRj2FXRMuhi71UQHIiFZCcSAUkJ5IGyYn4IDmB2EC0tLQ89thj/f39v/rVrx5++OGrPRxEOkFyAieJ5cT7779/ww03/OxnP3v88ccvf/XFF1/8yle+ErvmT3/60/3337/S0fbv3//EE0/85S9/+fznP5/ciBEbHSQnNhZITqQCkhOpcK3JiSgXLcU/ITgZdzsCUGow2l6g3QKE1T13vM7lRBRvcHbK1Wp2nZ1ytQZCifvSrE3TpyTkRCxWr03j0KrntWqHxhVM3MkKAEQZwpqsKhVbscYx2hATUNFqHZ3348owoBHJtSsHVCQhJ2Jx+f09ZnPzhL7FYNDYrCF8PZHoZHKNQLCtQNIkFitzeYRk5769/oBm0nJ+zHRuyNA9avQFcGkSiBEVTWWFAk68dkZOp/Po0aOHDh06fvz4wsIqChHig2FYfX39XXfdddddd8lksuj6GatTe17fc25E3aM3jCSuWIqSncu6GKZdLZGULnP5ZB61qJt1mladulmn18b/U/bxI+dlyepLVE3y2t2VpTVFGCFtX2R0sZcKSE6kApITqYDkRNIgOREfJCcQGwKz2Xz33Xe3tbV98Ytf/PGPf1xYWHi1R4RIM0hO4CSxnBgeHpZKpffdd9/LL7+85CWn0ymTyaampqJramtrOzo6Ls/BjhAIBBQKxdDQ0Icffrh58+YUh47YoCA5sbFAciIVkJxIhWtWTlwkBL7usOc4eI5DyBZ3y6il+BQQcH0TN4qciBLT9OmUO2BJuD2VyMmjN16hpk8pyokokRjtHvv58/be8UXDqmK0a7KqRBnCVM6+WoLhsM4xFQmo6JzW+/AFVGRT6Q05hY284iZeiYieBSnLiVjm3O5us7nTbGwxGNRWC85WVAwKpTovLyIqVDx+0jPfHl9Aa0xSVGyRimuKhA2lBXlZK4oKj8fz7rvvHjly5PDhw1brKrRBQoqLi/ft23frrbdef/31sZ/C3PSCuntc3a3X9uiH+834wzA4OUxVbaGyRqKslZSWCy6ve5g1z6mbdeoWnbpFN9w9hv/IdFaGfLNU2Vim2iav2F5OppJx7rgs6GIvFZCcSAUkJ1IByYmkQXIiPkhOIDYEY2Njr7766pe+9KWCgiQr5hHrHCQncJJYTgCAWCy22+39/f0ikSi6MhQKffrTn/7HP/4Ru+Xp06d37Nix0nGeffbZb3zjG1Qq1eFwUJONNERsdJCc2FggOZEKSE6kwrUuJ6JELcVRCMXvlEIESjVG2wu024AQ7/pgw8mJWFbZ9InCpdUIGNtFjF30NDV9SpeciMUZcPbPD6jnteftfXPrO0YbADxBf3eyARWbOAXlZE4hX5i6nIhl2uVqN042GwzNBv3EPN5MhRw6vUGUv00s3iaWFGSuOtw7iscXOD9u6h4z9oybukbwNp6CGFGxWSrms5efegsGg+fOnXv99dffeOMNk8mU9CAvh8vl7tq1a9++fXfccceSP6T22UVd34S2x9Dz4fCwzhwO4dUJWdmMsop8Za2kZktpqVxwed2D3erQtQ2pWwfUzbqB9qGAH+97RaVTS2uKVNvktTdUKJvk1IxVf/vQxV4qIDmRCkhOpAKSE0mD5ER8kJxAIBDrASQncIJLTvz0pz/94Q9/qFKp3nzzzeLiYgAwmUzf/va3Dx48GLvZvffe+/e//32lgzQ3N+/evdvr9W7durW1tTX1oSM2KEhObCyQnEgFJCdS4RMjJ6IEwdcT9hwHz1sQijt/jVGA0oTR9gLtRsCWuZ/f0HIiStJNn7i0SgyWr+DEw5WQE7EY3aYee6/aocUZo03ECGJ6QXVWVU1WdSFDvJYx2gAw63W1T4+3WkdbrCNGlx3PLgQMk2fym/glW3OL67jipGOrV8LgcHSajJ0m06nxsakFJ869eAxGvVC0TSy+XlIkYMXrvBQft8/fO25OWlRslYk3lRZwGMvYplAo9N577/3jH/94//33h4aGkh7h5dBotG3btu3bt++ee+6JfcwognvRq7sw2XNuRNOjH1BP4tcJGQyqvCI/0vqprCKfRF4a++Fe8PR/OKhu1mlaB9TN/T6PH+eRiSRicZVE1SRXNclrbqhgZeOatUQXe6mA5EQqIDmRCkhOJA2SE/FBcgKBQKwHkJzACS454XQ66+vrBwcHaTRaQ0ODw+Ho7+/3+Xyx22RlZZ0/f14ikSx7hIMHD375y192uVwA8PWvf/3ZZ59Ny+gRGxEkJzYWSE6kApITqfDJkxMfEfaBrznsOQ6edyEcNzsXowKlEaPtBdpNgF3yENeGnIiSdNMnPn0rmcBY7emutJy4dKKPYrR77L1GN65H5lkkVnlmmSpTUZ1VxaFkXdHhXU40oOKcbczhwxWnQSOSarniSEBFOTsv6TSIlTA4HC0T+maDoXXCYPfgyswAADGb3VQg2SYWNxaIs2i0pM8eERXnhgw9Y8YLhqlAMIRzx6ioaCgVZzEuDcBisZjN5srKyv7+/tdff/3111/XarVJD29ZFArFvffee+utt9bW1l7eoMnj9vX3Tmi69ZoevaZH7/PijQenZVDKqwoirZ+UNRIKdamRCviDY3367pN96hadulm3YMebCk4gEgrKhKptcmWjvHqnKreAu9KW6GIvFZCcSAUkJ1IByYmkQXIiPkhOIBCI9QCSEzjBJScAoL+/f/fu3SvVm5PJ5EOHDu3bt+/yl86cOfPUU08dO3YsuuY3v/nNY489ltxwEdcASE5sLJCcSAUkJ1LhkysnooS94GsJe46D5x0Ixy0dwGhA2YrR9gLtZsAyrjE5EUuyTZ920kl5OE+xZnIilo0Vox0bUNE1Y/AGcU1hZ1EytuQW1XLFdVyxMkuQ3iGFwuHh2dkus7HZYDhr0DvxTUMQMKyEkx2pqNgulrBS6Djq8vr79KmKCu+CIyInouFtWq320KFDhw4d6unpSXpsyyLKL7j7rjtvu+22HTt2kMnLhEhk43gAACAASURBVD34vP4hjUlzXq/p1l/oGnct4J3ZIZGIRTJ+zZZSRY24sr6Izlz6roaCIYPOqGkZ6H6vr/eU2jGNt/wFAATFfGVTmaqpXNlUVqj8WHdmdLGXCkhOpAKSE6mA5ETSIDkRHyQnEAjEegDJCZzglRMAYDQaH3300X/9619L1gsEghdffHHv3r1LNn7yySfffffdyyvTy8vL29raWCnU1CM2NFE5kZGR0dTUFPsSkUj8+te/nvZvLLpfTQUkJ1IByYlUQHLiEmEP+FrDnuPgeRvCcWeuMRbQbgDqzTaHnMniXHtyIoo3ODflarkSTZ+uipyIEgyHDKuM0aYSqKXMkpqsqjpOdQ51rf9We4KB7hlDpKKi3zEVwndVmUtj1nHFjbzi6/NkPFqaLwgDoVD/tK3FYGie0HcaTTjdCRHDFLm8JrF4W4GkXiRMpRtVVFR8OGjQGa043xMAEGQx5bmZn9pSvUUmYdM/VtKh1+sPHz585MiRDz74IBDAW9CAByotY2vjtgfu+8Ltt9+elbV8OU4wGBodmIpUVPR8OLIwj8ufAQCRSCguy1PUSFS1kpotJczMZfpZmUct3ScvqFv6L5ztt4zb8I88W8BRbZOrGuWqbfLS2iKn04ku9pIGyYlUQHIiFZCcSBokJ+KD5AQCgVgPbAg58cYbb7zwwguh0Mcerjp9+rTf74d1KCciqNXq48ePDw4OOp3OvLy8LVu23HHHHbTLiuJHRkZeeOGFlQ7y+OOPr3T/g7jm6e3tra6uXulVgUCQ9scDnU6n1+tF0+vJ4XA4AoEAl7tiIwVEHEZGRshkslgsvtoD2ZBMT09TqVRksmPBwk4qNFPhFAXaMYg3QRkMM92hLUHSjV7YDLCmj9WvMSHwzwfVM4G2mUCrNzydcHsylplN2pRN3JxFrCVhy8gbn8/ncDjYbPZVkROxLIYWRzxjg57hfrfOEZjHswuXlC3NKJXRSmW0Uhoh+YZFyeEIeNps420zeo132uzF+zi8kJZZx86vz8rflJXPIKb5PfcGg7rZmb7p6XaLucdqDYRwFTRQiUR5dnZlTm4DX1DD45EIyUeYuHx+nWmmSz/VPT41Yp3DKSoIGFaQnanKz60rzKstzGNSL70ts7OzJ0+efOuttz744IPIDUO6wDBCcanippv2fO6zd0lLS1faLBQKmQ32QY1J0zXRf35yYR5vNy0CgZBXkFWmEirrCsqr85mZy/x+zk05hjpG1Wd1A20jpiEL/psUFpdZWJlfWJVffX1FSW3h5QEYiPhEnoxbgzvPa5KZmRkKhYIuV5LDZrPR6XQGY9U9GBE+n29wcFAkEqFv7rL4/f6CggJAcgKBQFxVonLiz3/+8+7du6/iSEZGRohEYmFh4ZL14XC4tLR0cXHFnqtTU1N8Pv/KDi4JOYFApMjw8LBUKl3p1VtuuWVJ0HrqzM/P+3w+JCeSA8mJVBgeHiaTySuF8SDigx5FjAMWnicGThMD75KCrQDxAmzDGDtI2h4k3RggNgFc4xN2C4Exm++cxdPi8GvDkGAaGsOIbFI5n9bEo25nEC/1h1k/ciJKGMIG9+SAa7B/YWDYNYIzRruQJqnMrCijy8QZ+WsWo+3xeJxOJ4fDmQt6eu2mthl98/SozbuAZ18iRpCxchuyxQ3ZkjpOQSpKYFncgUCvxXLONNlmMvXPTOP0BBkkUhWfv1WYv1koLOfmpBKb4fL5NRPW9lFj56hp0Ix3AAQCJuFmVYr5DSWiTSUiFu1ilyS73X7s2LETJ068/fbbkVC3NJLJ4TVs3nHvvXffc+fNFHI8u2kx2fs6xnW9k5puw7QFl0KLwBdmVW4qLKsUqeokOfxl/s7brfPDXaPaD4f6PtCO9urDIbw3LDQGtayhVL65tHyrtHyrjEJbpmkVYglITqTCzMwMmUxGlyvJYbPZMjIyUOVEEvh8Pp1OV1BQgL65y+Lz+SI3sEhOIBCIq0hUTrzxxhs33XTTVRzJ8PAwkUhctqvH3r17m5ubV9pxnVZOIBApEm3rxOfz//znP8e+lJmZWVNTs2zv41RAbZ1SAbV1SgXU1ikVUFsnXITs4D0Vdh8G34cQfzqeyAfqTRhtL1DqYK2mqq8W3qB9ytVsdp21uM75Q4mjdxlkkYC+XcjYkUur9/uDV7GtU0K8Ie/wwkj3XG+3/fy0N3GlCABkkjPlLJkqU1HDqc4is6/o8Dwej8Ph4HK5JNKlGe1okvZZy/BiwIfnOHQSpTo7P5KkrcjKS7tcmXO7u83mTrOxxWBQWy04L4U5GRk1eYJNQlGTWKzi8VMZ09yiu3fc3DNu+nDQ0G+04LwYJxAwuZBXUySsLRJulUlYGVQAcDqdx44dO3z48IkTJ+x2ewqDWgZqRqZUsWnPTbd89p7bayqLSMR4xsg8Oavp1mt7DF2twxbTHP6zCPKzFTViZa2kdmtpnmiZmx+X061rG1I36zStAxfO9vu9eEtGSGRiUaWkdnelqrFMtb2cmYWezl4e1NYpFdCzFKmA2jolDWrrFB/U1gmBQKwHNkRbJ6/X297evuRP5Z133rmwsABITiCuVVAg9sYCyYlUQHIiFZCcWB1BC3hPhD3HwdedICmaKADqjZ8QSxEM+2Y8PabFM6bFD1yBqYTbU4jsHGodM1hdkrOXQVvvd/vRGO0LDo0bR4w2BlghQ6zMVFy5GO1l5USUYDikc1giSdrt0+M4myzl0Jj1XHEjr3gHX5qXkf4/CDbXYocxkqQ9PjmP99n/HDq9QZS/TSzeJpYUZKakfOYW3L16c8+46axmZNg6m4SoaCyTMGnUYDB47ty5I0eOHD58eGBgIJUhLXM6Ijkrt6iiuvHW2+/c0VhVrcgnk+JVYs1Yndrz+p5zI+oevWHEiv9E2bksZY2kZmuJsloiKV3mys3r8g51j2ladN3vXdC06LxuXLoLAAhEQkGZULVNXntDZdVOFTsHNeG5BJITqYDkRCogOZE0SE7EB8kJRJRwOPzOO+/QaLTrrrvuao9lveN2u9vb2ycnJzMzM4uKisrKytL+6DB+fD7f4cOHlUqlUqm8oicKBoOTk5NGo9FqtVqt1pycnLvuuitdB98QcmJZ1m8gNgKRFpCc2FggOZEKSE6kApITSRI0hT3v+BfeIocvJLIUIqDegNH2AqV+rQZ3NZn3jZhdZy2udpunMxyO1wsLADCMmE1VCRk7hIydLPJ678wWDIdGFkZ67L2aee3qY7Rrcqhpa9wXX07E4gr4zs9ORioqNHYzzuMXMDiRcoomXgmLTE15vEsxOBydJmOnyXRqfGxqAW9shpjNrhOINomEOwuL8pjJT3lbLJaBMX2QyT2vNydRUbFFJq4pFNaX5DNplNHR0bfeeuv1118/d+5cCJ8EwguGMdmi3HzVlsbrb9i1vbJcVF2eT46b8TA3vaDuHld367U9+uF+M/5bD04OU1VbqKyRKGslpeUC7LKeWsFAcLRXr27WqVt13Sf7FuYSl0lFERTza3dXKBvllTsU/MJc/DtekyA5kQpITqQCkhNJg+REfJCcQABAOBw+cuTIT37yk46OjgcffPCPf/xj6gd8/PHH8RSqEgiEZ555JiMjI8UzrhmDg4NPPvnkwYMHPZ5LcWICgeCrX/3qY489tsZdvn0+39/+9rf9+/ePjIw899xzX/va167EWYxG4/Hjx995552TJ09GZuEBQCQS3XLLLQcOHEjXWZCcwEkyciIYDLa1tZ06dUqj0czMzHznO9/Zs2dP7AZGo/HRRx9taGi4/fbbVSpV+kaLuBZAcmJjgeREKiA5kQpITiRNKBSy2WyZDGcGoSXsPgx+dYIdSKVA24vR9gGpeE0GeJXxBu02d6fZdca0+MFqmz5h2HrP7Zj3z+ucg+p5bc/cebvfgWcXHjVXyVaoMhWVbBWNmFKMNn45Ecu0Z6FzxtBqHT1jGZpy46pdIGKYnJ3XyCvemlu8KUdCJqT/czE4HC0T+maDoXXCYPfgjX0Ws9lNBZJtYnFjgTiLtro302KxmM3myspKAoEAADNOV9foZPeYqWfMhF9UEAmEMmFuVFS4nY7jx48fOXLk+PHjkdLsNEJjZHPyFHxxZcPmrdVKcX2lpKpcFD+jwj67qOub0PYYej4cHtaZ8SdJsDkMeWW+slZSs6W0VC7ACEtFhX3OPqrWm/tt6pb+3g80tokZ/D9ItoATqahQNpVJFPmXW5BrHiQnUgHJiVRAciJpkJyID5ITn3BCodDRo0f/67/+q7u7O7ImLXLiyJEjt956K54t77777jfeeCPF060N4XD46aef/tGPfhTREtu2bdu0aZPT6Tx37pxGowEAkUj0l7/8ZW3qThYXF//4xz/+4he/MBqNkTVXQk60tbX9/Oc/f/PNN4PBIAAUFBR85jOfueOOO1QqFZud5ha4SE7gZHVyIhwOv/LKK08++eTg4GB05WuvvfbZz342djObzfa73/3uf//3f20229atW/fv3391Q8kR6wokJzYWSE6kApITqYDkRNJE5ASLxaLT6QAAgaGw5zh4jkJgNMGeEUuRcRsQC6/8MK8+4XBwxnvBvHjWtHjK6dcn3J5CZPMyNgno24WM68mE9T6TEobw+KJBM69VO7QDzkE8MdpkAlnGlKrYCmWmopAhTiLpITk5EUs0oKLFOuL045pNyCCSa7gFVy6gIhgOa23WSEXFWYPeiW+Og4BhylxenVC4SSjaLpawqInrPJbIiVhSFBVbpWJ5Hufs6Q+OHDny1ltvmc14S1VwQqLQ2bml2QJFnqRKWSapLBfVV0oq5SIqJd6vgXvRq7sw2XNuRNOjH1BPBvwJ6pmiZDCo8or8SOunsop8EpkIl13smUct6madplWnbtbptZP4fxYOn122qVTVJK/dXVlaU3S5BbkmQXIiFZCcSAUkJ5IGyYn4IDnxiSUUCv3jH//4z//8T51OF7s+LXJi8+bN7e3teLZsbW3dunVriqdbA3w+34MPPhjJgmWz2X/7299uvvnmyEvhcPjll19++OGHfT4fkUh86aWX7rvvvis3koWFhRdffPGpp55acpmaXjlhtVq/973vvfrqq5GZcLlc/swzz9x0002XX3unCyQncLIKOTE/P3///fcfPnx4yfrL5UQEh8PxxBNPPPvss+Fw+J577jlw4MAa/DyI9Q+SExsLJCdSAcmJVEByImmWyokoEUvhfguC4wkOcdFS3AnEgis2zPXFot9ocp0xL57F1fQJCNm0CiFjh5BxPYtcuCYDTImYGO2eaS+uJ8rZ5Mwylqwmq6o6q4pJwhsjnLqciBIMh3WOqUhARce03h/CNXPNpTI25UgaecXbeKVCevrTvwOhUP+0rcVgaJ7QdxpN3mBi5QMARAJBkZPbJBZvK5DUi4RU4vJvThw5Ecu0c7F71Hhu0NAzZhqx4K0PiIqKLaUF2Lz1xNGjR44c6erqwrk7TjCMwMwW54gqs0UVdGZ2aWHupkpJpVxUrShg0OMlzHvcvpF+s+a8PuIqfF5cbywA0DIoJXKBskZSViUolOWI8gWXbzNrnlM369QtOnWLbrh7DP+9D52VId8sVTaWqbbJK7aXk6lXre3ylQbJiVRAciIVkJxIGiQn4oPkxCcQv9//2muv/fd///fQ0NDlr6YuJ06cOLF37148W+7YseP06dOpnGttCIfDDzzwwCuvvAIARCLx1KlT27dvX7LNSy+99OCDDwIAiUQ6dOgQzsKRVeF0On/3u9/9/Oc/j1yNLCGNcuLkyZP33XdfRH6QyeT9+/d/+9vfplDiXaCmDpITOMErJzwez65du86dO3f5SyvJiQgHDx78whe+EAwGS0pK3nzzzSudZIJY/yA5sbFAciIVkJxIBSQnkmZFORHloqU4DMGJBMciq7CMO4B2CxA+KT3ZF9w2/eyZBWLPlPusP5S4DU606VMOrY5wBSKm0040RrvPofYEE3crImAECb0gEqMtZ5UR4za2SqOciMUd9PfMTEQqKrR2M86p5WhARSOvOJOcUruqZfEEAl0mU4fJ2Gk2tk1O4sz3ppFIKh6vXijaViBpEInIxEvvJ045EYttfrFnLHlRUcSijHS3njh69PTp036/H+fuOKFn8jl5Co6gPJNbSCQSo6KiSpHPpMerIwkEgmODlp4PhzXd+gtd464FvJNKJBKxSMav2VKqqBFX1hfRmcucxWGb7/9wUN06oG7WDbQP4S/XoNKppTVFqm3y2hsqlE1yasaVvZVdY5CcSAUkJ1IByYmkQXIiPkhOfAJ5+OGH+/r6PvvZz5aVlbW3t//4xz+Ojd1KXU5s3769ubkZz5ZvvfXWvn37UjnX2vDUU089/vjjkX//+7//+//8z/8su9muXbtOnToFABkZGR0dHWmf1N2yZUtubu7tt99eUFDw97///aWXXop9NV1y4uc///kPfvCDyK8Em81+/fXXb7zxxtQPmxAkJ3CCV07cf//9EZ92OfHlBAD88pe//N73vgcAAoGgpaUFzdN9wkFyYmOB5EQqIDmRCkhOJE1iOfHRhuDrDnuOgucEhKbjbkkEyiaM9img7QHCNX4P7PP55ubmOBwOiYzZPN3mxTNm19lFvzHhjhQiW0DfJqBv59O3kAnJpyKvGb6Qb8A5dMGh7nOojW4Tnl2YJIYis7ySrVKxlVzKMr8JV0hOxGL1OM9ZxyKiwurBlVlNxAgVHGFEVFRyRCsVLqSC0+ttM062Tky0ThoGp6dx6hMWldogEjXmi7cWFJRxc2xW62rlRCymufmO4cmOkYmO4UnTHK7oDgCgkknVhUKVkBucnuz54N0j/3rT4cAVVYIfMpWZxS/jiiqz+DICgUQiEspL86oVBdXKfFWZMIGo8AcH1JPqrnF1l17do3cvrkJUyFSiirpCVX2holrMYC5jp1zz7kg5xYUz2oGOEb8Xr54hUUhl9SUVO8pVTeXKxjImB29p0boFyYlUQHIiFZCcSBokJ+KD5MQnEJ/PF/sU/EMPPfTCCy9EF1OUEydPnrzxxhuJROJrr70Wf6IWw7Bdu3at//yq/v7+mpqayLeDwWAYDIaV/pi8//77N9xwQ+TfVVVVHR0dZHI6a0ljP7hwONzQ0NDZ2Rl9NXU5EQwG/+3f/u0Pf/hDZFEkEr399ttr9tw8khM4wSUn2tvbt2zZstKWCeVEMBgsLy+PlFYplcqenp70/iojNhZITmwskJxIBSQnUgHJiaTBLScu7QG+7rDnOHiOJbIUBCArgLoTo+4CshLS3dx/PRCVE7G3N9GmT9OerlCi8AYMCFnUMl7GZj69gUurIWIb4Alrh39+wDnYbT/fa+9bCCQOCQeALDJbxpLKmFIZSxoNqFgDORFLNKCi1To678eVWU3ECHI2v5YrVmYJNucUCq5A66dZt/vDyYkOk7HLZFJbLThFBZ1MlmZllWTQ91ZW14lEnFWGaS/BOr9wfsx0btDQOqg3zeIVFUQCQZKTJaQTZ0a07SeP6zXnUxnD5RCI5Eg0RbZASaZdFHhCPrtSLioryauSi6TFPMLKN/OhUGhidDrS+qm3fXTe7sJ/akF+tqJGLFWIpAphNKYilmAgONqr7z7Zp27RqZt1C3Zc34IIkTxtVaNcWldctqlkI3Z/QnIiFZCcSAUkJ5IGyYn4IDmB+Otf//qFL3whupiinLjuuuvOnDnz+c9//i9/+Us6Rnf1idZDAMBDDz30/PPPr7RlOBwuKSmJzt09++yzX//616/cwL773e8+/fTT0cUU5UQ4HH7kkUcOHDgQWWSxWGfOnKmurk51lLhBcgInuG4dn3rqqaiZIBKJe/fu3blzZ3FxcX9//3/8x38k3J1IJN53330/+tGPAECj0Tz33HPf+ta3Uhk0AoFAIBCI9EEASj1GqYfMH4C3New5Ct6TEFp2QjMEfjX41eGF3wJRCNTrMepOoGwBLP09c9YVDLJIyv6clP05X9BhdXeYXWdMi2f8oeUf2w9DaM7bP+ftH7D/CcOIWRRZRFSs575PbHJmQ3Z9Q3Z9KBzSuyYiMdo650Bw5fgNu9/RPtvZPtsZ2b2YUSRjSaW0UjasXdVIAYNTwKj7dGFdbEBF57Tet3JARTAc0tjNGvvFqL1cGrOOK67liuu44nJ2XpyZcfxkZ2TcIpXdIpUBgM212GE0NhsMZw3jk/PxJIHL7++12XoBDhn0ACBms+sEok0iYZ1AVJqdvdqB8TKZe6pke6pkECsqBvTxKyqCodCodXYUAIi5rJvu23bHVzL8LsuQZrTrnMs0Fgqk2vcpFPTPTfXPTfWPnv8ni1vIySvn5MlNACaL48RpLQBk0MjSQl5ZCb9SLqpVFWRlfkyvEggESSlPUsq75Z5NAGCenO35cETTre/rGLNNJaj2ME/Omidn33vrPHwUU1GqEKpqJaq6Qg6XCQBEElFaVyytK/4MQCgYMuiMmpaB7vf6ek+pHdMJCnRmzXNnXj935vVzAEAiE4sqJaomubS2WLVNLijmp/CGIRAIBAKBSBKRSJSuQ506derMmTMYhv3gBz9I1zGvLs3NzVEzAQC33357nI0xDLvzzjufeeaZyOL+/fsffPBB3M/ArZo0fnAA8Oijj0bNBIlEOnjw4FqaCQR+Et8k+3y+d999N/JvhULxyiuv1NXVRRbxB8pt2bIl+u9f//rX3/zmN9d/lRMCgUAgEJ8wSEDdgVF3QNgHvuaw5zh4TkJ4hdyFoAlcfw27/goYDci1GG0XUPcAcZk02msJCpGdz9ydz9wdhtCMp8+8eNbsOj3vW7EKMBwORkUFiUDPplbw6Q28jM0cqnx91p0QMEIRQ1LEkOwT7PUEvf1OXY+9t89+Yca3TEJdFId/vsfe22PvBQAqgVoyW1yRpZQxS4uZRaQ18TFEDFNmCZRZgq/KmjxBf/dHARX9jqlQ3ItVm2fhhFF7wqgFAAaJUpWdX5tdoOQI67kSFjleuyGc5NIZUVFhcDg6TcZOk+nU+OjUQoI4E4PDYXA4/qnTAgCTQqnKy6sXiCp4/E0iUSZ1dQOLFRWTM47uMWPPmCmhqAAAu9tnBxIUVRUWVREwjORdtA2pnRPDbsukd2ZqVWNYQjgcmp8enZ8e1auPkqmsLL4sW6DI4sncAH06Y5/O+PrRbgDgchhV5fkVcpG8mF8uzSOTPlbuIMjPFtyTHRUVnS06bY+h/7xxyjgX/+wet0/To9f06N/8yzkAyM5lSRVCZa1EWS2RKkUUKolAJBQqCwqVBZ96aDcAmEct6madplXX+U6vZdwW/+ABf3Coa3SoazSymC3gyOqKI6JC2VhGjdvDCoFAIBAIRLrIyspK16H2798PAHfffbdKpUrXMa8usfESFApl165d8bffuXNnVE5MT0+/+uqrDz/88BUaWxo/uOeeey7azQkAfvjDH+KMNEesPYnvGNVqtdPpBID8/Px33nknOYvF5196bshgMPT09NTW1iZxHAQCgUAgEFccjALUXRh1F2R6wdcS9hwHzzsQXqGJStgDvtawrxXgv4FUCtRdGLUJKJsB4iUnb3QwIOTQqnNo1RXcr+Ns+hQIuazuNqu7DeC3NGJ2TkYtL2NzHr2RTspby5Hjh0ak1mRV1WRVwcditC94gvHaI3hDXq2zX+vsBwAqgVrKLJGxSstYUhlTSiasRbsbGpEcCcH+jhJmva726fFW62iLdcTossffcTHgi3SIAgAiRihicmu54lpuwaYciYiehtskMZstZrPvKlcAgMHhaJnQNxsMLQaDw5ugIdWCz9diMLQYDABAxLBiTna9UFQvFKp4fCmXuyrHlc9l53PZt9UrIEZUNOvGp+wJigNC4bCPQmcrG9jKBgAIuRcWzQa3ZcJlHEuxqMLvddoMXTZDF4FIYnGLsnhSTp6CnskHgJm5xfdbB95vHQAAGpUsK+KVlfDLivk1yoK83I+10BHkZ1+3V7V5ZymPx5uxOrXn9T3nRtQ9+olRW8JHqWZtzrbTA22nBwCASCSICnNUNZJIDyhxSS6GYYJivqCYf+N91wHAjGlO06Lrfq9P3awz9BsTH9w89+GRrg+PdAEAgUgoKBNK64pVTeXKpjJJeT5GWI+GEoFAIBCIa4B0NZNvbW394IMPMAyLZkdvdMxm84kTJ6KLCoWClqib6Pbt2zHsUijAiy++eOXkRBo/uG9/+9vRRYVCcc0UvlyTJJYTFosl8o9f/vKXSdfXLMnW6+vrQ3ICgUAgEIj1Dkb9yFL8GLxnw95T4P0AQjMrbh8YhsBwePEAELKBej1GvR6o2wG7xntJxzZ9srjbrO52q7s9foa2Jzg7uXBycuEkAGRSingZDbyMhtyMunWbpM2j5vJ41+3kXReJ0R5wDuqcgyMLo4G4CRzekFczr9XMawGAQqCUMIvkrLIylkzKLKEQ1iKKI5tKv1mkuFmkAAD9wmz3rKFr2tAzOzHqTJBZHQyHhp22Yaft7+NdAJBPz6rliquz8+u44tJMHjHl8l8xmy1mV35OVRkMh7VWa6fZ2G02t09OWF0JchSC4fDQ7MzQ7Mxr6j4A4DEYtQJhrUBYKxBU8PgU4iqMYKyoGLPO9o6bz4+bevXmUcts/HITACBkMFnFClaxAgDCwaDbOuk2613mcZdJ73cmKFxYiVAw4LAOOaxDevUxGoPL5kk5eeWRDG0A8Hj9kaKKyMYCHlslEyhlQqVMICvmk4iXIsS5PNb2Parte1QAMGOd1/TodX2Tur6J4X6Tz5sgMCYYDBlGrIYR67E3OgCAk8OUVxTIqwrKKwukSlEGncIVcnbcu3XHvVsBYNY8p2kd6G8b0rUNDXaNel0JepqHgiG9dlKvnTz56hkAYHIY5Zul8gapfLO0fLOUlX2N/51EIBAIBGItiU2PS4UnnngCAIRC4eTkpFAoFAg2fJn4wYMHg8FLHVDxtDlis9kFBQUGgyGy2NnZOTY2doWSNdPywXk8ni996Ut+/8Wnj/1MjwAAIABJREFUZzAMO3DgQLp+JRBXgsRywuVyAQCPx7vnnnuSPs34+HjsotlsTvpQCAQCgUAg1hqMDrSbMNpNAACBIfCeCnvfB183wAqTmKFZcB8Kuw8BEIFSjVF3AXUXkErXcshrD4XILmDuKWDuAQBPcHrafd7qbjO7mt0Ba5y95n1j876xYcfBDZGkTSFQKtjKCrYSAILhkME1oZnXDjqHBpxDrmC8iXVfyNc/P9A/PwAARIwgphdImdIyllSRWc4kMdZg5BJmtoSZfae4GgAWAt6+WWP3jKF7dqJ7xuAJJpiznnTZJ132f030AQCdRJGz+dGkikxySoErRAyr4PMr+PwvVYPFYtHq9UEut2vK1GkyXrBYvYkGZl1cPDE8dGJ4CACIBIIiJ7dOKKzg8RtE+fmriect4mUX8bLvaFACgMvr15ms58dM3WOmPr15btEdf1+MSKQLJHSBhAs7ACCwOO+2TKZYVOFZnPGMzVjGPiSQKFm5Uk6ePCtPTs24VL9itjrMVse7zToAIBEJJYW58uJciZDdUEMoKsiJbsblZe64qWLHTRUAEAyGJsemNef1mm79kNaEp6hibnrh3Kn+c6f6AYBAIOQX5UgVQqlCpKyVlMoF2QLO9ru3bL97C3wUUzHUNapp1ambdQadMRxKcPCFucWOE+c7TlxMHb8GUrURCAQCgVg/pGUmurW19eTJkwBgNBrvuOMOABCLxTt37rzvvvuuv/56AoGQ6ADrkTfffDN2sbi4GM9eCoUiKifC4fA777xzhYon0lI5sX///sHBwejizTff3NTUlPphEVeOxHKCx+MBgEKhIK7maawl/Otf/4pdTOVQCAQCgUAgriYkKZCkGOMhCM2A90zYewq8ZyC8uMLWQfB1hX1d4PwFEAuA2oRRdwJlO2DX+NQbjZgTSacAgEW/0eJus7rbLK62lWK0YQMmaRM/CqgAwd6LSdqz2n6HbtQ3vhCIl6kQDIfGFvVji/p3LCcJGEFAy5OxpKpMRXlmGYu0FrUjTBI10vrp4mCcM92zhq4ZQ8e03uRKEK3sCvi6Zya6ZyYAWogYVsTMiXR/UmUJSzNzUxwYh0KpLCraXVICAIFQqH/aFrEU7cZJozNBREQwFLpgtVywXqx45jEYKh5/k1BULxRW8vPwF1XQqeTaIlFtkejLAPBR9yftpLVnzKQzWhMWVZAYmZeKKkIh35xt0TjqMo0ll1QRCvhmzZpZswYAaAwuJ688W6DIzCnGCJd+nEAwNDBiGRixAAC83MLlMOQleWXF/MpyUaVcRKVc/O4QiR/L015c8AyqjZpu/ZDWqD1vcDoSOJhQ6GJRRSRVO4NBLZblKWskihpxeVUBm8OIxFREuj+5nO7RXr2mRadu0fW3DTlsCT47WDlVW1pXXKgsWO37hkAgEAgEInV+8pOfLFljMBhefvnll19+WSwWf/WrX/3Wt77FYKzFQzbpwu/3t7e3x67Jz8/Hs2NJSUns4tmzZ69cZ6cUMZvNv/71r2PXfPe7371ag0HgJPG9bqRqKZX8aqPReOTIkdg1QqEw6aMhEAgEAoFYFxC4kHEnlnEnhL3g7wp7W8D7LgRWTIeG4AS4/hZ2/Q2wDKBswai7gHYDEFKdz13/MMiiYvJdxZl3hSFk9w5Y3W0WV/u0pycU9q20ywZN0hYQ+ZsotVwudzY4p3FoBxaGdPMD8cO0Q+GQ0W0yuk2nrKcBgEfNlbJKy5jSCrYyh5oTZ8d0QcQIpZm5pZm5ny6sAwCrx9k9M9E1Y+ieMSTM0w6Gw7Hdn3JpTGWWsI4rruUWVHJEZEJKz+KQCIQKHr+CdzG2zbK40GUydZiMaqul12Lxx9TjL4t1cfH9sdH3x0YBIINEUvJ4EVexJb8gOyMD/zBiuz+tuqiCQKBy+VQuP7tyK6RcVOFZnDGPNJtHmgkkCjunJFug4OSVUzLYSzabmVts6Rxp6RwBACKRUCDgVJWLKuQieQm/MD8nekPDYNJqtpTUbLl4p22enI1UVGh79MM6c8K6B/eiN5KqHVnMzmUpayTKGolUIZSpRHRWhmqbXLVN/pnIkExzEVEx2DU62Dni9yb4wVdK1ZbVFau2lzOzNtIkCAKBQCAQG5Surq633357pVcNBsOPfvSj3//+90888cRXvvKVjVJF0dvb6/p4E9GCAlzPQMQGCQNAT09POoeVVn7605+63ZeuUWtqahImfiOuOonlRElJiUgkunDhQiAQIJGSeXDv0Ucfjf3NAAClUpnEcRAIBAKBQKxHMCpQGjFKI7C+B8EJ8L4f9rwPvnaAFZrShN3gPRX2noL5J4CsAEojRt0JlLr1Oe2eRjAgcKjlHGp5WdYDwbBnxtNrcbVb3W1270AYQivtteGStCEmowIArF7boHNocGFY7dDYvNPxd7R6bVavrWX6HABkkdmRigoZSyrKWKPnWng0VjSmYjHg0zmmoq5i3p8gudrmWfhgavCDqUEAyCCSy7PyIt2farML2JRV+IBl4TOYt0hlt0hlAODy+7U26wWrpdNkOjc5MedOIAncgUCnydRpMv3pfA8A8BiMSKR2vVCkzOURcD+BtE6KKkIB39xU/9xUPwDQM/mcPEUWT5qZW4JhS+cFgsHQ+OTM+OTMm+/2AQCTTi0vzYuIiqryfCaDGt1SkJ8tyM/efVsNALhdvlGdeUhr0vToL3SO2WdXKgu7xKzNefYd9dl31ABAIhGLZHxFjUSqEKrqCvNEnNikioA/ONanVzfrBrtHhrpG9drJxAdfLlVbVlui2iYvrSlCqdoIBAKBQFwJnnjiiYQdIE0m08MPP/zmm2++9tprmavpqHm10Gg0S9bgrJyI9NSJMjQ05PP51mGKw+zs7Isvvhi75v77749d9Hg8RqNxZmaGyWTm5+dviE/tk0Bi2YBh2G233fb73//+H//4x2c+85nVnmD//v1LejoVFRXhSVxBIBAIBAKx8SAWAP1+jH4/hBzgaw173wfvKQit1ConBH41+NXhxQNA4AJ1O0bdBdQdgF37jwYTMRovYzMvYzPA171Bu83daXW3TXvOz/tG4+wVm6TNIIv4GZt5GZt59AYKYf1eWPOouTxq7racRgCY89mHFobV89pB55DJbQ6vlFkCAAB2v6N9trN9thMA2GR2GUsqY0plLGkhQ4yticdikCh1XHEdV/xVaAqGw2PO6Uj3p65pw6TLHn9fd9Af7f4EAAUMTi23oI4rrs0Wl2TmpDh+OplcLxTVC0Vfqq4FAIPD0WkyXrBaukwmjS2xJLAuLh4bGjw2NBg5lCI3t14oqheI6oTCLNoqIjTSWlThdFsmkiiqcM1bXPMW4+ApMpWZxS/j5MmzeDIShb7sxgsub0efvqNPDwAEAiYWZstL+JXl+ZVyoSSfG5U0GXSKslairJXc8cWtADBjdQ5pjdoeg6ZHP6Q1JkzVDgSCQ1rTkNYUWczOZUWTKhTVYiqNLK0rltZd7O88a54b7BwZ7Bod6h5VN+sW7AlEyJJUbToro6hSIqsrVjXJK69TZPGW1pEgEAgEAoFIgoWFhaKioi984QszMzMjIyN6vd7nW7Hi+dixY9u2bXvrrbckEslaDjIJluQBA245kZWVFbvo9/ttNptIJErXwNLFX//6V4/n0uNEGIZFwkIsFsuLL7547Nix9vb2aFA2gUBobGy8//77v/SlL6H0gasLrkqIRx555MCBA9/97nevu+66vDy8j+kFg8Ef//jHl/doe+CBB1JpEoVAIBAIBGIDQGADbS9G2wsQBH//RUvhV6+4fWgG3IfD7sOAUYFch9F2AfVGIH4i+kBSiVnRgAr8SdqLfuOo/9Do/KENkaQdgUPJasiub8iuBwCHf350cWzQOaSZ144vGuKLCkeMqGCRWKXMYhlLKmOWljCLidha3EsQMWxJ9yeN3dw9Y+iaMVyYM/lDCZosTSzOTSzOvWnoA4AcGlP1UfenCo6Iklr3JwAQs9liNvuucgUALPp8/dO2TpOpw2TsMpkc3gTVHi6/P1JUAdAROVSdQLRJJKwTiKRcLv7r9SVFFdb5hYio0E5aLhimAsEVC4MikBisFIsq/N4Fm6HLZujCCIRMTn4mr4wjUDCzRCvVY4VC4UhRxYnTWgBgZFBKJLmRmApVmZDNulTpwuWxuDz5luvlABAIBMcGLZGkiiGtyTAS7xsaYdbmbDs90HZ6AACIRIKoMEeqECprJcpqibgkN1vA2XJr/ZZb6yEmVXuoe1TdohvuGUvYXcrldGtadJoW3T+fPQYfT9WW1ZdQaNd4tA8CgUBcIVwBs3HxA08gQbknIr0QCTQGSZjP3E3EqIm3vsIwmczf/va30cVAINDb29vS0nLo0KGzZ8+GQksvbC5cuNDY2Nje3r4O5+tjWSInSCQSk8nEsyOVuvRDsdvt6/CHffnll2MXq6uraTTagw8++Oc///lyvRQKhZqbm5ubm3//+9+/+uqrCoViDUeK+Bi45ERlZeVXvvKV559/fs+ePThloEajeeihh1pbW5esl0gkKIoEgUAgEIhPEkQgqzCyCpiPQXASvM1h7/vga4GVEhfCXvC1hn2tAP8NxAKg7sRoNwBlM8An4nmWT0KSdgQ2ObMmq6omqwoAPEHPyOKo2qEddA6NLo4HwvEeTncGnD323h57LwDQiNQSRomMVVrGkpaxZKS1+nl5NBYvj7UzTwYA7qBfazfj7/40HdP9iUQglGXya7niOq64GNJQMMSgUCJFFY/ApmA4PDI7q7ZaOk2mTpNxeHYmwVQ3gMHhMDgc/9RpAYBJoVTl5dULRBU8foNIxLrspjQOvEzmnirZnioZfFRUEen+1DEyMbeQSlHFeCiw4nOLEcKhkGPG4JgxTPS/y8zMEooriKyizBwpkRyvKGTR7evTGft0xsiikM+ulIvKSvKq5CJp8aXOVyQSUaoQShUXpemszTmoMQ5rTUNao6Zbv+BM8NEHgx9L1WYwaTKVSFkjKVUIlTUSFjvj8lTtoa5Rdauu77TWbk0Q1Q5xU7Ulinz0cBgCgUDgwbT4QZvlB8GVg8EQV5T+uT9eJ/xDBomfeNM1hEQi1dXV1dXVPfbYY6Ojoz/72c9eeeWVJZPdJpPpzjvvPH36dMZqwr3WmJmZmdhF/ENdVk6kZ0zpw2azdXV1xa4JBAJyudxutzc0NNx1110KhcLv9w8NDb388sv9/f3Rzbq7u7dv33706NEtW7as+agRADjlBAD87Gc/O3v27IULF6qqqr773e8+8MADy9b+TExMNDc3v/TSS++9997l3dnIZPILL7xApy9fao1AIBAIBOIah5gP9M9i9M9C2A2+c2HvKfCegqBlxe2DE+B6Jex6BQhZQNmKUXcC9QZYxy2M0ssnIUk7Ao1IU2YqlJkKAPCGvMMLIwPOoUHn8ODCkD8Ur8OPJ+jVzGs181oAoBAohXSxjCVVsRVSZimFsEYVJBlE8pLuT2q7qXtmonvGMOy0xd83EApp7GaN3fzqSBsA8MmMzYHR+hxJWro/ETFMxuXKuNxIUYXT6+2zWDpMxk6zsctk8gQStCda8PlaDIYWgyFyqGJOdiSpQsXjy7hc/MOIFlV8cXsNpLmowgJxC24W5u2D6rMAZ4lEUmmZUlRU7SPmhUiJg9ZNFofJ4ogUVWTQyNJCXlkJv1IuqlUVZGVeupHJzmVtuf5iUUUoFJoYnY40gFL36CfGbAnrHhYXPD0fjvR8OBJZFORnK2rEUoVIqhCWVeZHU7Xv/MYt8PFU7aGuEZ9nlanaeVmy+pKLqdrbypmca791HgKBQCRBIOTqsD6BzMRVZMFv6J15Zgv/qas9kBUpLi5+4YUXvvGNb3z5y1/u6OiIfamjo+OHP/zh008/fbXGlpAlecD45cTlCcQOR+LHJtaYyyeiL1y4sHnz5qeeeuq6666LXf/973//N7/5zXe+851oEczs7Owtt9zS09Oz/ntzXZNgCQNeokxMTDQ2Nk5OTgIAhmFlZWVMJrOzs3PLli1ZWVl2u12v15vN5hXPhGF/+tOf7rvvvvQMHLFhGR8fLyoqAgAul/vkk0/GvkQkEm+77bbc3Nz0nnF+ft7j8SwJ8EHgxG63BwKBnJzEd/KIyxkcHCSTyZFfeMRqsVqtNBoNRVQlQSgUstlsLBZrwzwNEBgC76mw933wdcefagQAACJQqjHqLqA0AlmV9rH4fL65uTkOh7MOE94i4E/SjiUmSXsrnSS4QmPzeDwOh4PL5V5+A5McvpBvfFE/uDA86BzSOQfdwQQP3UchYgQxvUDKlJaxpMpMBYN0db4LNs+C2m6KdH9Sz5l8ibo/xcIiUys4otrsgkhdBZWYzqKQQCg0OjfXZTZ2GE1qq2VodibxPjHk0hkVfH4Fj79JKKoXCZMe22qLKpaw2qKKCGKJpLJ6M1coJzEKhyfsfv8qPhQA4HIYVeX5FXKRvJhfLs0jk5av6HIteMcGpzTn9ZpufX/fxPyca1VnyaBTissEpQqhqlaiqivkcD/WciGJVO1YLk/VnrPPAUB2dvaqjoOIMD09TaFQ0OVKclgsFgaDgbOpCCIWn8+n1WrFYjH65i6Lz+eLPOhNoVC8Xi/+Ha3u9jOm/3fFxoXABZnAvL3odIoHMRgMsbPMDz744B//+McUj7mEQCDwta997cCBA7ErqVSqTqcrLCxM77nSRVNTU2yHm8LCwrGxMTw7Hj16dN++fbFr/va3vyURS5yQf/7zn3fddVd08bnnnvva176Gc9/vfOc7zzzzTHSRRCIdOHAgTrLA888//8gjj8Su2bp1a3NzM4FAWP3Al2ffvn1Hjx4FgCNHjnzqU59K12GTYHBwkEgklpSUXP6SyWQ6duzYkmZl3/rWt1wuFwDMzs5yOJwrPbxVyAkAmJyc/OIXv3j69Kr/THA4nBdeeOHuu+9e7Y6Ia4+BgQG5XL7Sq7W1te+99156z+h0Or1eL5peT475+flAIICuepNjeHiYTCYj954c09PTVCqVxWJd7YFsPEKh0MzMDJPJXM81xcuChefIoVZSqJkUPIdBgmBYAAhhogBxc4CwzY9thjQFLfh8PofDwWaz162ciMUXcsz5z9sDFxwBzXxgEOdeGUQBl1zHIdVmU2rJWDq/Yl6vd35+nsPhpEtOxBIMh4xe06h7bNQzNuAadOEWFQSMwCPnltCLyzKkUnopk3h1nhn3hgI6p1XntPY5TJ1zE45E3Z9iIWIEKTOnki2sYgtrskTZKwQ+J43N7eqfnjlvs/RYprTTM6uSKEQCoYyTXcXjKbg5tfw8YQqTjNMLrgsGS9+EdcA83W+aTlhUEctqiyoAgEajbd68uaKqQVRcveina4YslukVm6ctC5VCKhFzSwtzSiU5FWUCHnfFn91isg/0GUcHLGMDlhHdVGCVRiSLyygu45dViuQV+UVlfAr1Y98vu3V+pHts5Lx+tFevaxtetK9OhNAY1PxyoUQlqtqhVDTJ2Llokn11zM7OkslkdLmSHDabjU6nMxiolGfV+Hy+wcHB/Pz8JSm1iAg+n4/P58Pq5cSsR/2+8f4rNi4ELjJIuZ+SnEjxIGsgJyJ8//vf/8UvfhG75uGHH/7DH/5wJc6VOkvkRHl5uVarxbPj4cOH77zzztg1//znPyNZ0+klFTnxqU996tixY9FFsVis1+vj73LrrbceOXIkds2hQ4eW/KSpEJUTBw8e3LNnT7oOmwTDw8NEInHZB2c3bdo0PDy80o7T09Pc1dRMJ8fqbh3z8/Pfe++9X/3qV08//fTUFK54OgKBcNttt/36179G03OICIG4bQQcDkf8DZIgGAwGAoG0H/YTQuAjrvZANiTBYJBAIKB3LzkCgQCJRELvXhKEQqEN+81l+eEmwG7CSD5SuJcc7qCETxPDhpW2JoSNlMAhChwKA82P1fmxbT7CthCkpKIj/8uI/DeV46wNBGBwiU1cYhNQwReedQQ0c4HumUCHNxSvm5A7aJ4MHpmEIxgQmMQSDqmWQ6pmkyoIkGp8buS3Lhhc3cQrfoSkPCErbxtraygcsvptY57xAffQsHtkMRRvNjYUDk35LFM+S4v9HABwSdkyurSIKinNKOGQ1m5OhwigZPCUDN7deSoAMHnmex2mC/NTF+bN467Z+PPowXAoIjb+PnkeALgUemWmoJItrMwUSBk5hJSzBDhkSqNA0CgQAEAgFBqyz/XarOet1h6rZdaTKEchFNLOTGtnLqaG5mRkyLO51bm8ah5Pkc0lE1cRFZNFo2yXFWyXFQCA2xcYts4OTs1emLCeN0w5XAmmlpJIqvB4PKdPn448dCWRSK677ro9N10nlCiHDXbtkGVYP+MPJPhN9voC2mGLdvhiYzoOO6NUklNewlOU8ksLubFFFVwes3F3WePuMgDwevz6IdvYoHVs0KLrNU5b5hO+M/aZxe7W0e7WUQAgkYgFxVypSlgk4xXJ+PlFXGY2vWq3smq3EgBCwZBxaGqs1zDWZxhoHxm/MJGwu5Rn0TvcOTbcOfben5oBIIvPLq4SlzWUlG0uLa6WkKnrN7dmnRAIBNDFXtJs2MuVq0/0Dhe9e8uS9NvCoSkyKcXzvtH0jgexKiSsfYk3Wjc89dRTY2Njb7zxRnTN4cOHf/e736Xx6fs0sqRS7fJk75W4PE16HdboL5lhXzaMYAk/+9nPjh49GvvU/tNPP51GORHlqt9dRm7QLh9DOByO36EL/y9JKqyuciKK1+t97bXXDh06dO7cuenp6WWOi2EKhWL37t2PPvqoTCZLeZyIa4doWycWi/W5z30u9iUWi/XAAw+oVGlu04HaOqUCauuUCqitUyqgtk5Js/HaOsUnOAHe98Oe98HXDpDwko4AZAVQGjHqTqDUJZGysP7bOuEBZ5J2LGlJ0k57WyecWL22QefQ4MLwBYd62ruKDkU8aq6UVVrGlMpYUlGG8MqNMD4z3sW+OWP75FDntH7QN+cNruLWhUmiVmZf7P5UyxXT0tr9CQAsiwtdJlOHyai2WnotFv9qzBOdTFbk5qp4/E1C0Zb8guwUarmiSRU9I4YB82xwNfcvqyqqoNPpu3btuvXWW2+66eYQgd6nM/X1T+pGLOOTq+t8RSISSgpzK+WismK+vIRfVLDiddSM1RlJqtD06Ie0Jp83QZjEEjg5TJlSJFWIShVCVV0hk/Wx3G/3gmfk/PiqUrVjIZKI+TKBaptc2ShHqdorgdo6pQJq65Q0qK1TfJJu6wQAC37Dual/d/jwFqQi0ggGBAlrX23uDwgpl0SvWeUEAMzNzSkUitgHuNva2hoaGq7Q6VLh3nvvjfUoeGoLIrz66qtLuvQ3Nzc3NTWleXypVU7k5eVZLJeyDD/96U8fPHgw4V4333zz22+/HV0kEAg2my1df1o3RFunrq6ul19+ecmfyuiatWnrlOQNDJVKfeCBBx544IFwODw8PGwwGObm5mZnZ4lEYnZ2NpfLVSqVa1D3gdjQcLnc559//mqPAoFAIBDrG2IB0O/H6PdDyAG+1rD3ffCegtBKU2wh8KvBrw4vHgACF6jbMeouoO4A7JPVMuKTk6QdgUfN5VFzt+U0AsCczz60MKye1w46h4xuU/wdrV6b1WtrmT4HAFlktowllTGlMpa0kCFOMYx6VXCpjJ15MgXGvokkUqhUQwu2rhlD94yhfXp81pugRc9CwNtqHW21jgIAESMUMbm1XHEtt6Ahp1BIZ6c+Nj6DeYtUdotUBgAuv19rs3aaTB0mY8+Uec6doLOWy+/vNJk6TaY/ne8BAB6DEYnUrheKlLm8VRV88DKZe6pke6pkAOD2+fuN1t4x43td6n7LnC+c4MnEpUUVLqd7asWiCpfLdeTIkUiBv0KhuPXWW3fv3v34//vi/KJPNzylG7Fc0BkvDJg8iRRCIBgaGLEMjFy8Q+ZyGPKSvLJifmW5qFIuolIu3YJxeSwu72KqdjAYmhybjiRVDGlNE6O2hI+RzU0vtJ0eaDs9AAAEAiG/KEeqECprJcpqibg4N4NJW5KqPdQ1om4dUDfr8KRqBwNBvXZSr508euAkADDY9LJNpcrGMlldsbJJzspGE8oIBOIahEkW31jwV6df7w5YEm+NSB8EjMok59OIG++xSA6H89Of/vTBBx+MrtHpdOtTTixpQuhJVCAb5fKH6wWCKxVilzRO58ceyYr0dkvIpz/96Vg5EQqFzpw5cyU6Vq1b6urq6urqlqx8/fXXV2t2UyHVp6swDJNKpVKpNC2jQSAQCAQCgVgeAhtoezHaXoAg+PsvWgq/esXtQzPgPhx2HwaMCuQ6jLYLqDcC8ao9HX9VwIDAoZZzqOVlWQ/gT9IOhFxWd5vV3Qbw27VJ0k4jHEpWQ3Z9Q3Y9ANj9jkHn0IBzaGhhaHzREI4bQmD3O9pnO9tnOwEgk5xZwiiSsaTKTMUaiwoSgaDMEiizBPeVbAaAicW5rhmDxm7unjFo7eaE3Z+GnbZhp+3v410AkEtj1nHFkTztcnZe6t2f6GRyvVBULxQ9ApsAwOBwdJqMF6yWLpNJY7OGEk2jWxcXjw0NHhsaBAAGhVKek1MvFNULRHVCYRaNFn/fWDIo5NoiUW2R6Eu7GgDAOr9wrKXzSEvniM3uz8jCEjWSItFZrGIFq1gBAOFwyDe7YlGFVqv9/+y9d3xb9b3//9E52sO2rGlJtjUsW7Y8YjskIaGUkbLKKG0ZDVBKW2gZvW3pLXQ97o97Oy5cOlhtKIU++qXQ0MJt4SYUCIZQQkIgXvGQZcmSJdnay1rWPvr9cYIijCPpSJ7J5/nIIw8fWZ9zPvKQz/k8z/v90ul0Dz30EI/Hu+SSS6644oorP/OZr92wE8NyVrsfFxUnpuxWu79kIYc/GDsyaDoyaAIAoCjS2MDtaZd2aaQalUgu4+e/MyiKNLcIm1uEV3zxHABALJowTNgnh61GnX1yxBYNl7BBGIbZTB6byfPW/lEAAIM1wOEXAAAgAElEQVRFU7aKtb3NHb1NHT1NNVwmT8LlSbbuuGorACCbyc5NOyaPTE8cmdJ/aLQbXCVFSCy0ODwwNjwwhm82KEXaXW14qrZqixxBN2L/CggEAqkIEoci51Dk6z0NyKbhpptu+tGPfpS/bb/MNvhrz5KmDvFSN5rkCQaDhZsIgpTTNGmNWdKAqMyyvCuuuIJE+lhXIbMZNnZba8qVEy+88MKLL75Io9G+973vfdKoQCAQCAQCgawVKKB0kiidgP1vIGsHycO55NsgdQScriwglwSpo7nUUQB+BtBGQLuQRL8YULcDQKAb/hkASqILGduFjO0AfCuZXfDGB32JEX/iRDA5VWRUIhuYjw7MRwcAACyKVMTYLmRsFzK3UZFN0MOkjlKbFxWRTGQmajZEjIaI0RSbzeaKtScKp8MjCydGFk4AAOgoXcVSdtZ2tLJblGwFuaKGVxXTyOI2srifa+oBAEQzybGAfdhvGw7MDfttiVLdn7yJ6Ot23et2HQCARaa21YryrqKGQkAGnI6m2tqm2trPt3cAAGKp1KjLdfwjVxFKlrgRL5ZK4UUVABzHd9XfID1HKulvkKp5PEIWRVjD/srlF3x+V18ikUCptP99853Xjw7qHH5SfQOZWeKilERavqgi7p5ftJuyH70Kv9+/b9++ffv2AQCUSuWVV1551VVXXXjeeZdfoAUARBeTUzOusSn7tNk9prdHoqVSOrKYZd5vmfe/8uYYAIDNpLW3iHFR0dMuY7No+Wey2PTeHareHSoAAIZhc2afUWc36hy6EeuM3lkyTCIeS06OWCdHTrZrqBdwtL3N2t5mdYekrUtGpqBybaNc2/jZO3YHAoHFcNwz4594T28cNk8enY4EosV3DgBwmt1Os3vgz+8CABhsurJH3tqv7Nyl6Tq/gytagaodCAQCgUA2CzQa7eqrr/7DH/6Aby4sLKzvfE6HVqst3IxEIrFYjMUqXWK+RE5IJJIN2AKXyWQW1oKUKSfEYrFMJpubm8s/smx4AWRVKev66sEHH/zhD3+If/zKK6+MjIzAGAkIBAKBQCDrDyoFzBtJzBtBLg5S7+eSh0DyEMievgw/OwcWn80tPguQOkA9l0S7ENAuBpthnX1loaF1MvZuGXs3ACCR9fnio574B87FI8U7GMTSdnP67+bw30kAqaO14QEVPPoWlEQrMmqDwCFzeut6eut6AACJbNIUM01HjIbIzHTEkMkVW+VPZBOTYd1kWAcAoCG0ZmZjK0fdWdvRylZTkGojxAnBJtN2CpU7hUqAR2SH3EN+2+SC40Of1blYIksglkkN++eG/XMAHEFJJAWbj3d/2spvljFXIBWcRaXuamra1dQEAMjmcqZAYMLjHnQ4Bh32mYC/ZECELRSyhUL/0OsAAGwqtUcs3togPUci7ZNIGETyS3h1tXdcd80d110DADCbzS+8/H+vHR2aXYjTBBKGqKmCooq4e27RMRuzz+aLKsxm82OPPfbYY48xGIxdu3bt3r179+7dW/v6zuluBgDkiypwUWE0ly4oiS4mj49Zj49ZAQAIQmqS1GtUou52WbdG0izj5etdEORkUcXuq3sBAPFY0jztMuockyPW8cHZhUCs5Bcn4I0cPjhx+OAEAIDOoKo0DS0dEnWHpGurnEIHzBpG3+7uvt3d+JOdZjcuKiaO6E2jFixbIgsxHk1MHtFPHtH/47F/AgDqG7i4qNDu0qj7lTTGhlu/gEAgEAhkZTnvvPPycmLDRukskRMAALvdXs4Cr8fjKdzs6+tbyWmtEEKhMBAI5DfL70rU0dFRKCfK73YFWSlKn+77fL4HHnggv7m4uPjyyy/fd999qzgpCAQCgUAgEEKQGIB2EYl2EQAAZIwgeSiXfBukhk+bfIstgMRrucRrAKCAuoVEuwhQdwJK51pOeYNAR/l5UVFmknYOYPmAisIkbTZYesGzMaGjNG1Nh7amAwCQwlKWmNUQnZkI6YzRmRR22lgOAEASSxqiM4bozAHnaygJaWI2ams6WjnqNk4rE6087bkCUNLJ7k/4picRGfbP4UkVUyFX8QXxbC63pPuTtk7Sz2vq4zV2c6UUpNqKIpREauXxWnk8vKjCt7h4wuUa97gHnfYhhyORKVHwEU2ljthsR2w2fFdKbj2eVNEpFLUSCbRTKpU/uvc7P7oXRKPRQ4cO/d+r/zx4bCiGMpgSBUumKr+ooq5jKwAgm0zE3bZF+2zcPb9oN2eT8Xg8PjAwMDAwAAAQi8Wf+tSnrrzyyiuvvFLRyFc08vGiisV4asbiHdPbx/T2CYMjVLovUw4vqnj9XzoAAItBVTUL8JiKzjZJLefUzxiDRdP2NWv7mj9387kAAL8nohu1TgxbZ3QOw6Q9nSrxRU7EU4VFFXU8lrJN1NEj1/Y1a3ubqDRKg1LUoBR95sufBh9P1R5/Vxd0l07VDjiDxw4MHTswBGCqNgQCgUDODhobG/Mfy+Xy9ZtIMVQqVW1tbWGARJlywmKxFG6ee+65Kz636lGpVHq9Pr+5RKgUQSqVFm7CBOW1p7ScGB8fX6KbCn/lIBAIBAKBQDYWZDUgq0msOwAWAMl/5ZKHQPIwyJ2uS0kWpIZyqSEAAEBlKGUnDfSD3CUAnI23+lafpM0mtUnDO8WsczdFkjYAgIpQWznqVo76yobLsznMtjg3GdbhSRWL2WJh1NkcNhuzzsaswPkaQkKamY1qtrqNo+6oaWeT1zqAXUjnXCbtuEzaAQCIZVInAvPDftvEgnPIb42kS9w15k1E33EZ3nEZAAAMlNJeJ17Z7k98JvNipfJipRIAkMEwczA45LQftzsGHfa5cIll7mwuZwz4jQH/vokxAICQxeoUis6RSLdKJF0iEQ0tq6iCzWZfddVVV111FYZhIyMjAwMD+/fvPz4+yRA3M6VKhkhWTlEFSqOzm1rZTa1guaIKl8v14osvvvjiiwiC9Pb24uUU559/PpNB7W6XdrefvOJ1uEMnpuanze5pk1tndGZKlSPE4ilcbOCbElFtt0baphL3aKRq5ccSxXlCzqcu6fzUJZ0AgEwmO2tw40kVRp3DZip9Zb7gjw0fNQ8fNQMAUBSRyvmdvc0dvU3qDmmTqliq9sywORkv5vNA0VTtjp1tNTxO8eEQCAQCgWwKCqslent713EmRSCTyZdffvkLL7yQf8RoNF544YUlBy6RE+edd96Kz616ent7X3311fxmPgKkJEtywstM0oasIKXP6Zfc29LW1vaFL3xh1eYDgUAgEAgEskIg9YBxLYlxLQBZkBrJJQ+B5JsgM3va52fnkezfasHfwMIDOeoOEu0iQL8IIMI1nPFGoeIk7QUwshAcmQz+dtMlaQMAUBKiYDUrWM2g4XIshzkTLkPEOBHW6cL6aKZYC37sI1Fx0D1AAiQJo6GVo25lt7TXaHjU+jWbPw6LTC3s/jQb8Q8HbEN+26DPZl8s0QE5nk0v6f6k5Tb085r66ptaagTVz42MIHhRxZc6uwEA7lh0wu0ZdNoHHfYxtzuVLRYEAgDwxGJvz5rfnjUDAFAE6eAL+iWSLqFou0xWzgo3giD9/f39/f3333+/z+c7dOjQ/v37Dxx4zhKN0YVShqhxRYoqhoaGhoaGHnroIRaLde655+7evfvqq69ub28HAEhEtRJRLV5UEU+kjbMevdk9rrePTM4FQ8VMGI7DHXK4Q3hRBYNOUcuFbSpRt0ba19lYV8PMP41MRtUdEnWHBN8MeCOGSfuMzjE5YtWN2pKJdPGjZLMnU7X/+dJxAACLTW/tlGp7m1s6JNreZk4t43Sp2sYhs23KXnGqtrpfqdnWQqauaaYLBAKBQCArRf4+fYVCgf/d35hcffXVhXJiaGio5JBYLOZ0OvObEolk586dqzK56liiTEZGRsocSKN9rEXt9u3bV2xOkPIoff63fft2LpeLh5+gKPrMM89swNgTCAQCgUAgkNODAupWEnUr4HwfZOdA8u1c4m2Q+hCA0zQ/ycVB8lAueQiE/z9A6QDUnSTahYDavylKAVacszBJGwCAkBApQyJlSC4UfhoA4El6J0O66ahRH572pwJFBuZAzh532OOOQ55/AQCENIGa09LGVnfWagU0/hrN/iNQEtJSI2ipEVwv7wcF3Z8mFxxjQXsGK3bnfr770yu2MfDx7k9dXCm16u5PAAARiy1SsvNFFVM+76DDPuhwfGCf9y+WWKzPYti4xz3uOXlPnIDJ7OYLdikUXUJRj0hMKVUJwefzr7vuuuuuuy6bzY6Oju7fv//AgQPDrz6by+XI7BqWRLEiRRUDA28NDAz84Ac/UCqVeDnFJZdcUltbCwBg0Cl4UcX1n+0DAPgCUbxIYtrknjK50ukSniaeSOPPf/HVYQAAj8vqaZd1aaQapahdLaaQT825XsDZcYFmxwUaAEA2i83P+ow6u27ENjFinTN7S7uEaGLkmGnkmAnfbJDV4xUV2r7mFk0DSj6Vqg0AiIUWp4/P4GEVuvcNYf9pW8PlKUzVprNoqi2K1n6luk/ZfX6HSL4CPgwCgUAgkLXhxIkT+Adf+cpX1nUiJbj88suZTObiRydaw8PDJYcMDQ1hBSeNX/ziFxEEWa35VcEFF1xQV1eXTyO3WCxzc3Pl9P4Jh8P5j+vr6z+ZzAFZbUrLCQaD8cADD3z7298GAHzuc5/btWtXNcd78cUX//a3v7344ovV7AQCgUAgEAikQtBGwLyVxLwVYCGQOppLHQWJAYD5TvNsDKQnQHoiF3sKIDxA+xSJdhGgnQ9Ia923Z4NwFiZp4whpAqHw03lRYYgYDdGZyZDOk/QWH+hJej1J7xHf+wCAOkptK0fdWdPRylFLGA2kNXddhd2fFjOpqZArn1QRTpeI/ivs/kRHKR11YtxV7BAo6qgrkLdBRpAuoahLKLptSx8AwB2LDjkcxx32CY971OUq7lEAAN7Fxbds1rdsVgAAk0LpEAjwBlA7ZI31jGLTQ1EUL6d44IEH3G73G2+8ceDAgTfeeMNpOAEAQCjUFSmq8Lrnn/l/f37qqadQFN2yZcvu3buvvPLKnTt35q/t+fXsi3a2XbSzDQCQyWImi/eE3j5tcp2Ysjs9pTMe/MHY20en3z46DQCg0yitCmGbStSmFPVqG8WCUzoQRT+Wqr0YTc4aXJOj1tEPZoyTzkioRCQGAMA5H3DOB97aPwoAYDCpyraGlg5JZ19z11ZFXT2LVctcNlXbMGSePj6TKZmEEUviqdr4Jp6qre5Tdp6n0e7SwFRtCAQCgWxk9u/fDwDg8Xj33HPPes+lGHV1dV/72tcef/xxfHNsbCwUCuF3TpyO48eP5z9GEOQb3/jG6k6xUmg02g033PD73/8+/8i777570003lRzocrnyH3/pS1/amOrlzIZU8n4ZAEAul7vjjjuefvrprVu3Hjt2DC11A1ERfvWrXw0MDLz22msV7wGy2bFYLAqFAgAgl8tnZ0/fW2PlCIfDiURCKDwb+3JUz8LCQiaT4fPX+mbPMwODwUChUPAfeAhRPB4PnU6vqdkcN1lvKDAM83q9HA6HyWSWfjYEAACyIDWcSx4CyUMgM1P66SQ6oJ5Dou4E1F2AsjmSFVaZXCg141n80BU75kuOZHOllzgBACiJWk/v4tN7+fQtPHoPGdmUP66+pH86YtBHDPrItCtRbmdbAACXWqdiKdXsFiVboWA10xCa2+12Op3d3d1rf0WUzeWmQ+6RgG3YPzfstznj4dJjPgIhkZQcfledtIsr6eJKNbWi6iO1lxBLpUZdriGnY8TlHHY6wskSKRqFkABQcuu7ReJukahLJNIKhHRy6XuzMpnMsWPHDhw4MDAwUNjugFrHZzY0MxuaGRI5nS8hEflO5TAs6XfGXXOLLlvcPZf0ueq5dRdddNHu3bsvu+yypqam0w10+8IT045Jg3PC4DDMekoWVSyhQVjboW7QqETtLeI2pYi53BJ/IBDIYblYKKsfn9efmJsam7POeLBSQmgJkiZea6e0VStt7ZS2tEvoHz9QPJowDJqmjhn1HxqnPjAGnEFCOydTUGWPvO0cVdvWlrZzVE3tMgTdKAsHPp+PSqXC05XKcLvdLBarsFE7pExSqZROp2tqaqqvX+vmgZuCVCqF92mhUqlJIn81IGcMVqu1MJX6q1/96jPPPLN6h3vnnXfw5Ibf/e53d9555+odaEWwWq1qtTqdPtnp8fnnn9+zZ0+R51955ZX5LIfPfe5z//jHP1Zvbn//+98LowQef/xxQrLHZDK1tbVlP+oU+oUvfOGll14qOaqpqWlubg4AQCKRdDqdRqMhOOvTkv/SHThw4LOf/exK7bYCDAYDiqIqlarM59fX1+MtlAKBAJfLXc2pAVCmnAAA5HK5H//4x//93/999dVXP//88xWfQFx44YV0Oh3KibMZKCc2F1BOVAOUE9UA5UTFQDlRDemEJb5wkEX5EMm8D06fAn0KhAuoO0jUnYB2HkBlqz/BDU0ikVgIBckcvz81WDJJuxASQDhUOW4pBIytTLJ4tae6GoTSYXNs1hAxToZ1lpgtB8o6xwYAICSkgS4Wo6KaOOfTrecrOfK1L6ooxJuITiw4hv22Ib9tPOhIYwRWw1ESomDztNwGvK5CUytGSSv8Wmyh0KDDPu5xDzkck14PVt61zEfTIym59Z1CUZdI2CUUlZOqbTKZXnvttTfeeOOdd96JRk9Fj3y8qEJJZhILds5h2VTQl28ApZYILvnMZy655JLzzz+fcfpSj2wWszkCY3rH2NS83uS2zPsJHRQUpGprlKI2lYhGJQMAAoEAAKBwiTMRT5mmnEadY3LEOjFkCfqLZa58EgRBZAq+ukOi7pCqOyRqrZRK+9jXGU/VNgyZJ49OTx7Rl0zVXkJhAyh1v7K5Q0Za6R+z8oFyohqgnKgYKCeKA+UExGAwtLW15TdvueWWZ599dpWOFQqFtm/fPj09vWPHjsOHD5NL3QYxPT09ODiYy+Uuvvjihob1CWa7/fbbn376afzj4iv4CwsLYrEY/z2iUCiDg4Pd3d1F9hyPxycnJ3k8XmXLIPv27Ss0Jb/+9a+/+93vEtrDN77xjaeeegr/mEqlWiyW4l/k6enpvI24+eab//znPxOccjGgnCiTcuUEzv79+++66666urq9e/dWEM6+d+/eu+6667LLLoNy4mwGyonNBZQT1QDlRDVAOVExUE5UQyqVCgaDXC6XSsmA5Hu55Dsg+Q7ASrTuOQkqB7SdJOouQN0OkGLF0WcqiUQiFArxeDz8qiyDxX2JYU/8Q0/8eChpLJKkvQQ2pYlP7+Ez+nj0Hg6leTWnvFpEMzFDxKiPTE9HjNZFazZH4CZ0JspQshUqllLFVrawlRwysVXvlWUxkxoL2of9cyOBudHAXCRNbImHSaZq6xo6uRK8tKKRtcLXNguJxLDTMeJyfmCzTfi88UyJxkFLoKHkDoGgSyTqEYm7RCIVtx45/Rp3JpM5ceLEwMDA/v3733///SWFBdQ6HrNBXllRBQAASyXj7rm4ey7jd3U1iy89f9fu3bv7+vqKr7n7AtFJoxOvq5g2uxPJEmHXSyCjiKpZ0N4ibhRz1HL+lk4leppyBLcjODU6px+f04/Nm/TOdKkGTUsPREFVmga1VtrWKW3VyhqV/MLyoEw6axqd1X8wM/WhUf+B0W50FtnVstTyOW3ntLSeo2rrV7We01IvriO6h2qAcqIaoJyoGCgnigPlBGRsbKynpye/ecMNNxSmQJfkkUceee655+rq6vbs2XPbbbcV+XMci8U+//nPHzx4sLm5+YMPPhCJRMX3fO+99z766KP4WQSNRvvZz3727//+7+VPbKXw+Xwajcbv9wMAqFSq0Wg8XRHnww8/fN999+Ef33///Q8++GCR3b7++uu33norng1+1VVXPf/88xwOsfPYP/3pT7fddlt+88EHH7z//vsJ7SEQCHR2duYTvO++++4nnniiyPPvvffe3/zmNwCA+vr6qamplV05hHKiTErLCbvdfvTo0fxmOBz+2c9+ZrVa9+zZc80115Q8QDqdDgQCTqfz4MGDg4ODAAAoJ85yoJzYXEA5UQ1QTlQDlBMVA+VENZySE9SCniQZI0geyiXfBqkRUNYKO/JRjPYuQOkHmydZoUqWyIlCyk/SXgINra+nafmMLTz6lnqaFiFRVnTKa0ESS85ETdMRoyEyY4ga0xixFeQ6Sq2CJW/lqFvZLXJWMxVZz877c7HgkP9k9ydTxEvgFicAAAAcCk1dI8SLKrbymvj0FVuRDIfDsXg8QiZPeNyDDsegwz4T8BOdXj6sokso6hSK1Dze6ZYifD7foUOH8F61eB+AQhAylS6qvKgCAJBNJpJ+Jwj7W4R1n9navefaqyQSSYkhWczmCOhN7nG9/cSU3Wr3E7kDDQAAyCgia+D2tEu7NFKNStQs4y2ravBU7clR6+Sw1ahzlJOqvYR8WAVeWtGkEhQu+iyG4/oPjYRStZeQD6to7Vd27Gyr4a2u3oNyohqgnKgYKCeKA+UE5N133/30pz+d39y9e/ebb75Z5tiXX3752muvzW/u2rXrt7/9baHqyKPX6/fs2TMyMiKRSN54443Ozs7ie37mmWe+/vWvL3mwguKAFeEf//jHF77wBfyP+De/+c29e/d+8jlut1ur1eIOY8eOHYcOHaLT6afbodfrbW1tzedRgzLEwCd55JFHCr8a991330MPPURoDwCAd9999+KLL85kMgAAFEUPHz587rnnLvvMiYmJ/v7+VCpFIpFeeumlz3/+80SPVRwoJ8qktJz4xz/+sbLfHignznLyckImk/3rX/8q/BSKos3NK3+DJJQT1QDlRDVAOVENUE5UDJQT1bC8nMiDeUHyUC55GKTeB1jplFoAACAxAHXrWRJQUUROFBLLODyLH3oTQ7748GLGVeSZSyAjTB69m0ffIqD31tM7UdJpr442LCksZY7NToWnTVGzKTYbzRDrlkMmkZtZTR8VVSiEtPU8t/EmoiOBuWG/bTzo0C0441li0gUA0MCo6eSeDKvorJNwKJVrvE+e7HkXY8NO57DTMeZ2j3vcsRSxxkEAAC6d3iUSd4tEeGSFiLX8+qnZbMbLKQYGBhKJZXLFqbU8pkTOaGhmiBoZAimpjNCLJaSjIfLigqaBd0Ff1/WXXijkli7MWggvThqckwbn1IxryuSKREsEnn8SFoPaphK3t5z8VxisXUjQF8UrKqbH542T9hjxA3FqGa2dstZOaZtWptZKecJTLiGXy83pHfoPjFMfGqePz8yOWTMEIzdICEnWKsmHVai2KKj0FRacUE5UA5QTFQPlRHGgnIAsWeNuaGiwWCzLn95/gl/+8pff//73Cx8hk8k33njjV77yle3bt7PZbJ/PNzQ09Le//e3ZZ5/NZDLnnHPOyy+/XPI2AvDx8IY8NBrNbDaXM3zF+Y//+I+f/vSnAAASifTXv/71uuuuK/xsOBy+/PLL8bvV1Wr14cOHi9eFfHL1WCaTffIejuLceuuthQ24LrnkkjfeeIPQHnCeffbZ2267Da9QkclkR44c+WRpiN1uv+CCC2ZmZgAAv/rVr+69994KDlScTSEncrmc1WpdUhPc19cXCoXAxpETPp9PJpOt4Bs6lBNnOWazuYisu+mmm/Lt4VaKcDicTCYFAsHK7vYsAcqJapiZmaFQKKuh3M4GvF4vjUaDV/sVgGGYz+djs9lQTlRAKpVaWFioq6srdfWCIVk9mv2AlH4fxUZBrqzTpBypDiNvw9DtWfK5OUS6IhPeUCQSiXA4XF9fX7LZbp4k5g8kx4LpsWBqPJwm0PqJREJryC1caheX0s2j9VE3Zx+thXTItGieWTTb4jZL3JbJEeuWw0DozYzmFpaymdGkYipYKGuV5lmSbC5njQV0YddU2D0Vdk2F3ckssdcCAODTWO014l6urKdO0l4joqMEFpFLnux5FmMjLtew26Xzead8PqINoAAAAiazgy/Q8gVavqBbKKz/RDJEPB4/duzY22+/fejQodHR0WUvskgIQuUKGSIZQ9SI/08qFXrxSZB0Qsyk9LU0XdDX1dMsrmGUljr+YMxo8RpmvUaLd8LgjMYIX9mxGFRFI0+tEGjV4i6NpL52+b8vAW/UpHfqT8zrx+bN065kgrCy4vLZKo1YpWlQasRtXdKaulMHyqSzjhmXacQydcygO2qYNzhzGLGiDZSMSlpEql55yxaFqlfeulVJphL++i8Byolq8Hg8TCYTyokKSKVSer1eJpNBObEsqVQKX02DcuIsJJVKvf7667fddhueqJRnz549v/jFL8q5NjeZTF1dXfF4fNnPkkin1lEZDMb9999///33F6knKOSyyy5bdqn94YcfXpfmTgCAH//4x7/4xS8AAHQ6/cc//vG9997LZDKz2ezLL7/87W9/2263AwA+9alP/f3vfy+5KPTaa69dccUVhY+0trZOT0+XOZNIJPLss89++9vfzsdZ4/znf/7nXXfdVcGS1J///Oc77rgDv3GksbHx6aefvuSSS/BP5XK5f/7zn9/85jfn5+dpNNrjjz9+++23E91/OeTlxP/+7/9edtllq3GIMpmZmUFRdNkbZ2+88cb9+/efbuBGkRMAgC996UuEurMVB8qJs5yRkZG+vr7TfVYgEIyPj6/sESORSDKZhMvrlREKhTKZDI/HW++JbEpMJhOFQjld90ZIcXw+H41GI9qkEgIAwDDM7/ezWCwoJyoglUqFQqHa2toyb60CAJBAkgLGKbnjVDBIAcby+j6BLJCkSOekwdYU2IqBM+TnPJFIRCIRLpdbvpwoJJuLRzB9OKsLZXXh7AQGCCxr0hFxLarlIB21aAcT2ZRK2O11T3mnESlqzzjmk3ZP2lt+pDYOj1wvpzfLKFIZVdJEb0QBukpTLUkGw+YTIX3UMxFxj4edtsQCodhqAABKQhrptTbLDp8AACAASURBVG0cQStL0Mrit3NEFFKxFAdCJ3sZDLNFIvqAXx8MTAcDOr8/jREIBcHhMxht3Pr2ep6GW98tENR8/B3D6/UeO3bs3XffPXjwoNvtPt1OSAhK5QpYUgVTomCIGmn1QkA82LmWimxpbtA2idUibpuYRyWX+L5jWM7uDs1Y/ea5gNkWMNn8KYLlCAAAbi1D1cRTNfFUTfVtCgGHvYwgwTDMaVuYNbgtRq/V6J01uNMpwgeq47HkaoGiVdSsFrR1SZgFB0rEktaJecvY3Oy4bfaEzWF0E20wRaagsnZJ2zaVvKtR0dMkbRVXEKzt9/upVCo8XakMr9fLZDJZrHUTq5uXVCplMBikUukarBltRtLpdGNjI4By4mzC5/NdfvnlwWDQbrcvW8iIIxaL+Xz+Pffc841vfKPI3l555ZWbb745Gj1thSubzb7pppt++MMfEroTcUk9R54bb7xx37595e9nZXnppZf+7d/+DQ9pQFFULpcHg0Fc7XC53AceeODuu+9G0dJnldFoVKvV2my2/CM/+9nPfvzjHxcf9d57733rW99aWFiYn5/PnObeEQRBpFJpfX39o48+WtitqySDg4N33nknHjEAAFCr1Vu2bMnlcqOjo3jBxAUXXPDoo48Wj/iuhryceO6553bv3r1KRykHk8mEf3OXPJ7L5RQKRZFfGZfLVTJJpXrKkhPvvPPOhRdeuFKHhHLiLCff1olMJi9ZtOVwON/73vduuummlT0ibOtUDbByohpgW6dqgG2dKga2daqGEm2dSoIFSekPcqmjpNQRkJ0vbwwCKB05yrkk2q4cuW9TB1SU2dapHLBcJpQy+pMn/IlRb/x4CguXP5aO8uuoGj5ji4C+rY7WRgLEoonXC7fb7XQ6u7u78azgxeyiZdE6HTFaYtaZmCmaiRHaGw2hNTMbm5nNClaznNksZaxDr4A8i5nUVMilC7kmFxy6BVcFYRVkBJGzeL31jX28Rm1tg5LDXxKHUM3JXgbDzMHgpNcz6HAMOR2mYICoSgEACFms/gbJVomkUyDUCkWMj34FMAwbGRl56623BgYGDh8+nCraXQqh0ugCCUPUyBDKGKJGGk9ItBEcQiLJBdwOmbCjUdQuFXQ2iku6imwWG5+anbH67Z6YweyZmnGlM4QVAo/LalOK2pQijUrU1SbhsJe5gTSTydot/pkph27ENjlqm5v1Eq17QBBEpuC3tDeoO6Qt7Q1qrZRKO/VWE12IGYfMeFiFYdAUdJfXea8AZg1D0dWs7lOo+5Sd52nEirJ+nGDlRDXAtk4VA9s6FSeVSjEYDADlxNlEPB4/cOBAmU9ub28vmQ/hdDr/+Mc/vvXWW9PT0+FwOJPJ1NbWyuXyLVu27N69+9JLL61AS2cymXvvvfcPf/hDOp3etm3bl7/85f/6r/9yOp2XXnrp66+/TnRvK0g0Gn3++ef/7//+b2RkBL8U6unpufrqq2+55RZCb9Hj4+Nf//rXjx8/zmQy77777p///OclLwocDseRI0fK3P/OnTulUmLV57lc7o033njllVfee+89t9sdDodra2vVavV555133XXX9ff3E9obUfJyYv/+/UvKStaYIm2dnnrqqccee2zJW6XFYsEbPW2gyolcLqfVaqempgAAnZ2dl1xyiVgsrq0tt3w+l8stLCz4fL4///nPbrcbyomzHBiIvbmAcqIaoJyoBignKgbKiWqoVk4Ukp0DySO51FGQeh9gC6WfDwAg0QGlj0TbBag7AaUDbJJV9TwrKCcKyQEskpr1JXBRMbyYcZY/loww62ldfHoPn7GFR+9FSeuZJl2cJXJiCZ6k1xAxzsaslpjFHLMQbQCFp2rLWc0KlryNo2ai6/nmEE4njGHPsH9uyG8bD9r9SWLeBQDAIlPbakXaOom2rqGzTtJSI1jBk73FdFrn9Yx73ONuz4THXUGwNoogyjpup1DUJRJ2CUXdIjEVRQEAsVjs/fffHxgYGBgYGBoaKr0fGp3GbzgZrC1VkFmE/yCSUaSZz+1VSHoVkg6ZSCmqXzbjGr87El/izGQxk8V7Qm+fNrn0JrfNTljVIAipSVKvUYnaVGKNUqRpEVEpy7whxBdTZr3TqHMYdfbKgrVRFJHK+XiqtrpD0tYtIxeYGL8jaBwyGYbMxmHz5NHpSIBYvgv4eLB2+7lttfzlF6GgnKgGKCcqBsqJ4sDMCchGJpvNJhIJvGhsz549+/btu/766//617+u97xWjFgsRqfTyym2OOPZFJkTy7LhArFx8OKjnTt3vvPOOxRKhTFidru9u7t727ZtUE6czUA5sbmAcqIaoJyoBignKgbKiWpYSTlxCgykdSB1NJc8AtJDZQZUAIQLqDtI1J2Adh5AZSs3mVVkleTEEuIZrz9xwpcY8SdOBJN6UHbvIxIJraO28ug9fHqvkLmNimyst5ficqKQJJa0xmyzMevsosUQMXqTPkIHQkhIA10sZzUrmPJWjlrOaiKta067JxGZXHBOBh0TC86RwFwotXyL5yLUUOgajlDLEm6Tqbu5Uh5tJVvERJLJab8PdxWDDvtcmPD9+GQEUdRxO4Wic6SS/gZpS309QiLhMdoDAwNvvvnmwkJZ8pLMrmEITyZVMBqayAzC67ksGrVVwu+QiTpkwg6ZSCXi4aqiUE4sYTGemrF49WY37iqsdj/RqhIURRobuHlX0a4WU5Yr5ohFExaD26hzTI5YJ4YtQR9hl8BgUpVtDS0dElxXNKkEhT2anGb3yaKKIbNxyJQiHoaBu4rOXRrtLo26T0Fjnqxyg3KiGqCcqBgoJ4oD5QRks3DppZcePHjwpz/96U9+8pP1ngtk5YFyokzKlROBQEAmk33nO9/Bk1Iq5p577jGZTFBOnM1AObG5gHKiGqCcqAYoJyoGyolqWB05UUAuAdLDueQRkDoK0royAyoA2ghou0jUnYC6E2zg5Oe1kROFJLOBQGLClzjhS4wEkzosV+6CIwkgHKqcT9/Co/fwGX0s8np2PcIpX04sIZhasCxaZ2MWQ2TGGJ1JYcUaB30SOkpvYsjkLHkbR93Gaa2lrPO7ricRwYsqJhccugVngniwtoDO1tZJOusatFxJP6+phlJWRmWZuGPRCbdn3OMe97hHXc7AadIyi8CkUDoEgk6hqEso6hSKFLW1Hxw7dvDgwYMHDw4ODi4JgSxCoatgShQofWlAd0nYdJq6gdchE7UKaroaReqm0n0SorGk2eYb09vH9Hb9jMu/QLjqhU6jtCqEbaqTPaCaZbxlizn8nohRZ5/ROYw6+9TYXDi4SPRATDZNoRbjrkLb19wgO7WAm81k56YdxiGzcdg8cURvGrVgWWKhIwiKNLZJ1P3K1j6VsIWn2dbCE8B4tkqAcqJioJwoDpQTkE0Bvk4VjUZPnDjR1dW13tOBrDxQTpRJuXICAHDrrbfmcrlnn322muM9+eSTr7zyCpQTZzNQTmwuoJyoBignqgHKiYqBcqIaVl1OFIIFQepYLnUUJN8jFFABqDtJtF2A0r/RAirWXk4UksHiC6lpf2LUFx/1JUbSGIE7r+kon8/YwqNv4dO3cGkaoo3+V4SK5UQh2RzmSrhmYxZDdMYQMTriTqKp2ngDqFaOupXdImc1U5H1bISVzWGzEf/EgmNywTm54BgPOtIYsTgElERSsPlabkO+BxQNXckfzkJXMeRwhJKnjRM8HRwarY3Hw12Flss1HB88cODAG2+8YbVay98JiYRQ64UniypEMrpQhpAJV7oLalj5ooqe5gYuu7Tt8AWi02a33uSeNrsnDI5QmLCqYTGoqmZB3lUoGpc/4cy7iskRq27Ulqyg7kHAwSsqWjok7T2NtdxT5TXxaMI0ajEOmQ3DJuOQ2TZlryBYW6pu6DxPo92pUfcrm9tlJGQ9q5E2EVBOVAyUE8WBcgKyKXjiiSe+9a1vffazny0/LQOyuYByokwIyIkPP/zwxRdffPjhh6s53tjY2ODg4Fe/+tVqdgLZ1EA5sbmAcqIaoJyoBignKgbKiWpYUzlRyBkRULG+cqKQfEyFJ/6BNz6UzAbLH0tBWFxap4i5jUffUk/rQNYqpmJF5MQSEtmEbXEOFxUzUXMkEyE0HCUhYroYFxUKllzCaFjfBlDxbFq34MRFxWTQWUGwNkpCFGwe7ir6eU2aWjG63G37FWMLhQYd9nGPe8LjnvB4EhnCZR9CFgsXFQIs5x0fP/rWW2+88UY4TCAQHgBAQhAq95SrYIiaSMT7Phe6ij6lpIZRugAl7yrG9fbxaUciSVghsFm0dpW4SyPVqETtLQ31dcv8FcMwbM7sw5Mq8NKKVJLw17nQVXT2NbNrTpmYWGhxdtxmHDJPHNVPHJ4KuMp7Qy6AyWEoupvxvAp1v1KubSS6h7MHKCcqBsqJ4kA5Adn42Gy2np4eDMNGR0fhisGZCpQTZUJATkAgKwKUE5sLKCeqAcqJaoByomKgnKiGdZMTp9jEARUbR04sIZa24xkVvsRoOGUufyBKotfR2vj0Xj69h8/opSDLJ+KuCKshJ5YQTC0YozPTEaMlZpldtKYxYmvHTJShYClaOS0KllzNVrHJ67yeGM0kp0Nu3FUc91gcCWIr+AAAJpmqKQjWVtXwV9C+ZDDMHAxOeNy4qxhzu1Nlt2zKI2SxtAJhXTLlm9RNDrw58v6xCq7dSAhKFzQwpUqGUMYQNdLqhYCgkkEQkkJQ3yETdjSKOmRCrUxEWy7juhAMy1ntfryoYtrk1pvcqTRhhcDjsjQqMV5U0dkmqeUsU8yRyWTtFr9RZ9eN2CZGrHOz3hxGNMEbkSlOBWurtVIq7dSrKwzW1r1vCPuJGT6wJFh7R2utAJ7YnALKiYqBcqI4UE5ANjgej+fCCy80mUwvv/zyZZddtt7TgawWUE6UCZQTkLUGyonNBZQT1QDlRDVAOVExUE5UwwaQEwVstoCKDSsnCklk/cHEJF5UsZCczpX5VS2IqRAytgsYfTR0hdeD1kBOFJLNZV0JtyFinI4aLTFrBQ2ghDSBmtOiYMoVrGYlW0Emrec3PRwOz4f9bnIaD9Y+EZgPpginFHAoNHWNEC+q2Mpr4tNXcsEUdxVDTvtxu2PC4zYFAxjxqzApm81PZSKmGf2/3nWeGMulCZcmAAAQKo0ukDBEjSddBU9ItI8ZiiByATfvKrqaxJRSlRmZLDbnCOCuYkxvN856MIIKAXzkKro10m6NtFUppNOWaV0VX0yZ9U6jzoGXVsyZvUSvdlEUkcpPuYq2bhm5IMHb7whOHtFPHNEbhswzw+ZknFjECyhwFZ3naTrObaOzNlZ3vjUGyomKgXKiOFBOQDYyb7311le+8pV0Ov3cc8/t3r17vacDWUWgnCiTZeREJpM5ePDg22+/PTMzEw6H2Wy2UCjcvn37FVdcIZWWzkmDQIoD5cTmAsqJaoByohqgnKgYKCeqYWPJiUI2Q0DFppAThWSwxUBy3Bcf9SVO+BOj2TLrVAAAALAoUj4dj6noqaEqq4+pWGM5sYTF7OJszDIdMVpiVmN0JpohFnSMktAmpkzNVitYzQqWXMpY64DxT57seRKRyQXnZNAxHJgb9s8lsoTX8QuDtXvrG+uohBOnixBLpaZ83nGPe9ztmfC4ZwJ+okv1CInEzYHUvN0xOhIzzyZtczniXaQAACiNQeOLWRIFU6pkiBrJLMLlQWQUaW0Q9CokeA8opah+2YzrQuKJtHHWoze7p00uvclttfuJmhoEITVJ6jUqUZtKrFGKNC0i6nLFHLFowmJwG3WOyRHrxLAl6CMQRYPDYFKVbQ14sLa6Q9qkEpA+enV4sPbwOydsk3bL+Pz08ZlMiti3oDBYW92vbN2qotIJh4VsaqCcqBgoJ4oD5QRkY3Lw4MFf//rXAwMDt9xyy4MPPigSidZ7RpDVBcqJMlkqJ55//vmf/OQnFotlmaeSSF/84hd//vOfq9Xq1Z4W5AwGyonNBZQT1QDlRDVAOVExUE5Uw8aVE4Vs1ICKTScnCsnlsgspgy8x6k+MeuLHU9lQ+WPpKI9L68AjtetpnUhFNQTrKyeW4El6DRHjbMxqiVnMMUsmR2zJFU/VlrOaFSx5G0fNRFf9vaj4yV42l5uN+PLB2hNBR4pgsDb4yFX085r6eI3augY6upKLyJFkctrvG/e4Bx2O43a7d5GYHAIAkHI5JBRe0E0lZ2eTc/NptxtUVB9PZtcwhHhSRSOzoRllsEqP+TgsGrVVws/nVahEvJJNpGKLKZPVm3cVlnk/4WmjiKyBi7uKHo1UrRQuK0jywdpGnX1qbC4cJFxew2TTFGox7iq0fc0Nsnqfz0elUmtqahKx5MzIbPXB2up+Zeeudu2utrMhWBvKiYqBcqI4UE5ANiaf+cxn2tvb77zzzvb29vWeC2QtgHKiTE7JiVQqddttt/3lL38pPoBOp//pT3+64YYbVntmkDMVKCc2F1BOVAOUE9UA5UTFQDlRDZtDTpxiYwVUbGo5sYRY2u6Of+BPjPoSo7G0vfyBZIRZT+vi03twV4GWXbCyoeREIUksaY3ZZmPW2UWLIWL0Jn2EhiMkpIEulrOaFUx5K0ctZzWtRqo2oZO9DIZZov6JBcewf27YbzNHfUQ7LBUGa2vrGrq4UipCOHG6CO5YdMLtGfe4xz3uUZczEI8T3UMulUrZ7cm5+dTc/Iq5CqkCpREuH+EwaC1iXq9C2iuXdDaJ+JzStsMfjOlNLrwHlM7oDIYIKwQGnaKWC9tUIjyvQi7jLytI8q5icsSqG7UlE4TLa+oFnOYWfku7RNuraO9prOWeenWL4bh5zIq7ion39K5ZD9Gdnw3B2lBOVAyUE8WBcgKyMcEwbKOd5kFWFSgnyuSknMhkMtdcc80///nPssaQSE8++eQdd9yxynODnJnk5QSDwdi1a1fhp1AUvfvuu6+66qqVPSKUE9UA5UQ1QDlRDVBOVAyUE9Ww2eREARsgoOJMkhOFxDNef+IEHqlNLKaChNZRW3n0Hj69V8g4h4oW+wpvWDmxhGBqwbJonY1ZDJEZY3QmhRHruU9HaU2MRjlL3sZRt3Faaykr8yZfzcleLJPSh1x4UcVk0GmKeImu4pMRpK1G1MdrwoO1lRx+yb5GhCh0FUMORyiZILoHLJFIO53JufmkeTZhNmfDhFOdAQAkEkKtF+KigiGSMYSNJOK/6YIaVr6ookfewGWVth2+QHTa7MZdxbjeHo4SfvlsJk3ZxMddRU+7TCJa5jcRw7A5sw9PqsBLK1JJwm2y6gUcvPtTS4eks6+ZXXPq1RUGa08dM4R8hL8F7DpW61aVdmdba79Ss11dJ1zTSKFVAsqJioFyojhQTkAgkI3AppATf/3rX//4xz9i2McucP71r3+l02mwxnLie9/73q9//evyh9FotPfee2/r1q2rNjHIGcuJEye2bNlyus+KxeLR0dGVPWIkEkkmk3B5vTJCoVAmk+HxeOs9kU2JyWSiUChNTU3rPZFNic/no9FoHA7h5tcQDMP8fj+LxYJyogJSqVQoFKqtrd18cqIABISoYJgCBqm5D1HgLHNQGqhTYGuadE4adOdAJS8/kUhEIhEul3uGyYlCMrnFKDYdzupCWV0oO5EDBG61piPiWlTLQTq4aC8dES/5rNfrdbvdHR0dG1xOFILlMG/GN5ect6RsswmLJ+0lmqpdg3JkVKmCLpdTm2Q0KYVUYa+kFTzZi2SS01HvRMSlj3r1UU8wTbhqgYlSVCxeK0vQyuJr2EI5cyWv6LK5nDUc1gf8+mBgOhjQBwLJLOEWVdlwGC+qSM3NJy2WbIxwFykAAAlBqNwCVyFqIpWKxf4kPDZDLapvFdd3SgUdUj59udyIJQQWFvVm75TJY7YFzHOBJMGYBwAAt5ahauKpmniqpvpWBb+GTf/kczKZrHs+NGtwz0y6picczrlgjmCCN4Ig4sY6RatQrhbK1QJFm4hCPfX1CbpCljHb9HGz4UOzZXwuRTxYu05Uq+huVHQ3Kbob27a3MGtXMhNlzfB6vUwmk8Ui3D0MkkqlDAaDVCpdgzWjzUg6nW5sbARQTkAgkHUlLyfWPfzcZDKhKCqXy5c8nsvlWlpaYqc/FXS5XGsQjkLK5XLHjx/fsWPHEklSki1btoyMjKzStCBnMDMzM0ViS6688sp9+/at7BHD4XAqlYJyojKgnKiGmZkZCoXS3Ny83hPZlOSbOK/3RDYfUE5Uw5khJwpBcnY0cwzJfoBmPyTlystRINGzSA9G3pFBtmGopvyAirNBThSSzSXCGeNCejyQHAumxzM5Alm7NITHpXbVUbq4lK4aipoEEK/X63Q6Ozs7N5GcWEISS84n7Kb47EzMZEnYIhli94ajJERIFaqYShVD0cxoEtNE5TeAWr2TPW8yqo94pkIuXdg9FnKE04Rv2+fTWBqOqKNG1F4r1taI66kr+c6cwTBLKKTzeXV+n87nnfD50tW5isSsGVsk7GMAACQUpfMbmFIlQyhjiBpp9UJAsHwEQUjNvDqNhN8m4WskfI2ETyv1TpLNYvOuBcOsd8bqM856DRZvOk345dfXMdVygVouaFUIOtRiDmuZVmyJeNpicJv0LvO0y6R32S1+onkSKIo0NNWrNGJlm1ilEbd0NJApJ11FNpO1G12mEYv5hHVmxGIasaSTxBpMISgiVYtVvXJVj1zVK1f1yjdLsLbX62UwGLByogJSqZRer29sbIRyYllSqRR+AQvlBAQCWUfycuKll1669NJL13EmMzMzKIou29Xjs5/97Lvvvnu6gWtXOXHVVVcdOHDgk5+rqamRyWQMBiMYDFqt1uwnznTffPPN9TU/kM1Ivq2TSCR67rnnCj/FZrO3bt264isasK1TNcC2TtUA2zpVA2zrVDGwrVM1bOK2TqVZ9YCKM7WtUznkABZJzfoSJ/yJUW98cDHjLn8sBWFxaZ2MbEsmJD6n/fNkdJn7uDcjeAMoQ8RoiBhnF61pjNh6KxNlKFiKVk6LgiVvYas45GLLl2t2sjcXCw75bXgPKN2CM5ElfNs+HqzdWdeg5Ur6eU01lJX8dmcwbMrnHXTYx92eCY/bFAwQjdMAGJb2eJNz86n5OTyvIpcmnMQAAECoNLpAwhA1nnQVPML33KEIIhdwO2TCjkZRh0zY1SSmlKrMyGSxOUdAb3KP6+0npuw2O/GXD4BEVNutkbapxBqlqE0lolGXeTeLRRMWg9uoc0yOWMcGzaEA4VQMOoOq0jTgwdrqDmmTSkD6yOVk0tnZMevEe/qTwdp6O9GiDZSMylob1P3K1j5V53mall7Fhg3Whm2dKga2dSoObOsEgUA2ApuirVMqlRocHFxc/NjJzLXXXhuNRsGayQmbzSaXywvLJnp6er785S9ff/31MtmpS9CFhYWDBw/+8pe/PH78eP7BPXv2PP/886s9RcgZBgzE3lxAOVENUE5UA5QTFQPlRDWc0XKigNUJqDib5cQSYmk7nlHhS4yGU7Og7GZHKIleR2vj03v59B4eYwsVOUPeA7O5rCvhNkSM01GjJWZ1xJ1EG0DVUWpbOepWtlrBalayFWTSx37G1uVkL5vDZiP+iQUH7irGg440Ruy2fZREUrD5+WDtzjoJDV3J351YKjXl84573LirmAn4iS7V5zAsU+gqrLYc8coMAABKY9D4YpZEwWlSs6VyjFxuUHweBpWikQryeRVKUX3JYI94Im2c9ejN7mmTS29yW+1+oqoCRZHGBq5GJcJdRXuLmEJZKkh8Pl80lHLNhfGkiqmxuXCQsKtgsmkKtRh3Fdq+5gbZqeXmwmBt45DZqpsnunMGm67skeeDtZs7ZKQVzUSpBignKgbKieJAOQGBQDYCm0JOLMtaB2Lv3bv3zjvvxDc4HM4TTzxxyy23nO58JZfLPfroo/fddx8ei9HU1GS1Wld7ipAzDCgnNhdQTlQDlBPVAOVExUA5UQ1ni5woBAuC1LFc6ihIvgeyZS57IYDSAag7SbRdgNIPSCfXGaGcWJZENhBMTPgSJ3yJkWByEsuVe689CSAcqpxP38Kj9wgYW5nkpTEVm5fFbHw2NjsdMVpiVmN0JpohlnmAktAmpkzNVitYzQqWXMqQbISTvXg2rVtwVhOsjZIQBZuHu4p+XlN7rXhlg7XDyaTB7xt0OI477ONut3eRcNRELptNO5yJ2Vm8qCLtdgPipQkAADK7hiFsrG1UitRaUp0wQay7MAAAsOlUdQM/7ypaxKUbkEYXk2arT2/G6yrm/UHCL5+MIrIGbk+7tEsj1ahEzTIeQiJ9sgul3xMx6uwzOsfkiFU3aksmCJeeFAZrt/c01nJPRTJ8LFj7A2PIGya6c1YtU97Z1HmepnNnW9s2NXe5ePA1A8qJioFyojhQTkAgkI0AlBNlQrr55pvx1jocDuett94655xzSo75y1/+cvPNN+N9Nh0OR0NDw2rPErIaJJNJ/A/2GgPlxOYCyolqgHKiGqCcqBgoJ6rhbJQThWTnQPJILnUUpN4H2EJZQ0h0QOkj0XYB6s5EVhkKRaCcKEIGW1xIGfyJUffih/7EaLbM5loAAADoKJ/P2CJkbOfTe2qoSlB2HsPGx5P0GiLG2ZjVErOYY5ZM2f4Gp45S20iTNZDFnUJtK1vNIm+It75oJjkdcuOuYshnm18s7xeqACaZqqkV5YsqVDX88kM4ysEdi064PeMe97B9ftznXUgQjtPAksm0w4HnVVTpKhpau1S92xgSuScFksRzIzgMmrZR1CuXdMhEXU1iHqf0z4AvEJ02u/Um97TZPWlwLoSJlzswqC3NgiZJTZtS1Nspl8v4n3RJGIbNmX1Gnd2oc+ClFakk4VZgha6is6+ZXXMq+zrvKiaPTk8enU4uEl6ErW/g4kUVrf1K7S4Np35NPQGUExUD5URxoJyAQCAbASgnyoTU3d09NjYGANi7d+83v/nNMofdeeedTz75ZDrwlgAAIABJREFUJABgeHi4t7d3FScIWWk+/PDDxx577ODBg16vl8Vitbe333bbbbfeeiuLxSo9eCWAcmJzAeVENUA5UQ1QTlQMlBPVcLbLiVNUElCRI9Ulc7009gUI4/ySARWQXC67kDL4EqN4TEUyS2Dxmo7Wc2laPmMLj76lnqZFSJsj/LYckljSGrPNxqyzixZDxOhN+ggNR0hIA10sZzUrmPJWjlrOalrZBf2K8SQikwvOyaBjYsF5IjAfTBFeCudQaOoaIV5UsZXXxKev2HpuIBAAAKRpVNxVDDrtI07nIvGoCSweT7tcCfNs0mxJ2mzZCLFEdBwSCVF293XtuqBe3hqnMA3OQDJDPNijhpUvqtgil9SxSgd7FLqKMb09EiWsatgsmrKR390u7dZINS1iXt0y11aZTNZu8Rt1dt2IbWLEOjfrJZongSCITMHHXYW6Q6LWSqm0kzIYy2I2vd04ZDYOmw1DZsOgiWiwNgCgQSnS7mpr7VOp+5XqfiWNsbp/CqGcqBgoJ4oD5QSkkGQymc1mV/bKaHFx8Uy91EokElQqFUGQ9Z4IWFxcRFF0zW6qzmaz4XAYRdEVXIKAcqJMSBwOJxKJiEQim81W/nW4x+ORSqWZTGZgYODiiy9e1SlCVopUKvXd73537969uVzu4osvPvfccz0ez8svv+zxeFpbW/ft29fX17cG04ByYnMB5UQ1QDlRDVBOVAyUE9UA5cQy5BIgPfRRQMVU2QEVckDbSaJuA9RtABGs8hTPAHKzzuNzwaO0eq8/ObqYcZU/kowwefRu3FLU0zvPmJgKHH8qYIqaTVGzKTY7G7OksBSh4QyUoWTJVWylgiVXsOQ86oZYxcuBnDUaGA86xoP2iQWHbsGVyBJfRGbWdtVJurjSTq6ks07CoVR+6Y7LicIlzgyGzQT8Y273mNs15nFPeb0ZjHDrpUwwmLLNJefmkra5lG0OI16ZAQBQtqi3775cpu0FNXyjO2D2BDCCq/kkEmgWcLUyUWeTuLNR1C4V0iglSrswLGeZ9+tNrqkZl97kNs560hnCxRxCPqe9RdzeItaqGzQqMXO5Vf54LGnUOQwT89MTdsOE3e0IEj0KmYIq28StnbK2TpmmWyaT8/P9mZPxlGnUMn18ZnrQZDg+M29w5gjWtZApqLJH3naOSrNN3b5dLWuTrHhYBZQTFQPlRHGgnIDgRCKR3/3ud//zP/9z7bXXPv3001XuzefzPfXUUy+//PLo6Gg6na6vr29pabnppptuvfXW2tr1bJFXPRiG7d+//09/+tO7774bCASoVKpcLr/gggvuuuuunp6etZ+PzWb71a9+9Yc//OHhhx++++67V+koPp/vzTffPHjw4NjYmNPp9Hg82Wy2t7d3eHh4pQ4B5USZnDy9uO+++x566CFCIz/96U+/++67r7766hVXXLEKE4OsMNFo9Iorrjh8+DCFQnn22WdvvPFG/PFIJHLDDTe89tprDAbj9ddfP//881d7JlBObC6gnKgGKCeqAcqJioFyohqgnChBJQEVACACQN1Kou4E1H5AbjmT+hGtIG632+l0dnd3IwgSz3j9iRN4pPZCcjpXphACAABAR/lcWjuX1s5nbOHRe1BS6XvGNwtYDnMmXLMxiyE6Y4gYK0jVZqJMGUMiZ8nzYRWrNFVCZHO52YgvH6w9EXSkCAZrAwAEdLa2TtJZ16DlSvp5TTUUAt/3T8qJJWQwzBwMTnjc4x73hMd9wu1OE4/FzobDybn5pHk2OTubnLfnUsQ8E5VK3bFjx/kXXqTo2UqqFRhdAd28Z9YTwAguuKMIIhdwO2TCjkZRh0zY1SSmoEszrpfOPIvZHAG8qGLa5J6acVXgKiSi2m6NtEiwNgAgFk1YDG6jzjE5Yp0YtgR9UaJHYbBoylYx3v2ps1/O5Z1a9F+MxM0nqgrWZnIYiu5mPKyifUdrrWAFztCgnKgYKCeKA+UExO/3P/7444899hi+wPq1r32tGjmRy+V+97vf/ehHPwqHwwAADofD5/PtdnsqlQIA1NTU7N27d8+ePSs1+TVmfHz8a1/72vHjxwEAKIpKpdJoNIqfGwAA9uzZs3fv3jW7KrdYLL/5zW9+//vf47+5TzzxxIrLiVQq9be//W3v3r3Hjh3DMAwAoFKprrnmms7OTq1Wq9FoYOUEWC858cILL9xwww2ERn79619/5pln3nvvvV27dpU/6uDBg/v373/88ccJHQtSJdls9pprrsF/JX7+85//6Ec/KvxsKBTSarV2u722tvbw4cNdXV2rOhkoJzYXUE5UA5QT1QDlRMVAOVENUE4QIGsDyaO51BGQeh9goXJHIQJAPYdE7QfUbYDcCsD614xvEArlROHjKSzsj4/6EqO+xGgwqcNyBG6xJ5HQWmpLPU3LpWnr6doaqop0Bn3BF7OLpqh5Jmo2x2ZnIqZolnC+cS2lFrcU+L86yoa47TGRzehDrvGgHS+tsET9xIO1SQoOv7NO0sWVdNZJNLViGlqsVqCknFjCYjo96fGccLvGPe4Tbpd1gXCcRg7D0k5Xcm4uZZtL2ubSTmeOiO0gk8k9PT27d+/edcGFbIlixrswYXNNzrndIeKr+VRKu0zY2SjuahJ1NoplvNI/A/Fk2mj2TJlc+hnXlMk17wwSDdqgUcmtCmGHuqFd3dDRIpaK65Z9mtcVMkzYDZP26fH5GZ09GiFceiKWctu6GzVdsrYuWUu7JN8ACgAQcC0Yjs9MD5qmj89MHzeF/YR7cMlaGzTb1e3b1O07WhXdzeTldEtJoJyoGCgnigPlxNmM1+v97W9/+8gjj4RCp85Oq5ET8Xj8q1/96gsvvAAAEAgEv/nNb66//noKhZLJZF566aXvf//78/PzAIDbb7/9ySef3AjdkAjx0ksv3XrrrYuLiwCAO+6444EHHsBzhfV6/Q9+8INXXnkFAKBSqV599dW2trZVnYnZbH7ooYf++Mc/ZgraOa64nHjllVfuvfdes9kMAEBR9Lbbbrv99tu3bdu2gocoBMqJMjkpJ44ePXruuecSGnnPPff89re/nZyc7OjoKH/Uvn37nn322ddee43QsSBV8sgjj3z3u98FAMjlcqPR+MmYyocffvi+++4DAHR0dAwODjIYjGX2skLk5QSVSl0iQlAU/c53vkPUk5UEyolqgHKiGqCcqAYoJyoGyolqgHKiIjCQ1pHS72fjh5HsCAmUfUM0iZkj9wBqP4m6NUfuA6Q1aim7MTmdnCgEy2VCKaM38aEvPhpIjqWwMKFDkBFGLbW1jqrh0trrqJozKVU7HA67o54Ya9EQMRqjM7OL1vT/z96ZR7dR3uv/OzNaLcmSJduytVq2ZcmSY8d2yGpCgFAIZW+BbpdeunC7UiicH+1tT3t6ue0pXeDSFtrmAi1tb6EsaUpKQyGUbA4J8R5b3iXbkmVL1r5vM/P7YxyhyI4l704yn5OTo1ea5Z2xlpn3eb/PQyzaKEnEFFYUqCsouaJALdwYWkU4lRjwT5v8030+u8k3PRKcWewWMATV8CUGUZlRJDMIy+pEsiytYrHiRBb+eKyX0iocjh6nczq06GFuMplKTE5+qFU4nfkHa1NCxfXXX79r166mrdut/miHZdJkc/bZHO7gooM9+By2tlyyuULWWCGrU0rzCda22qYmHSGrIzQ4Oj1odo7Z3IveaQG7UlW8SS+r18trq8uKhPPv1O0MjvTbR0z2vs7x/m5rPLa4dziGofKK4uracmOT2tCgUlWWIOiHH3+33TvSYR5qNw93mPtODYa8i5P6GExMU6827tRpmyqrmzQVRmWeK9LixJKhxYmFSSQS1JgGLU5cUTidzieffPKXv/wlNdSeyZLFiWQyuW/fvnfffRcAxGLxyZMna2trMxewWCzbt293Op0A8OUvf/nZZ59davfXgT/96U/33XcfZfr3gx/84Hvf+17mqyRJfvazn/3jH/8IACqVqrW1VaFYlUi53t7en/zkJ3/+85/xOTMVVlCc8Pl8DzzwwKuvvko1d+7c+ctf/nK1ze3T4sShQ4fW13ZoAXHihRde2L9/P3GhgWdXVxf151hTcaKtra25uXlRa37yk598+eWX3W73on4On3322UOHDtHixFpit9tramrC4TAAPPHEE5QIkYXb7VYqldFoFOYrrVhZOjs7F/j8l5aWUgntK0gwGIzH4/Tw+tLw+/2pVEoikax3Ry5JRkdHmUymSqVa745ckrhcLjabLRAI1rsjlx4EQbjdbh6PR4sTSyCRSPj9fqFQSIsTSyAWi4VD7tIiKwftYEEbE0YB8p0NTQI7CbVJZHOSrE8im0hYxXkSG5OZmRmHw2EwGPKcc0cCEcYtAaLPj/cGif44seghUSYi5KNaAaYrxHR8tIaJXMJicNbFHg64LT45EbdNJKwTcas75VnCNoVYoZKtULDkCpZcyZbz0HnyjdcebzI6EHIOhGb6g47B8IwvuejZ9EwEreYV6/glen6pjl+i5hYFfD4AWKk7T3cs2u/29Hvd/W63yeP2LX5YkIjHE1ZbfGKC+j/lzvfPx2AwDAbD7t27t27dun379iiJDU67B6bcQ9OeYYcnvPh0aKmQpyuT6Msl+nKJVirmsuYpQHG73SwWK3254gvERsZdoxOe4THX6ITbv/hyB2kxv6aiuFpdXF0hqVJJWPNVJOA4MTnmGRtymgcd5gHH5JgntUinKR6fXamXVurLKvXSqlqpQPjhVy6BE5ND0+aucUvPxEjHmK3fnkoubuNFZcKqporqJo22uaKiXsUuuOjv6czMTEFBAY+3IT5clxaJRGJoaEgul6/BmNGlSDKZVCqVQIsTVxI/+clPfvCDH1x11VU6na69vb29vT3z1SWLE5/73Od+97vfUY//8pe/3HPPPXOXee211+6++27q8eOPP/7d7353CTtae44fP37DDTdQzlR79+59++235wYLhUIho9E4MTEBAAaD4fTp0yt+e37fffcdOHBg9+7dKpXq7bffzrJXWSlxorOz88477xwfH6eaDz744JNPPonl8nVcPmlx4k9/+tPevXtXe3cLMDo6imFYRUVF1vMkSWo0mtjFg8Gmp6elUunqdi4tThw+fPimm25a1Jq7d+8eGRmx2+2LWuuTn/ykz+ejxYm15JFHHnnyySepx0NDQ1qtdt7Fbr/99jfeeAMAhEKh3W5fvSGt0dHR6urqi7167733vvDCCyu7x0AgEI/HS0roNM6lQFdOLIeRkREmk6lWq9e7I5ckMzMzbDabrpxYAgRBuFwuPp9PixNLIJFI+Hw+kUhEixNLIBaLBQIBsVg8W6NJRjDiHJLqQFOdGNEFZP6jAxiBqglGE4FtIxhXkcgVMfLidDqnp6fr6uqWZggQw12B5KA/OehPDnqTvclFFlUAABuVCJk6IVMnZtcLGUYGeinpQwtf7EWJ2GR0cjxqHY9NTESt03HHYsMqAEDIKFRzVSquUs1VabhqAWNDaOcz8VB/wNHvnzYFHOd8dl8yutgtMFBUwymqE5Q1lqoNhWUVPDG6oqHHzkjYNOPqc830uWa6pqf8i4yaAAAiFktOTVF5FTGzGQ/kVZnBZDKbm5tbWlquvvrq7du38/n8SU+ge2J6wO4asM8MTLriGa4R+YCiiFoi0suK9fISvay4Vl7CZjAAwOVysVisi12uuL3h4bGZIctM39CUacQRW6RAgmGoXCqs0ZRoNaWbasqr1MUoOs9fJ5XCx0dm+rusowNTowPTk2PuxWZfFxXzq/RltZuV+k2KqtoyFpv54caT+Hiv1XRqaKTLMto5Zh1Y3O0/iqFybVlVY4Vhh652h1apk2VWbDidzoKCArpyYgkkEomBgQGFQkFXTsxLIpGgZBtanLhy6O7uFovFlCiF4/iePXtOnjyZfnVp4kSm6rBz587W1tZ5FyNJsrm5ubOzEwAwDDt+/PjOnTuXcgxrSCgUqqurowbrEQTp7u6+mMH7b37zmy9/+cvU4/vvv3/Fx+tOnjxZV1cnEokAwOv1Go3Gqamp9KsrIk4cPnz4nnvuCYVCAIBh2JNPPvnggw8uc5t5khYnXn/99cWOuq8sIyMjGIbN6+rx8Y9/fIFR+jWtnPjZz372yCOPLGrNkpKSxsbGt99+O/9V3n///d27d+/du5cWJ9aMUChUXl5OfQjlcjnlhTcvaesnAHjxxRfvu+++VepS2tZJJpNRckgagUCg1WrnqrXLhLZ1Wg60OLEcaFun5UDbOi0Z2tZpOdC2TsshFov5/X6JRDLXQBIAh2Q/JE6RiTZIdiwiowIAMCWwmhFmM7CagTH/HIvLgHxsnfInHantjff74v04ubgRYQRQAauiiF0rYtcWsWvFbAOKbOhPxKIu9iJ41BaxWcLjlsjYWHh8Mrq4wVYKEVOo4VVQHlDV/MoNolU4Y8E+31Sf197rm+pwTwQWX1fBY7B0QqlRJDOKyutEsqrCYmRFvb8c4VC73X7WPtk5aet3uRKLjWs4H6ydsNoSVlt8bAwP5zYgwjBs8+bNu3btamlpueGGG0QiEU4QFqfXZHN0WuydFvsSgrUZGKouLjIoSmtKhZsrZPVVqpyiDkGQ45Pu5QRrczlMbUWprkqqq5Tqq6Qa5fzX5+FQbKh3sq9jfNg02d9tDfgWZ29FGUBpDTJjk9q4WZ1lAOWZ8g61jVIGUL0nB0K+xRlAZaVqx4gobeu0NGhbp4WhMydofvvb337pS19KN5cgTvj9fr1ePz09TTVff/31u+6662ILP/fcc1/84hepx0ajsaura76L4Q3EQw899PTTT1OPb7zxxrfeeutiS0YikbKysmBwdmbAe++9t2fPntXr2Je+9KXf/va36ebyxYlXX331U5/6VDrH4plnnvnKV76yrC4uhksic4IgiP7+/qziieuuu46Kf18bcWL203L06NFFvb2CwaDL5RKLxVmlUnPxeDxer9ftdre1tb300kupRU5RoVkmf/vb3yhlAgAaGxsXWDLT1+v5559fPXEiDYvFWqyZGA0NDQ0NDc2lCQbMOmDWIbwHAHBImSHRTibbIXEG8Kkcq+JWiFrJ6EEAKk97C8JqBmYzMA10nvbF4DJKFPy9Cv5eACBJPJgc88b73bFuV6wrmBgjgVh4dRKIQMIcSJjHg28CAIowhCythNNQxK4tYtde6mEVBRi3RqCtEcwKXRE8YotMLlar8CX9nb7uTl831bxQq6gSMNZnsLWUIygtE1xbVkM1rWFvu3uizzdF5VXE8NzT9sOpRIfb2uG2Uk0+g10jLE1rFdWFyy1ElvL4N2trbtbWAECKIMxeb6/TcXJ46Oz42GQqReahzGGFhQVGQ4FxNvUwrVXEzZbY2Bg5X2UGjuOUxccvfvGLTKFi7969t20xAEAknhywO002p8nqMNmco47cJmkpnBh1uNNL8tisGlmxQSE1KEoNCml12TyGqCiKaJTFGmXxvj1GOB+sPWB2DI5OD4w68gmriMaSPQOTPQOTVFNSxNNXlVFCRZ1OJhTMVjvx+JzG7VWN22cHINzOoKlrvLdjfMRkH+qbTCZy3I/jODEx6pwYdb57qAsAuDx2ZU1ZtUFW16TetEUjLi/afuuW7bduAQACJyYGJocpoaJ1YKTTQhI5NJ5IMNrXOtDXOvAXAAAQSYWGnTWbd9dpmyt1V1UxMyo2aGhoaJbD8t0LfvnLX6aVCT6fv3BgwN133/2Vr3wlmUwCQF9f3wsvvPDAAw8sswOrh81m+/Wvf51uzutVlaagoOC22277v//7P6r56KOPtrW1rV7fVtYT+/Dhw//2b/+WHoh+9NFH11KZuFRAUdRoNGY9uQaeV5msw33FTTfdRFdOrBkf+9jHDhw4QD1+6KGHnnrqqYst6fF40rkCCIK43e5VEsfSlRMVFRVZdnKrBF05sRzoyonlQFdOLAe6cmLJ0JUTy4GunFgOC1ZOXBzcCok2MtkBiTZIjSxiRYQPzHqEvQuYTcBsAOTSHtVa2cqJBUgREV9iiKqo8Mb7AwnzYrfARHmFrOoidm0xp7GY28TB1n/e7gpe7PmSfkt4zBIeGwuPW8JjvuRiqnzOk6lVaPlV/HXSKjLBScISdPf67JRW0eebiuOLnjRWyORUF5Y0S1RNEtUmkayYs5LHRWkV/zzX/XZv32gwEOVyYLHl1ASRdM7ErbaEzZqw2uJWK5lc6BgxDNPpdJRKcf3116dnoAej8T6rgwrW7pmY8oYWbZZVUshLCxUNFeVFvNwmaW5feGBkmqqr6B2y+wOL3qlMKqzXy3VVZfpKqb5aymLO8z2cSuGWIQdVVDFsslvNM4s1gBKXCNJFFVqjLNMAKhKMmrvH+1oHelsH+s8M+2cWZy5HpWrX7dJrmyq1zZX5p2pfmdCVEwtDV07QdHR0ZM6FXWzlRDgcrqiocLlcVPOOO+7461//uvAqO3fufP/996nHWq12YGBgta/olszDDz/8P//zP9RjBEGmpqYWDhX4/e9/f//996ebR44cuf7661epb88///wXvvCFdHM5lRPt7e0tLS3pgoCbb7750KFDa/xHuSQqJ+ZFLBZ7vV5Y48oJmsuVTJc9yn3vYojFYpFI5PP5AIAkyfb29vVNa6GhoaGhoaG5IsCUwFUi3DsBAIgZSLTNWj8lTbDwBH8yBIlTZOIUAADCBaYBmM2zWgXCWYueX5ow0IJizuZizmaqGcNd3pjJG+/3xvs98XNx3JdzC0ki7I51u2PdI/6XAYCDFVMVFUXsWgl3Mwu9tEVlEVPYKGpoFDVQTW/CNxYZp7QKc9jiT+Y13rpAXUUNX8tjrINyjCFodWFJdWHJHaoGuFCr6HZN9AedSSK3xVAgGTtfV9EKACUcvlEkqxOVG4tkDUUKMXtZx8VA0RqJpGbPdV/fcx0A+CORv585fbijvWfa4WUyGKUlubUKFGWWSZllUriqGQBIgkid1ypiZkti0g7EBV8pOI6bTCaTybR///4soWJ7jWp7zezkTWcgZLI6TTZH55i9a8wey1V5AAAzgfAxk/mYaVb5o7SKJo1ss0ZmVEjZ88kGEhFv15aqXVtmRw1cnhBVJDE46hgYdSQWVFko7A6/3eF/65gJABgYqigvaqiVb9LL9VXSCkUxdfIYDExrkGkNMmqVUDA23Lc4AyjPTPDMscEzxwZhPgOouhZ9XYv+XgAAcNu9lFAx1G4eahtN5srbSCXx4XbzcPvsSROXF9U0V2qbKmuaK+uuruWL6NBsGhqaRUCpU0vmtddeSysTALB9+/acq+zZsyctTgwPD7/zzjs33njjcvqwSsRisXTENwBUVFTkjDvOMtp59tlnV0+cYDJXZrKRx+O5++6708qEQCD4zW9+s2HlIhpanLicsVgsTqcz3VQoFAsvL5VKKXECANra2mhxgoaGhoaGhmZNQUuAsw/h7AMAIEOQ7CHjrZBsh+Q5WDg1gYxCoh0S7WR4PwAGzFpgNiGsLcDaCahwbfp+icLBist5u8t5u6nmhWEVA3geMeYx3DUVOTEVOQGXYFhFTopYoiKWaF6tYjRsCSxVq6gRaGv4Wg1Preap2OiyBlCWRqZW4fF4UgQRYJEdnol290Sfd8occuWTwTATCx2dHjo6PUQ1M7WKRrFSxFpWprqwoODT11736WuvA4BwOPz2sWOHPzhzxmp1MDCWUoEJcod8IBdqFUQ8nrTbZz2grLakwwEZx5glVNTX119zzTXXXnvt1VdfXVpUVGrk7zFWAgBBkGanx2RzmGxOk83RO+FI4rlFnUytAkPRipIig6LUoJQaFKX1qnIGNs9YSbGYf91O3XU7dUD5LNk9A6OOcwOT3f2TE5O5EzJSODFmc4/Z3H97pwcAeFxWlbpEVyWt18s3G5Ri0ayMxBdcYAA1ZfP0dYwPm+xLM4Aq4LM12jJjo9rQqNLXKyWyot1379h99w4ASCVxS89478mBoY7R4XbzuOmiOYhpPFPe039vP/33dgBAMVSpk2mbK2uaqupa9NWNGmS+YHAaGhqaNMsc4/7zn/+c2VzYI33eZf7yl79sTHHizTff9Ps/rArN59AqKirEYrHH46Ga//jHP/x+v1C4KhfYK1W8/sUvfjHTqeWHP/zhwtO1adYXWpy4nBkZucAbIac4UVxcPDg4SD3u7e1drW7R0NDQ0NDQ0OQE4QNrJ8LaCQBARiHZB8kOMtEGibNAhhZcE4dkLyR7ycgfAAAwJbB3IcwmYG0FTL4GHb+kmTesgsqr8MUHlxBWwWeqijmbqbwKAUuDXOIxIQtoFSMhczAVzGcjvqT/A0/bB542AEARtJxTVsFTawoqNDx1BU/NQtdBzmGgaHWhuLqw5J6KZgAIpxID/ulZAyjv1GhwJh/rn3m1imaJqkmiNIjKudjSx4l4PN6dN9985803A0AkEuno6Hj7VOuR7p4hvw+TlXMq1Cgv97R6lM1mazTs82abRCyWnJqitIqY2ZJyfxj5gON4Z2dnZ2cn5XpRWVm5d+/evXv3XnvttcXFxdVlkuoyCRVWkcKJD/qHTVMe84zfZHOane6cmg5OzIZVHGrvB4ACNlMnK0l7QFVJJXPrQzAMzQyriEQTI2MzA2bHuYHJbpPNnUckdTiaoOowXn2zAzLCKupr5Zt0Ms55a6ZyhbhcId57WyMsyQAqEor3dY73dY5TzSwDKG1zpba5knopnard+37/0AfmsD9HxQaBE+Mm27jJduSPx2FOqraw5NKu1qKhoVkNljPG7Xa733333cxndDpdzrUMBkNm89ChQyRJIov1J1x9XnnllcxmPocGALW1ta2trdTjWCx25MiRj33sYyvfuRUSJw4cOJD2tweAmpqaZaZq06w2tDhxOZOV6FBSkiPCjsv9cH5TWhRdPdxu93/8x39kPiMQCO6///65SSw0NDQ0NDQ0VzQIF1hbgLVlNk872Q/JdjLRDon3gchlQ4RbIfIyCS8DpPMPWOIgAAAgAElEQVS0dwKrGRjVl3Sq8xqAIFghq6qQVaUW3AJLCqsgyBSlVZgDByA7rKKRg80TGnxpsaBWMRpMLayiAQAQJDEZtU9G7a3wPmwYrYLHYDVLVM2SWV+jUCo+6HektYqR4Ew+G8nUKjAE0fCLjUXlVLa2USTjYEu8Dy0oKGhpaWlpafmv80JFa2vrW0f+1TVpRxQyTqWGJZcjeQxtoBxOplaRDtZOWG3x8XE89OHfzmw279+/f//+/TBHqGBgaE2ZpE5VTkVkhWLxoSmXyebstNjbzTZ3MLdLUiSe7LTYOy2zMex8DltbLmnUyBsrZPXqMjF/HqesAi6rvlZeXyu/56NNAODyhAbNDiqsorvfFgrnrnZye8OtbaOtbaMAgKKISibWV0mpsIpabRmTgcHqG0BRqdoOh4PL4Xps/uWkaovLi+pa9HU79XSqNg0NTZrlGPicOnUKz6iKQ1FUJpPlXEur1aIoSpz3D3S5XCaTaQOObp04cSKzmXMSM4VOp0uLEwBw/PjxVRInli/nxOPxhx56KPOZhx9+mDZ0WoCOjo4XX3wxbYFFEYnk/qFfQWYvCrVa7R133KFSqUQiUVFR0TLd2TIJBAKhUMjv9585c+aVV16hwutp1oZMjzwAyJmMmilRpv2dVpxweHZ2TzAYpK7yMzl48ODp06dXdo+hUCgWi9FfRksjEAikUovOS6Sh8Hq9TCZTkIfzAM1cPB4Ph8NJJBY0cqGZD4IgPB5PIpFY40uKy4NkMunz+QiCWCnD0yuKeDweCAQAAMOwVd5VGcBHAT4KKGConUl8wIAeJtmFklM51iNmIHaYjB0GAALEKaQ2hTQkkatSSA2s94x+j8fj8/lcLtfGvmJRFIGiCL1Bw4UUJxTEh/ypviA+HMAHkmTu4OissAoWIhZgWupfIcPIRJb+c7lxLvaUIFey5bvZu0AM/lTAlpi0xm22+ORYfCKM557hnqVVYAhawixRsOVKlkLJlivYcuYqBL9Tl/0EsVBZjBoK1MKqm4VVoIZgKm6JeHr8Uz2BqYGQ05PI/VuDk+RIcGYkOPO3iR4AwBBUxRXpBCU6fqmOX1IrkDKRJf7t9Hq9Xq///Oc/H4vFuru7z5w5c+wf/2w3mxFpKUupYCsVLKUSYeQWQrDCwgKjocA4O+81U6uIWcxEZDaeOlOoUKvV11xzjdFo3L17d3V1NbWASsBW1SpvqlUCbHOFIkNTnqFp99C0p29yJhDNLRuEYvFMrULC59aUSWrKxDVlknplKZ8zv+iiqxDqKoRwfQ1BkLZp38i4e3TCPTruHhl3J1M5XKcIgqQMoKiwCjaLUakUV6klVSpJtVqikn2YgamsFiqr62+CegBwTvkHeyYtQ86xIad50JFK5thLlgEUl8dSaop1m+SlyoLaBlWZTNJ4s7HxZuM9cGs0FJvom7R0Twx8MGJqHQq6cyt8ninv8VffP/7q+wDAYGJKg1y3tUpTr9I0qJT63OOJlyjU5Qqfz1/4k3vFQt9B0CyHU6dOZTalUmk+9wUsFkssFmeOwp05c2ajiRNms3lq6oKr5TzNjsrLyzObH3zwwUp2a0V57rnnrFZrullSUvLZz352HftDEQgEskZo1xiv14th2Nw+kCS5b9++zESALNZmPJABALt373777bdXUJCYl69//euf+tSnbrnlllXdC00m0Wg0s5lZGDEvmXd0qydOMBa8PRAKhQsvsAQwDGMwGCu+2SsE6rzRZ29pYBhGvf3WuyOXJAwGgz57S4MgCMZ51rsvlx7U2aPfe0sDx/H1OHuqFKhS8PEYAAouDO9ikGcxvBMjxwAWmn6LgodFtrLIVgAgoQBH61JoA45uTiENgKxDBkD6Y7sRRtjzgQEiDnNrCWylmnHCHUwN+VJ93mRPMDVCQO5x2ATpcafOuFNnqCYXKxcx6gSMmkJGjQCrwRYTVrExL/YkDLGEI26ATVTTnwpY47aJmNUas1liY2E8nzF9YjrhmE442qADzmsVSo5CxVaqOAolW8FEV0CrWOzFXhGDUcThNYlnhzNcifBA0DkQcPQHnabgtDcRXXh1oOK4Ix5LxPOWYxAAGCiq5Ij0haV6gbRBKNPyS7DFT5zk8/m7du3atWvXN7/5zVQq1dvbe/To0WPHjp157ncpgYCtVLA1Gk6lhiktzR2snaVVEETyfLA2lVdBJpMAMD4+/oc//IFavqKiYs+ePdu2bbv66qvl8ln7uDJRYZmocHdtBdW0e4M9VsfglHtwyjVodyfyCKtwh6Lvj9jeH7EBVeIgFurKJTpZsa5coi8vZjHmkYErVSWVqtly+VgiZR53D4+7RsZmhsdctmlfTtepeCLVP+rsH50dpCgq5Go1JdXqYm1Fsb6qtJDPoZ6XKSUypeTajwIApFL4xKhrsGfSPDhtHnRMjrkvtvE00XBiqNc+1DurwYgkvEqdVFcv129SVOqlxl064y7dLV+5AQC80/6B08MDZ0ZGu8bNXWPJeI4hklQSt3RPWLonZrcsFVZtVlc2qKs2q/U7tDzhOmTRrxL0xd7C0JoNzXJob2/PbOafVSCVSjMHf00m00p2ayXo6OjIeibPyonS0tLMpslk2pimValU6sc//nHmM//+7/+ecyx0DVj3u8sFxqYKCwsXECfW5saEAQBPPPHEaisTFDfffPPtt9+eVSpCs3pkneqcH8jMupbVq3FJv9kkEsmPfvSjzJcwDLv11ltFItHK7hFF0VgstuKbvXJIpVL02VsahYWFTCaTPntLI5FIcDgcyieBZlEQBJFMJgUCQc6COZq5JBIJkiRFItFKpbFdUVAXHiKRaP0uvkUA1QAfBwAgXJDsIRPtkGyHRDfAQkNaCEQYxAcMgpoFxgCmHlg7EVYzMLcAukbfQvF4PBwOi0SiS0WcmINIClUA++DCsApvvN8bNxFk7gvLKD4Vxaem4u/A+bCKInathLO5mNOQM6zikrjYE4FIDap0k/KAGgoODwWHxyPWOJFbzklrFWehHQAwBCvjSNMeUJV8DQNZykePGsVb8tkTgai6VJ6egOaMBft8U31ee69vqstj9eWhVaSIWa3i8PQAABQwWHqhlDKAqhPJKgXF6OKHP/bs2bNnzx4ASKVS3d3dR44cOXLkSOuhv8cJgiWXsZQKlkLJViry0iouDNYmCSKVqVWMT5A4PjY29vvf//73v/89nLd+2rVr1549e1SqD//iIpHIoJkd4UrhxNiM12RzUHUSFmfujGuCIMdcvjGX75/nRgGAgaHq4qJGjaxRIzMopJVS8bxnqay0eOdVs37ioXC8f3S6p39y0OzoHbL7A7n/NN5A9IPuiQ/Oj/VLingNtYpNerm+UqqvlrKYs++34mJJ07bZvXhdocFe24jJPmyaNHVNBP259+JzhztOmTtOmeG8AVRdo9rQqNIa5BU6lUav3vfve2FJqdo+h7/9nz3t/+yByy5VO5FI8Pn8wsLCDf69t17QlRM0yyHLID3P4XsAkEgu8KscHR1dsT6tEFmHBnkfXdahBQKBmZmZLMViI3D48GGb7YJfhzvvvJN60N/ff/jw4ePHj1ssFpfLJRQKFQrFvn377rnnnvSsgtWDx+Ot79d1YWEhhmHz9uHo0aOHDx/O0nQffvhhyoZhjcQJLpe7devWNdgTxbXXXnv48OE1290VTtawVE6PhUxBYg2GtAQCwQMPPLDae6GhoaGhoaG5EkGLgX0dwr4OAICMQLKLTLQBpVWQC48Cp2bztMMAgAFDcz6mYhug4rXo+aXPnLCKqC8xmBFWYVm4qAUywiqoYG0GWiBkaYvYtVReBY95OQSbZ+ZVECQxFZu2hMcs4fGx8NhYZCJB5B5Zw0n8Qg+oldEqlkkpR1BaJri2rIZqprWKDo+1022N4rllqkgq0eG2drhnPRn4DHaNsDStVVQVFiOLSYthMBjNzc3Nzc2PPfZYWqg4efLk8UN/dwUCKIfDkpWzZusqKrHC3N5iSJZWkUgkJicpD6i41ZZ0OLIyKnbt2tXS0nLjjTeq1eoPe4WhmcHa4Xhi0D5jsjlNVofJ5hx15C4+SOGzwdqvnT4HAHwOS1teTAVrN1fK5WLh3FX4PPZV9eqr6me7QYVV9AxMUnJFPJHbt8HtDf/r1OC/Ts3GSCjLixpq5Zv0cn2VVK2QUOpIUTF/+x799j16apUpm6evY3zYZB8x2Qd7bfkbQP3jtbMAUMBna7Rlxka1oVFV26CcN1V7uMPce3IglCsYnE7Vplkc+CQQ3vXuxJUHQw3L8HhcEQiCmJiYyHwmZ3prGg6Hk9lcPT+SJTM2NpbZRBCkuLg4nxXnznX2+XwbUJx44YUXMpvl5eXbtm178803f/7zn7/33nuZL9nt9v7+/nfeeec73/nOt771rccee2xtZu1vQORy+Re+8IWsJ7/1rW+tpUc0Y43nZ+X/qaZZPllO97FYbOF5oPH4h/fq9HxbGhoaGhoamssEpABYOxHWTgAASEFyABKnyEQbJDuAWDgpAYfUCKRGyMjLAACYEljNCLMZ2C2A5TuNjoaBcos5m4s5m6lmkgh5432uaJc33u+J98VxT84tpIgIFVZBNTlYMSVUFLFrJZwGFjbPOOylBYqgcq5MzpW1FO+EVdAqagRadYESXWquw3LI1CpwkrQEXb0+O5WtbfJNxfDcA+KhVDxTqxAw2drCWa2iWaJS8ooWXj2TiwkVJ06cmDl2AgAwYSFboWQpFSylgl2hxni8nNtEWKzMYG0iFktOTaW1CrPZbDab//jHP8LFhQoA4LFZTRp5k2ZWdZsJhPusDpPNYbI5e8anvOHcxQehWCIzrKKkkEcJFQaFdHOFTMTjzF2lWMwvFvN3bakCShKwewZGHecGJrv7Jycmc1dy4DhBhVX87Z0eAOBxWVXqEl2VtF4v32xQikWz95LlCnG5Qrz3tkYASKVwy5CDStUeNtknRi9qIpEmEor3dY73dY5TTXGJIJ2qrTXKqVRtACBwYmJgkk7VplkZ8EnS901IZrvf0KwJGBR8Gin8T4DVTi+7KG63O6vyJn9ToKzR7Q0oTmQFTnC53DytmeYO3G/Ao4vFYv/85z8zn9m0adOtt976j3/8A0XRrVu31tbW4jg+ODjY1tZGnv+Zi0aj3//+948ePXrw4EHatmG9YGRdGK02AoGgrKxsLfd4JSMUXnCrFovFFv6k+f0f3p/LZJdtehgNDQ0NDQ3NFQwDmHXArEN4DwDgkDJDop1MnILEGSByjZLjVohayehBAAC0BFhbEFYzMJuBaYTFTOW+wmGi/FLutlLuNqoZTc1QFRWuWLc71o2TuQ1gY7hrKnJiKnKCanKwYiHDyEdq0dhVRWzDosIqNiZZWgVOEtPL1irYKFtdoKzgVWh4ag2vQsYtX1T9wYqAIUh1YUl1YckdqgagkieC7rRW0eu1J4jcMQzB5AVaRQmHbxTJ6kTlxiJZfZFcws4tJ1BkChXJZPLs2bPHjh07duxYa2urr69vtsPntQp2ZQWnogLJw+4P5XAytYrMYO3x8XHzH/9ICRXV1dXXXHPNnj17rrnmmrlu5iWFvD3Gyj3G2RIBZyBksjo7x+ydlkmTzRlP5lZ0ZgLhYybzMZM5vcFGjbxRIzMoSo0KKZuZXVKDYahGWaxRFu/bYwSASDQxMjYzYHYMjk53909OOXPH3YejiZ6ByZ6ByVff7AAASRFPX1Wmq5Tqq6QNtQo+jw0ADAamNci0htnbTK8rdOZkr33MNz4yk6cBlGcmeObY4Jljs6UbmQZQaoOiwqi84b5rACASjJq7x4fbzb2nBrqP9vlnArm3fGGqtqZeXbdLr22q1DZXVhjztZunuSwgSO+XIDWw3t24YsEh8gcSFSL8B9erB3Nni+c/czdrNvAGHL7POrr8dZe5E50zxw83CK2trVnJu1S+8oMPPvjII49kGi329fV94xvfePfdd9PPvPfeezfddNPRo0dpa991gfH++++v5f5uueUWOhN7zdBqtZnNYDC4cNWV1/th3eIaq1Y0NDQ0NDQ0NGsOBgwtMLRIwScAAHArJNrIZAck2iA1kmNVYgZih8nYYQAAhA/MeoS9C5hNwGwAhJ5yuwi4jBIuo6SctxsASCCCCctiwypiuCuGH3PAsdHJ3yAIJmCq8w+ruCTAFtQqLJHxJJH7LMWJ+FBoZCg0+8bmYGwVd1arEKeKpKx1cGbAEDRTq0gRxFhoVqvocE8M+KfxnPHNADOx0NHpoaPTQ1QzU6vYLFYUsfIaUWIymTt37ty5c+e3v/1tHMe7urpOnjzZ2tr6zjvv+Pr6IpRWgaLM0lI2VVShVLAUSmTOEP88x5gZrJ2hVdittt+99NLzzz8PAOXl5S0tLVRRRWNj41xXg9JCfqmRT2kVOEFYnF6qqMJkc/ROOJJ5BGvPBMJvdw+93T0EABiKVpQUGRSlBqW0SSPTy0vnhlUUcFn1tfL62tlKDsoAamDUQdlABUO5FUS3N9zaNtraNgpUlLdMrK+S6qrK9JXSWm0Zk4EBQFExv3GHpmUvj8/nw0obQNW16Ota9Hd+42YAcNu9fa0Dva0DQ+3m4fbRRCzH5yWVxIfbzcPts9KOuLyoprlS21RZ01xZd3UtX5SvAEZzSZLspZWJ9Sf6GmwkcSL/EfxU6gLxeAMO32cdXf66S9ahwYY8uhMnTmQ9c+uttz711FNVVVVZzxuNxsOHD3/6059+9dVX00++//77jz322FNPPbXqHaWZw3pmhdOsNkajMbM5OTk59zOZicfz4YRBvV6/Wt06j9fr/da3vpX5DIZhn/nMZ2pra1d71zQ0NDQ0NDQ02WBK4CoR7p0AAMQMJNpmrZ+SJgBioRXJECROkYlTAAAIF5gGYDbPahXIPG4qNBcDATQzrIIgU/7EsCvWlX9YBUniFwurKGLXFrIWuhK+VFhYqzCHx1Jk7pn1MfwCrYKNstXT61xXwUAv0CoiqUS/f5oqqujzTplDrpxGQ7CgVtEsURUyc38eMQyjKiq+8Y1vZAoVR44c8U5PJ6en4WwbACAYxigpobQKjkbDkssgD6vkLK0i5XbHzGNhm/VQe9trBw+SyaRAINi2bRslVLS0tGTZlwMAhl4QVhFNJPsnnemwCrPTnfMk4cRsWMWh9n4AKGAzdbKStAdUdZlk7iqZBlAEQY5PuimhYnDU0T86ncylIhAESRlAvXXMBAAcNrNGU6qrkuoqpSUihq5qdqw/0wAqFk2M9k8Nm+zLMYAyNqqNjWqtQaY1ynffvWP33TtgSananinv6b+3n/57O1x2qdo080CG1rsHNABEcB13PjdNPf8R/MwYV1irJOFFkdXD/HWXrBUBIE8/qLVkYOACZbG0tPSNN9642MJMJvN3v/tdZ2fnyMiHE5Kefvrpz3/+83V1davYy41HV1fXK6+8khWInVWDstrQ4sTlTElJiVwun5ycpJrpB/PidDoz33zbt29fpV6lpVq/3//EE09kvfrKK6+seDVPKBSKxWIb8IfhkiAQCMwVyWnyxOv1MpnMrPQXmjzxeDwcDmfu1SFNTgiC8Hg8iURiLTOsLhuSyaTP5yMIgsmkJ78vmng8HggEAADD1s0peOVAAK4CuAoAEEaYQZqY5FkG2c2Eflh4Lj8ZhUQ7JNrJ8H4ALIVok7AJRzcnYAuJLOSu6fF4fD6fy+Wir1gupKQIbihCb9BwIcUJh4kxf6rXn+oL4oMJMrdbQlZYBQsRCzAt9a+QYWAu+Be5hGADSw81el4N8AAn8Zmkyxq3WeOTtrhtIm7DIffM+uy6CpRTzpQq2AolW65kK6Ss0rXXKgBADQVqYdXNwipQQwRPjoRdg6GZwZBzMDgzFvHkVirmaBUyTmG9sFzHL9XxS3T8Ejaa+15YrVar1epPf/rTOI4PDw9/8MEHx44dO3HihNfrTWZoFSibzZLLWEoFS6FkKxVMaSnkMWrDkEj4EslssDZBpJwzcavtA5v15B//8F///d8MFDUYDFu3bt2+ffvVV19dVDR/uoZKwFbVKm+qVQJAOJ4wz/h6rc5ztpl+u8sXyV3iEIknM8Mq+ByWrlxSJy+pKZMY5SXCgnnSQQVcuKpOelWdFABSODFu85pGnaPjrpFxt23al1MdicWTlAEU1SzgMmsqSvRVpdVqib6yVMCf3aNUxZOqtC03aQHA5w6bBx1jQ07LkGO4byoUyH1cnpngibd7T7zdCwAYhpYpi3R1Mm1duaZGKq8QX/3prVd/eisA+JwBc+eYuXvC0jMxeGY07M9x4ZSVqs3lc5QGuX57te6qSu2WSoGEn7NjKwV1ucLn87OGk2goln4HwdwESAGQ9CX0usJarcGofODNSRvK/8IsawR/Aya5Zh1d/lfsy9Fs1ozBwcHMplwuX3h5Ho/3k5/85K677ko/Q5LkT3/60xdffHHF+xYIBFwu14pvNn+8Xi+GYfP24aabbnI4HBdbcW3GA2lxYnUhCOK11147cODAs88+KxaLl7+1o0ePHj161Gq1cjgcjUaza9euXbt2LbDKzTff/L//+7/U4+Hh4QWWHBsbSz+WSCRZVRcryMLf7Hw+n8FY4bclhmEMBmPFN3uFQJ03+uwtDQzDqLffenfkkoTBYNBnb2kQBME4z3r35dKDOnv0e29p4Dh+mZ49IQk7ErAjAYBADCMGMKKbQXyAEd0IxBdcEWeQAwwYAPxVAAxHVDjWiCP1KbSZQLIz2NIfW1qcuBgMEHKgQcJuoJpxwh1MDQVSQ4HUkDd5Dodwzi0kSI87dcadOkM1WYi4iLVJyKgrZNQUMmpQuBxchhnAUDDligL5DgCAWa1iImadiNmsMetE3JZXXQURs8THLfHZSegclCNjlSk5ShVHoeIo10WrKGQwmtjKJvGs+38olRgNuwaCzoGgYyDgtERyx6oDgD0WsMcCbzkGAQBDUBVXpC8s1QukekGpnl/Kxhb64mIwGHV1dXV1dZ/73OcooeL06dPHjh07evSoz+cj4vGY2RIzW6iFUQ6HJSuntApOpYYhyX0biKAos0zKLJPOahU4nrRPWS2W0a7O3x86RLhc1VVVO3bs2LZt286dOzONszMRMhiNvILGitlQB1coMmh3D065Bqfc56zOYGzh7ysAgFAs0W6ZarfMJqZK+FxdebGuXFKvlG5SStnM7GEsBgN0VVJdlZRqhqOJIcuMadgxMu4aNM/4g7nnXUaiya5+e1f/rDpSJOTW1ZTXVku16uLqimIWEwOAYqmwWCrcuruGWsZh9w32TJoHHZZBx+jAdD4GUJNj7skx97/+fg4ACnhsZWWxvl5Rs0mmNZZv/WjT1o82AQCBE5PD0+aucXP3+MCZEUvPRM5U7WgoNvTB6NAHo1RTJBXW7tDqt1ZXblZXNapXNVWbvthbmKVrNogAEf6Q9D0Keci6NKsCJkMKv7OO+587szAWyy2IUiw5SXvNyDq6/A9tbuXEBhQnnM4LyuzmRjrN5Y477tDr9ZklF6+99tr+/fvnBoAvk3W/P1pgbGquIJfJ2tyY0L9kqwVBEK+//vr3v//9/v5+APj5z3++zA3+5S9/+e53v5tZcERRX1//+OOP33bbbfOuddttt6XFifb29gW2T/WT4q677lq9OY/p8uSioqLHHnss8yU+n/+xj31MJBKt7B5RFI3FYiu+2SuHVCpFn72lUVhYyGQy6bO3NBKJBIfDKSy8TKa1riUEQSSTSYFAsAEvGTc+iUSCJEmRSESHoS0B6g5HJBJd7mMlZQB7AAAAh2Q/JNvJRDsk3gdi4Yn8OEZasJQF4ABAOk97J7CagVENgMTj8XA4LBKJaHEib0RSqALYBwD+gM8bGUZ4jnReBUHmnjabID2O+DFH/BgApMMqROzaYs5mEVt3GYRVUEhAogcd9ThFpqyRyaHgsCUyNhYet0enyFxOWQAQI2Lm2Jg5NkY1CzCugitPe0DJubLV6/zFEAEoikuvgVl/JGcs2Oeb6vPae31T57yT7nhupQonCUvEY4l4Dk8PAAADRSt4EmNRuVEkM4rK64vkTHShuyGJRLJ9+/aHHnrI6XQODQ21tbW99957J0+epGxyiVgsU6tIB2uzlAq2WoXxc8+vRzCMWp5qEvF4wG5/w2p77YXn4z/4gYLLvfrqqynrJ71efzFvDZFIVK2QfZTaAkGanZ50WEWf1ZFI5R57dYeip4atp4atAICiiKZETIVVGBSlm1RlzDk3jCIRyMtLr905O8uNCqvoGZjs6Z8cNDviidzCmNcfPXHWfOKsGQAwDFWWF+mrpPW1inq9TK2QUPEYIpFIZ6igll+KAVQ4PnhucvDcbOlGpgGUrrFm0/bZN1VmqnbPMZMvj1Rwn8P//sG29w+2weqnaicSCT6fX1hYSN9ozMuyaq85tyDFRogdJsnc3yQ0KwuCyYF7GyBrV4Q0l+WIE8HgBYZUxcXFK9OnlWPJ4gRVG52JRDKPDeD6EgpdYMsmk+W+PkEQ5DOf+cx3v/vd9DORSOTs2bMtLS0r2zcej7e+X9eFhYUYhs3bh2PHjh04cCDLx+kHP/gB9QwtTlyqJJPJl1566Yc//OHQ0NCKbDAcDt9///1UTkthYeHXvva1Xbt2xWKxtra2Z555pqen5/bbb//qV7/6s5/9bK4t6Uc+8pG0s1NbWxtJkhe7eD179mz68Wc+85kV6fnCCIXCLHGChoaGhoaGhubSAQNmHTDrkILPAgDgVoi3ksl2SJwFfCEvTYAL87TREmDW8UBfwKwAqIPLZUx8LUEALUDVpYKr6LCKhWEgDA1PreGpqWYMj09EJvpm+ifi1qnUdJ5aRQSPZnpAFWAFCq5sfbWKUo6gtExwbdnszPpMraLbY/Mmcju0pAhiJDgzEpz520QPADBQVFcobZKojKLyOpGsUlA8NzWaAkXR+vr6lpaWhx56CADMZvORI0eOHDny3nvvpc0TcH8g4j8frH2hVsHRaDzBqHgAACAASURBVNCC3FNrUTabrdGwNZrZDUaj/7Ra3zjweuLpp1le7xaDgYqpuPrqqy822RNFkcywihROjM14u8bsHeZJk81pcXpyRnoQBJkZVsHA0JrykkaNjAqrqJJK5p6hzLAKHCcm7J50qvaw2ZlzjzhOZIZVFHBZ1eoSKqxis0FRXioEAA6XZWxSG5tm39KemeBQ3+SIyT5smuzrnAgFcpduZBlAySuK6xrVhkaV1iA37tLRqdpXKAwN8L+y4Qz1adaEgoKCwsLCzLH4/EfwvV5vZlOtVq9kz1aCsrILKneXfGiwIY8u63DynOZ46623ZooTANDV1bXi4sRGRqFQPPhgdgT9E088sZaxE7Q4sZIkEomXX3758ccfn1vfsGQ8Hs8NN9zQ0dEBAFqt9p133kl/Bdx1110PPvjg3r17+/r6nnnmGavV+vrrr2fNVWSxWN/85jcfeeQRALDb7R0dHc3NzfPu6Pjx49SD7du37969e6X6T0NDQ0NDQ0NzRYApoeATCHwCAIBwQqKdTJyCRBukRnOMjBMzEH+PB+9pJQAz/0UyG4DVjLC2AHMLIHQFz1JAEQYlKlDNJBH2J4a98X53rMsV7YjhuS2AssIqmKigiG0o5jQUsWvFnE1sbH73/0sODsauEWiLkxIAEIvFMTw2EbFawuOLqquI4JFMrYLHKKgoqKgRVGt4FRpehYgpXN1jmI8FtIoO90QgmXssJkUQfb6pPt+suxGPwdIJpVRRRZ1IVlVYfDFjq8rKygceeOCBBx6AiwgVkKVVoCiztJQK1mYrFSyFEmHmvkNHuVxuTQ23ZvYABwOBHqvt6Z//DHnsMb1QuHvrVkqruFhMBQAwsNlg7Y9v3wQAoVhiaGqGCtbusNgnPbmrBFI4YbI5TLZZl2o+h6UtLzYopE0aWVOlvFiQPfiOYahGWaxRFu/bYwSASDQxMjZztntkwu7vG3ZM5VGXEIkmMsMqJEU8fVWZrlKqr5LW6+UCPgcAxCWC7Xv02/foAYAgCKvZRVVUjJjsg722fAygJkadE6POf7x2FgB4fE6FVmpsVBsaVYYGFZ2qTUNzhWAwGE6fPp1uUiVx+ZC1ZEVFxQr2akUwGAyZTb/fn0wm80nayxInxGLxBkzW5HK5mVVTC7sVpdm0aZNIJPL5PiyAXt9wiCsTWpxYGaLR6P79+3/6059OTk6uYM1LPB6/8847KWWCx+MdOnQoS5wsKys7ePDg5s2bw+HwG2+88YUvfOF3v/tdVm3EAw888NRTT9lsNgA4cODAvOJER0fHuXPnqMf//d//vVL9p6GhoaGhoaG5EkFLgbMP4ewDACBmIHGWTLRB4iykhgAWNMImw5A4BYlTJAAgXGA2AOsqhLUFmA2A0DNtlwgT5RVzNhdzNmuFnwSASGrKE+vzxHu9cZM33p8ick+rTxJBZ/SMM0qFVSB8plLMNhZxjGK2UcTWYcgKGxOvFxyMUyPQ1gi0VDOCR8bC45bwmCU8bgmPOeMz+WwknIr0BUx9ARPVLGIVaaiiigJ1Jb9SwFgHs45MrQInSUvI1eu1n/Pae332Qf90DM/tNRROJTrc1g63lWoKWdw6kayuSLapSCYnuPKL2ADOFSpOnjz53nvvUfdlsxBEZrA2gmEsuYylUrFVSpZSyZKWQh63llhhYYHRUGA0AMAUSf7J6Xz+Ly+lnvxZGYJeXaNr2bnzmmuuWXiKK5/DatLImzSz2aEOf6h3YvrcxHTvxHSfzRnKL6yCCtb+vxOdAFBeJNikLKtTldWpyuqUUi4re+SrgMuqr5VLxQwej8fn853uYP/wtGlkqm9oatDsiERze/K4veHWttHWtlGgLKeUktrqcqO23FBTXqkqRhEERVF1dam6unTvbY0AEI0kRkyTAz22gXPWwXM2lyPbomQu4VCsr3O8r3McABAEkasluk0K/Salrl5RtblC21xJLeaZ8vafGe4/M9x/emi43RwN5VC/slK1+SKefptWv626dqvWsFNHF1XQ0Kw7RqMxU5y44Ev74qRSqSxbp9ra2hXu2bLJCpclCGJ6ejqfbIYs3SVL5NggCIVCv/9DqTtPs3oEQQwGw6lTp9LPZG6EZm2gxYmVIRQKHT9+/Ne//vXu3bsZDMbDDz+cTnpYDo8++mi6oOF73/ueTqebu0x1dfU3v/nNxx9/HABefPHFLVu2fO1rX8tcgM/nP//88zfddBNJks8999x3vvOduS7k+/fvpx7cd999119//fJ7ng9+v/+JJ57IfAbDsLvvvnsDVofR0NDQ0NDQ0CwRtAQ4NyOcmwEAyAgku8hEGyTaIdkO5IJDfmQUEqchcXp27jqmBFYzwqwDhhGY9XRRxZIpYJQX8MsV/L0AQAIRTFjSSRX5hVWQoeREKDkxEToMAAigAlYFFVZRxK4tYusxJNtn9RKlACswFNYaCmfHVqJ41BqxLbauwpvwehPeDm8n1RQxhRpeRQVPrRNotfxqFrrWb2MMQaoFJdWCkjtUDUAlTwTdvT57n2+qz2fv803F89Aq/Iloq3O01Tkbg1zM5tUVyZslqiaJsk4kmzdYOy1UkCRpMpmOHTt2/PjxkydPUu67aUgcj09Y4xNWanwLYbHYCjkVrM1WKpjSUriIu9SHIAhTKmVKpXDVlhjA2wTxZk9X7G9/LYpEt8kV1+3Y0dLSMu9NZSZSIV+6qfr6TdVU0xkIdVnsHRY7FVkRT+Y+RVPe4JQ3+HbPMJwPq2jUyBo1squqlOVF80y2LZUISiWCa7bPCmN2h7+73zZodgyOOvpHp5O5Kh4Ighwdd42Ou/7+7jkA4HKYdTWyTXp5fa28oVbOYjIAgFvA2rRFs2nLrDXWYg2gSJK0jblsY653D3UBAIfLqtKXGxvVjTuqjI3qXXds3XXHVgAgcGJiYHK43TzcYe5tHRjptORM1Q75wm3/7Gr7ZxfVLK+UNu3d1HR9fcMeo7CEjl6joVkH6uvrM5tZX9QXw2q1ZiWx79ixYyW7tRIYDAYGg5FKffg1brPZ8hEnxsfHM5sb8NAAQKPRTExMpJszM3lNqgCAqqqqTHHiSou9HB4ePnjwYNa7N3/LrxUBIXNZPdIsgXA4XFJSkunPZbPZ5HL5ojbS2tq6e/du6v0hEokmJiYuVjblcrnkcjlVvsTlcs+dO1dVlW2M+/Wvf/1Xv/oVAHz729/+0Y9+lPnSiRMnrrvuulQq1dTUdPz48TxLn5ZMf3//AiqrwWA4ceLEyu4xGAzG4/ENGEZ0SRAIBFKplFgsXu+OXJKMjo4yGAxab1saLpeLzWZvwHLRjQ9BEG63m8/nc7m5baxpskgmkz6fTyQS5VPgTJNFPB4PBAJFRUWXeyD2yoBAnEH2MYgujOhkkOcQWISvKwlsHNGlUAOOGFOIgUAUq9fPS4KVutgjyFSUsPlSff5UbxAfjuBWcuFKlzkgCFaAKgSYVsCoEWDaQkYNChtdRqKsDBab0xglYlPxKWt8ciJutcUnHQlnPlpFJhiCljBLFGy5iq2s5GoUbNnFvJLWDJwkJiK+gZBzIOgcDDn7g84kkTs1OhMGilYVSOqFMr2gtEEok3FyDHBMT0+fOXPm9OnTZ86cOXfuXNbQQBYoh8OSlX+oVZRJF9U3AMADgZjZwnA6a/iC3fra7du2NTY2XiymYv4tEMSEOzA07R6ccp+zOkccucMqspDwuZuU0k3K0nplqQgleLyChW8/UzgxbvP2jThGxmZGxt22ad+idohhaIWiyFAtNVRLG2plAt48B0sQhH3caxlymAcdY0PO0YHpnAZQWbtQVRVv2lKhrSvXNyh4/A93EQ3Fxnttlu6JgQ9GTK1DAVdwge3MRVpRsukavW5rtWFXTbHigtuxZDI5ODioUCjoQOx5SSQS5eXlAMBiseLx3KU/NJcfExMTmbfhn//855977rk81x0cHNTr9emmUCj0er0XS29N869//Stzpm9paanD4VhMl9eIPXv2HDt2LN186aWXPvGJT+Rcq6amZnh4ON08cODAnXfeuRrd++tf/3rXXXelm7/61a+++tWv5rnuV77ylV//+tfp5ic/+ck///nP+az4ta997Zlnnkk3f/GLX3z961/Pc6cLc8stt7z55psA8NJLL33kIx9ZkW0ujdHRUQzD5rUa27x5s9VqvdiKMzMzazCaSt86rgo8Hq+ysrLvfOjZ0vjGN76Rvjy99957FxihKy4u/uhHP/rXv/4VAKLR6P/7f//v9ddfz1rmqaeecjgcr7766o9//GOBQPDoo48ymUyCIPbv3//YY4+lUqldu3YdPHhwtZUJAFhYD6PVMhoaGhoaGporARLYSaQpiTUBBgB4wNOVDJ9WltlY0ImQ2amDWSAQZ5A9DLzn/Kb4OFqVQhpSSD2O1hFwmSQirD0owuBhFTysQs7+KACkyEgINwfx4WBqyJ/qjRLTObdAkngYHw/j49OJIzCPVqFD4TIRPrkop5KrqeTOzkMP4aGJuM0at03EbNa4zZ/KbYmAk8R0wjGdcLQFOwCAg3KUbEUFR6XiKNVspZCxDmEVGIJqeGINT7xPqgeAOJEaDM5QWkV/0GGN+nIOxKcIYjA0Mxiana0p5QjqC8uNhWXGwjIdr4Qxx6OprKzs9ttvv/322wEgGAx2dHRQQsXp06fnjqgSsVjMbImZLbO9FRayVSqWUsFWqdgqJTqnOH6eAyws5G1uAIBxgBej0f1vHCR+/YwCxXZVVe/YsmXHjh1CYY7TjqGopkSkKRHduKkKAKKJ1LDDPTTtGbS7hqY94+7cyoE7FD3aP3a0fwwACliMmjLxZnV5vVK6SVXKms+Cg4GhVWpJlVpCNcPRxLjNaxpx9I86B81OfzDH1E4cJ0bH3aPj7kPvmlAUkUuFRq20tlq6SVdWIp41GUNRVKGRKDSSq280AEA8lhwbclqGnObB6eHeKYfdt+AeAMcJy5DTMuSkNlWuKtJvktdtURk2KwUirn57tX579b7/uA4AvNP+wTMjA2dGzN0T5q6xZDxHDYpjbMYxNnPkxRMAIK0oqdlaqd+mbbjWUKKSLLwiDQ3NctDpdDqdbnBwkGr6/X6LxVJZWbnwWhaLJbN5yy23rFb/lsdtt92WKU50dXXlFCdwHM+sSOByuXv37l2t/i2DnTt3ZooTmWrKwvD5F3hO1tXVrWS3NjwLT4xYG2hxYrWQyWTLESfeeuut9vb2dPO2225bePm0OAEABw4c6O7ubmhoyFyAwWC8/PLLjY2Njz/++H/+538++eST1Lety+UqLCz80Y9+9Mgjj7Au4pe6sqRNpYRC4Ze+9KXMlwQCwac+9akVn6TPYDBisRg9939poChKV04sGZfLxWQy6bO3NFKpFIfDudJqKlcEgiBwHBcIBHNN/GhyQpUhFhUVrc1v4mVGLBZDUVQsFtOVE0sgmaz3hUpYJfUoigJuhUQbmeyAeCvgF53KlAaBEIPoZsBsejOgJcCsA2YdwtoCzEZALv8iqlW72BOXggJgN9WIpmZ8592f3LHuBJHbs36uViFgqtMeUGK2Ad0w9lzLPHtiEKtAlW6GU5HJ6KQlPD4UGh4KDvuSubWKGBEbjo4MR2eDtdMGUBpehZZfzWesjxF/eXHpHph16I6kEv3+6VkDKO/UaHAm56QqRyz4Tiz4jnMIABgoqiuUNklURlH5VcVqeUH2hHexWKxWq6m5qJFIpKOjo7W19eTJk62trVlJpBS4PxA51xs510s1MWEhW6FkKRUspYKj0aAFOT74KJfLrdVDrd4L8HeC+Ou57vgbf5PE481K1Y1btlx77bX5GH0AgLysdM/5+85gNN5ndXRYJk02Z8/ElDeUoyAskkh1TTi7JpwAwMDQmvKSRo2sSSPbWq0S8ea3RxMDKOVlLdtm3cZcntCg2dEzMNnTPzlkccbiyQV2RxCkdcpnnfK9dXwQACRFvIZaxZZ6db1eVqEozpwVXS6T7tgz+9jtDA6b8jWAIghicsw9OeZ+91APAJQrxI3bqwyNqvotmlKZSCwWVxk0N99/Ayw+VZsSKk68cgYAxOVFhp01Ur1EuE+cc8D0yiQzFJeGZgncdtttP/3pT9PNjo6OnJ+1rq6uzOa99967Kj1bNrfffvsjjzySbmYOPF6M/v7+TL183759G9Pe4IYbbsg0rerq6goGg/l0NRL5MH6MxWJt27ZtxfsmEAjWd1zI5XJhGDZvH959992XXnopy8fp6aefpp7JM7pjmdC2TqvFnXfeefDgwXRzsbZON9xww5EjR6jHKIr6/f4sKS8Ls9mcaeX0uc997vnnn593SafT+dJLL505c2ZmZqa8vLylpeXee+/NOUdmBRkbG9NoNABQUVGRpS2vEoFAIBaLlZaWrsG+Lj98Pl8qlaJNsZbG0NAQk8mk3vA0i8XpdNLixNIgCGJmZoYWJ5ZGIpHwer20OLE0YrGY3++XSCS0OLEEHA7H1NRUfX09mjW3GrdDspNM9kCyB5J9QC7C/QkAADBg6oDZgDAbgFkPjEqAtbjHWGPW/mKPBCKYGKMitb3xfl98ECcXbc6LISwhu6aIXVvENhSxawuZlQiyDn8dKuVyVe+ZvQmfJTxmDltGQmZL2BLBF/c2RgCRccur+JVVPE0Vv1LBVWBI7pjo1cafiPZ4J9+3DfWFnKbgdDC5OOuY8gJhk1jZIFY0iBVGYfncooo0/5+9Mw9v467z/3dGGh2WfMr3ocu2ZFu+ZCd2EjtNmqY3bFnYQvOUh2OBLQsUWii07P54KLs8bMtVyrULy7E8paXHwlKOtrSENofjOLYlHzp9SJZsy5YtybJ1XzO/PyZVZcW2ZjQ+k+/ryR8aWTP62tHxne9rPp93IpEwmUykqDh//nxa4++NQVGstJQnlXDlMq5UgtF8ayRWV8MWq9Dnay8tu03dcbynp6mpKWNLk2uxu7yjtgWt1aG1zk873dQXHlAEkZcVdcqr26UVHfKqykJKs8F4Ap+eWR41zY8a5sZMcx5v5qz7JKSoaGusamusrpWUoOjGvyyO47appfHhGd2wbXzYuuLyU3+KKomouUPa3CltOSQtr0qvb/MsrOj6zOMXDGPnDFadPWNSRZKSGlHrCVXbTU0tNzVVKyqoj+f6JhqNkv3KYFunGxYmbZ0AANPT00qlMpG42uHtkUceSXUVG9Ld3X3lyhXydk1NjcVi2bfz4TvuuOMvf/kLebuwsHB5eXnrBehf/OIXH/vYx5KbL7/8csbrp7OGSVsnsP5XAwC89tprt99+e8a9PvjBDz777LPk7TvvvPOVV16h/oxbk2zr9Kc//enuu+/ersNmwcTEBIvFujYCYDOKiorICyM8Hk9h4Y7XZEM5sVN84AMfePHFF5ObtOSEw+GoqalJVtYolUqTyZRxr4qKisXFq8XmeXl5TqeTx9uPcXxQThwsoJxgApQTTIByImugnGAClBNMgHKCCZvKiXUkQNwCYjoipgNxPYiNAWKry4Q3AMkBWCNgqxCsGWDNgF3PbNT7hT2f7KUFa2fnKlCELcTEKXUVKhTZjR5QuyAn0liJeif9U2bf5Exgxhq0xXB6L2MWwhLnVNcL62UCiUwgreRX7GFYhcvl4nA4eXl5s4GVYbdd713QuO3G1UVaSQwZiypScTgcyYoKjUZD5XQe5fG4YjFXLuPKpTyZDKETqkREo9H5eZbbI+fyTtUrbunp6erqyuIrMhCJjtsWNdZ57YxDa3VQSdVOUpInaKou65BVtssqW8UVbBYlNUWmao+b5keN87Z5GmpkwzztDVmY8+g1NoPWrtPa7NNLVJ8AgKKSXJVaolJLVB2SusaKNPET9IVMA5Oas+O6iybzlUnqARiFZfnKw3XNPQ0dp1vr1DJkE8VyIwDlBCRNTmxx/e5mnDlz5vnnnydvZ1yUCwQCIpEo+WL73ve+97nPfY7mkHePN99889SpU6mbJ0+e3OLxH//4x5N/PZVKNT4+noWupghDOfHqq6/eddddyc2HH374u9/9bsa91Gp1svDlz3/+c+oRGALlBEXgqeNOwSRI84UXXkjt+dXS0kJlr6ampqScWFtbe/3113dOZm4L0WiUSgVZTk6OUqnc8kQdAoFAIBAI5EaABdj1gF2P8P8eAACIEIjpQVxPxHQgpgPxqcwHIIIgOgyiw1eX6ZINoLBmgHUAFAarZgkC0DxObR6nVpL7LgAAQSR8sZkUV2FKEJlXx3Aivha1rEUtNt+fAQAoguVz6kS8tkJuYyG3MZcjQ8B1Mh8u5BR0FR3qKjoEAEgQicWwc8I3afZPzgRsjtBCxmDtBJGwBmzWwNUCghwWv5pfpcitV+TW1wnluey96TVRIyisERS+R9wGAAjEo6bVRY17dthtH/HMeqMZKkXiOK73Lui9C+RmCU+oKqjsFIk7RDXNBZVc1rpz9srKynvvvffee+8FACwtLQ0MDJCuYmhoaLNFWDwcDk1MhCYmAHi7qEIu5crkvFo5uyjDigPC4XBlMiCT2QH4HwB+9vqr8Z/9dxkCuqpr3tXVfeKmmyiW4Au4nCMK8RGFGACQwHGzY1ljdfQbLWOzS95gBpO3vBY4Z7CcM1gAADlcTFlZopZVqaWVh2qrhLxN07wry/Iry/LvPKkCALi9AdPU4phpfnDMNmlZ2lodhcKxwTHb4JgNAMBioXXSktaGqtaGqkOtkjzhuov/KqqLKqqLTv+dGgDgWfbptTadxmbQ2qaMC1tLI8+y78Lruguv6wAA+YWChtZqVYdE1S5Rtlaz2aycXH7H6daO060AgJA/bLw8obto0l8yj18wxrbsW7XiXL38p+HLfxoGX342vySvsbseigrIDUtaa69kDQR1HnvssRdffJFcmjObzXq9XqVSbfbg1157LfkJXFFR8YlPfGLrg/t8PhRFdyHzdUNuvvnmo0eP9vf3k5u/+93vtpATiUTij3/8Y3Lz//2//7dzZgIAEIut+5RL9miiyB133NHd3T0wMEBuPvvss0888cTWQn11dVWnu9ogsa2t7Y477qD1jAeLRCJhMBioNL7L4i3DBFg5sVN89KMf/Z//+Z/kJq3KibRCpC984Qvf/va3M+6Vli//uc997nvf+x7V4e4i09PTdXV1tHY5efLkSy+9lPUz+v3+cDgMr/3PjrW1NZg5kTXT09MYhonF4swPhVyDy+Xi8Xhbd7SDbAiO4263WygU8vnXf6P5bScWi3m93oKCAiYXGdywRCKRtbW1oqKi3WlOep2xvLzsdDqbmpqyviADBW42YWQRJjZhYhM6FGTu8p8GDkQxpC2BtsWBMo40EuDA1A/t88keQSSC+KwvMUn+8ycmcUCz5AUAFsIXoLJcVj35L4cl3i5X4fV6AQAFBftCTYXx8EJ0cTYybwlbLWGrL0GjbQ5JHiu3hlst40nlPGk1twrb4eoTj8fD4XC2nq44wmujqw6zf3l8bWEy4KJbVFGbI2rJq1AKS9QFVeXcTdVLKBQaGxsbeJvVVUqfAKz8PJ5MxpXLuDXVHLEYofPpjYfD0dlZgXdNVVB4l1p9srdXJKIX1Ly8vJyTk7MWI8Zmnbq5Zd3cMpVI7SQoioiL8purS5qrS9rF5WX5lJb5wpG4ybJknFoyTS/pJ52xONX1FzJPu6mutKG2NDVP+1p8q6FJ/cKkbsE8Pm8xOeOUn4LHx+qaKhTNlYqWSmVLFcZZ998RDUWtY7PmgSndBbPp8mTGPO0kfCGvrlPWfFyp7K6rVUvYnOv/EtVoNEouv8DKiRsWvV6fGmt85syZ5557ju5BHnjggZ/+9Kfk7S996UtPPvnkZo+88847X3vtNfL2iy++SPrjDfnb3/720EMPkavhN91009NPP52WF7s7XLly5ejRo6R6KS8vt1gsm505/v73vyfDkAAAp0+ffv3117eQE06n80tf+tJbb71VXFz84IMPfuQjH6E7sGeeeeZDH/pQcvOb3/zmF7/4RVpH0Gg0XV1dybX1H//4x//8z/+8xeN/9KMffeYznwEAoCja19d35MgRumPegmTlxHPPPXfrrbdu45HpMj09jSDIpz/96aGhIVo7wrZOB5us5QSO4yKRiDxJIHnqqaceeuihjDs++eSTjz32WHKzs7OT7mtud9BqtR0dHbR2YbPZAwMDWZ+rBwKBSCQCl9ezw+/3x+PxfXK+euCw2+0sFotW3gwkicfj4XK5e3U5yYGGIIiVlZWcnJz92dxvnxOPx9fW1vLy8mBjoiyIRqN+vz8/Px/KiSzweDwul6u+vn67rkfDWCsCzJSDGXM4Vj57GkXorYYTBCuSqAjEGoNRZTAmD8erwD6+bP+gTfbwKLoQYdnC6EyEZYugMwRC78JAAAAKeJxENTch4eFSbkKC4RVZu4q1tTUAwP7so+gnAk5iyUkszeMLDmIhDuj9oVCAFCKFpUhJNVJZhVYWIYXb3gDK6/ViGEZ9uhLC47boqjnsMUc8ExGPP0EvtreAxZVzC5XcIiWvqJZbiG2SvYHjuNVqHRkZ0Wq1w8PDyfL6rUG5XE5VJVcm48plPJkUpdMcksDx+NIyy7lUw2IdrqzqbW2Vy+UZP808Hg+fz09dEVsNRadda5OutYklr8Xli6e0E8hIAZ+jKC1QlOYrS/MlhblUPkpxnJh3+o0Wt2VudXrWGwzR+JzME3LqxIVKWVFtTX55sXCzp4uE47PTnhmza2bCNTPhpt6jiY2xqmWFUkWxuL5I3ljC46/TbJFwdPgt7dpM0D66MDMyS11UcPiYpLVa2lYtU9fI1DXXq6iIxWJdXV0AyokbmMHBQfI1QPLud7/7D3/4A92DrKysqNVqMuknNzfXarVuqGD7+/t7enrIxdV77703tcF7GkNDQz09PanXrQuFwjfeeGN7F8Qp8sgjj3znO98hb3//+99/8MEHr31MPB7v7u7WaDQAgMLCwsHBwS36AsXj8SNHjqT2R/nZz36WGlZBhZ/85CefTAqsAAAAIABJREFU/OQnk5tf/epXH3/8cVpHAAA88cQTX/7yl8nbZWVlOp1us+tX1tbWWlpa7HY7AOChhx566qmn6D7X1iTlxPe///3jx49v78FpYbfbw+HwfffdR9cCLC4ulpWV7dCoklyfX0UHGqPRmGomAAA1NTVUdkx7uRgMhkQisQ9XB5LOjcPhpKrszUAQ5KMf/Whra2vWz7jnbYgPNDBzggkcDgdmTmQNzJzIGpg5wQSYOcEEmDnBBKfTmZeXp1KptrWV5dWzIAIk8IQVxHQgrkViw0jCCkCGJT8ESfDYczz2nIj/BgAAIEKCrSBYTQDrJLBDAN1fE4MDONl7Z2aLE/FA3L4SMXqjJvIfTmResMZBOMyaCrOmyMvj2WhOHlZXwGko4DQUchtzMRmgvAq/+5kT2YET+GLEaQ3MzATtU4Epe2gOJzK8jHFAuAmPm/AYgRkkAI/Fq+FVSXIk0hyxUlhfzN2Gl3Eyc4L6LodTbs8FvcNuu2F1UeuZNa05MxZVeBMRTXBRE1wEALBRVJFbqi6qacovPyQSpyVVtLa23nPPPeTtycnJS5cunT9//tKlS1NTm/Z/wyORsMUatljB2avdn7g11VyZjCeXYWWlYMvFfgRFsfIyUF42D8A8AL81jCNn35BgWJdE+q5Dh7sOHdrwW9XpdAoEgrS6k563b4SiMZNjeXRmQTuzMDKzsBbK0P3JG4pesS1dsS0BAIQ8jqqmrF1SoZZWtssquJt/K7UCcCf56+OE3eEZNy+Mm+ZHDPNO19rWT7fmj2oMTo3BCQAoKshpqC1vUVa2KCsb68vTUjE6D129EQnHpo0LhlG7QWvXaWxB/1aL5vFYYmbCNTPhAgCwWKhMUdbYLlapxW1d8tx8fjQaZbFRsVhcVFSUiCesY3bt2XH9JbO+z+z3BrY4bDQUmxywTg5YAQDcHG5tu1TVo1Sfalb1NHB410/NKJWmJZDrm8nJydRNi8WSxUEKCwtfeOGFm2++ORQK+Xy+z3zmM88991yadnW5XB/5yEfIBd9Dhw6lXqN8LU8//XTai9Pv9993331ms5lMSdlN/uM//uPKlSsXLlwAAHzta1+76667rhUPX/nKV0gzgWHY//7v/26dWHDu3Lm0zu3f+9736MqJbfmPe/TRR8fGxn7zm98AAJxO54c//OGXX3752tMTHMcfeOAB0kzcdtttGTPPmSCRSKisf+4cHA6HxWI98cQTL7zwApXHj46OktUnu3NSDCsndoqsKydSa6ZILl++3N3dnXHHV155JS1fZWpqinraya4BA7EPFlBOMAEGYjMByomsgXKCCVBOMAHKCSZQC8TeJogAiBlBXE9Eh0F0CODLtI+wLqziEED3+LP6eprs4UTcH7Ml8ypWIgacbuw5ABgqyOPUkWEVhdzGPI58C1dxUOREGuFExB60WwM2a3BmJmCbDznoHqEAy5cJpFKBRCaQKoT1AnY2X5pZyInNSE2q0HpmVzMlVaSRmlTRUljFQTe+Rs3pdF65coWMqRgcHKS4hsvKy+XWiDk11Vy5lCeTI5tnRF8LEY3GHI78QLBVVHJzQ8PtJ05IpdLkYK6VExuC44RlyTMy49BY5oet8w5PBnOQCpuFKipK1LLKDlllV524QECprnSn87QTCdxiXtRrbHqtbWRg2rdK9b8bQZEaWUlTW01eCXr8dHt9gyT1p3gCnx6Z0V006S6ZtGfHfR6qjdFYbJa8TdJxurX5mLL1hCon72C3BoWB2Dc4Xq/39ttvv3LlSuqdzz333JkzZ7I42iuvvPK+970vHA4DAD71qU9985vfTFbLvfnmmw888AC5nn7zzTf/9re/3boBzsmTJ8+dO3ft/b/+9a/vv//+LMbGEK/Xe+utt5I9V5RK5Ysvvpi8LNjlcj3yyCO/+tWvAAD5+fkvvvjibbfdtvXRXnzxxQ984AOp95SXly8sLFAfz/T0dE9Pj9PpTN4jEAguXLigVqupH4QkFoudOXPmt7/9Lbn5D//wD7/85S9Tv268Xu8DDzxAlrncfffdL7300k60RIaB2BSBcmKnyFpOPPXUU5///OdT77Hb7VSKJ86fP3/ixInUe/r7+/ekOmxroJw4WEA5wQQoJ5gA5UTWQDnBBCgnmADlBBN2VU6kgS+BmO5qqnZMA3C6YRUswJZdFRVsFcDawA53+b+W63iyl3QV7vCoKzzii84QmapergVDhXmc2s1cxQGVE2l4Y6vWwIw1MDMTsE36p/zxrS4evxYUQSt45VKBRJYjlQkkcqGMjVD6HNtGOZHGbGBl2G3Xexc0brtxdZFuUoUyr6xDJFYVVHQVSytzNs6sDgQCWq2WFBUXLlygGFOBsFhYZQVPLuPKZLy6WhbNeLC4240sOMVsVo+s9lhDQ29PD92kCgDA0pp/xOrQWB1aq8M0nyHgOo1qUb5aWtkhr2qXVtaVU3rqZJ72mHHeMLkQT1B9D26dp50Ex/FZi0s/YtNrbKNXLC4nDfVSUV3UpBarOiQdR+vKq9atH+EJ3G6a1/eZNWfHRt/Urbp8VIfNZsnbJM09Dc09DR23tgoLDl6TVSgnbkB8Pt8PfvADr9drsVjOnTvncrnSHoAgiFqt7u7uLikpOX36NK0eO1euXLnvvvvI9avq6uqbb765oqJCo9GcPXuWIAgul/vYY4/9y7/8S8bThwcffPCHP/zhtfd//OMf/+///m/q49lGAoHAAw888OyzzwIA2Gz2bbfd1tjY6PF4Xn75ZXJ6cPLkyZ/85CcKhSLjoex2u0KhSH3HUYn6mJqa+s1vfrOysmIymc6dOxcMBtMegGHYsWPH2tvbi4qK7rvvPiojISEI4utf//q///u/kyHb5eXlH/7wh0n7otVqn3nmGafTyefzv/KVrzz66KM7NP2GcoIiUE7sFFnLiYcffjgtyJriS2FgYCBNRbz22mu33347peHuIlBOHCygnGAClBNMgHIia6CcYAKUE0yAcoIJeykn1pEAcctVVxHXg9gYoHvZPsIHWBNgqxCsGWDNgF1Hvb9Q1tw4k704HvRGJ1YiRm/EuBIxZusqcvM48qSriPsLwcGXE2ksRZYnfJPWgG0mMGMJzMQJemEVXJQryamRCqQygUQmkFbyKzYLq9g5OZHKLhRVJBIJk8nU19f317/+9a233lpeplpQlYzU5slknOqqrbs/pT+pzxednSuKxdWlZe/q7LjlxMks3sWBSHTctqixzmtnHFqrIxKj8X9dkidoqi7rkFW2yypbxRVp7Zg2JBSO6SYcY8Z5sqgiSvnpUBQRVxa1NVa1NFSpVTXlJZu+ZhbmPHqNzaC1a/qnFudXqP4yABSV5KrUEpVaouqQ1DVWpDWfWbA4NX8d1/UZR9/SL8+6qQ6bhda2S0lRob6lJXfzGPB9BZQTNyBer/fRRx+l+OC77ror2fiOIsFg8Ac/+MFPf/rT1EZDJSUlZ86cefjhh5MFYVuzuLh4/Phxsr0ei8W65ZZbzp07F4lE7rzzzldeeYXWeLaXs2fPfutb3zp79mw8fvUzjc1mnzx58nOf+9zdd99NPQ7tJz/5yWc/+1myJk+lUr3xxhsVFRVb7zI6OvrjH/+Y4vE/+clP0q2isFgsTz755Msvv5xakAEAqK+vv/feez/1qU/taEQolBMUgXJip8haTnzsYx/7xS9+kXpPOBym0n5uZGQk7V36/PPPpxVV7QegnDhYQDnBBCgnmADlRNZAOcEEKCeYAOUEE/aNnEgjDmImEBu+WlcRnwaA5rkDmgfYzYDTiWDNAFMDdEdOb27Yyd62uAo2IhSwJCWClkJuYzFPLcB28Cx9T0gQCXtwbsI3STaAcoQWCJov4xxWjkwgVeTWyQTSOmFtLvud9dndkRNp7EJRhdFo7Ovru3DhwsWLF6m3/Ea5XK5EwpXLODXVPLkMpdMig8Dx2LyDt7KiFOaeUihv7e1tbm6mG6CYwHGzY5msqBicml0J0LA4OVxMWVmillWppZWHaquEvMwn4IkEPjWzPGqaHzfND47ZfP4MqRipiAoFbY3Vh1olrQ2V0urizZb+3Es+w4hNp7EZtLYp4wL11ZtCkVDRXKXqkKiP1NU1VCBouqjQXTTpL5mG/jLqtFEVUQiKiBuqmnsbOm5pbbu5Ob84l+KOuw+UE5Cdw2azWa3WSCRSXV3d2NhId9oWCoXOnj27trZ20003VVdX33PPPX/4wx/uueee3//+9zs0YOr4/X6dTre6ukqmoGX31WaxWC5duiQSiU6dOrX7QRqbQRDE1NTU4uJiIBAQCARKpXJ3Jo1QTlAEyomdIms5cebMmeeffz65iaIoGUKSkWvlxH/913898MADlIa7i0A5cbCAcoIJUE4wAcqJrIFygglQTjABygkm7Fc5sR7CB2LjRHQIxHQgNgpwD+0joCWAcwjhdAK2CmDNAKHU/D0jcLJHsi2ugscqThZVFPJUPBbtljv7nGAiNBecm/BPTfgmpwPWtRiNFjokBVi+IrdeIayXCSR54dwcbs4eTlf88ciYZ17jtuu8CztUVLG4uDg4OEh2f7py5QrZHyMzKIqVlvLkUq5Mzq2pxsrLaA0ssbYWt8+WxuNtJaV3H+46dfPNWZyPzLlXNdZ5rdWhtTosSzRyI1AUkZUUqWWValnl4dqaisLMq/A4Ttjm3WMmx5hxTqufy5innUpRQU5jXQXZ/alJsWkBx4rbbx6fM2jt2stTU6YFAqf6+/AF3IaWarKiorlDgnHWfUe7HSv6PpPm7Jjmr+MLFudmB7mWCnlZx+kW1bGG9pubS2r21wcFlBOQg8L73ve+3/3udw899NBTTz2112OBbD9QTlAEyomdIms58Z73vOfll19ObgoEAr+fUozV4OBgV1dX6j1PP/30Zz/7WUrD3UWgnDhYQDnBBCgnmADlRNZAOcEEKCeYAOUEEw6GnEiDDKuIDoPYMIjpAUHjqmEAQEpYRSfgdAJ2LQBZ/u5wsrchMTywGp1Muoq1qJV24Uu6q2jmsa6r7k8AgJWodyZom/BNTvgmZ4L2KE4pIDoJC0FLOaXyXJlSWK/Ird+iAdQukCAIq8+l8zo07lmN227xu7a9qMLv94+MjJDdn/r6+kIhqi6ElZ/Hra7hyqU8uYxTU4PQ+ZrAI5GYw8HzrDTlF95UV3dLb69arab7Uen2Bcfti9oZh9Y6r7M7Y9Su/yMpyROoZVVkpHZjVRmVBicuj3/MND80ZmOSp93aUMXlbPyHWl3xvfFK/5I9PG10mnVz8RjVX4fLw+oaK1VqifporUot5nDXRQQlRYXuoslunKe+WFQhL1P1KJt7Gg/d1lYmLaG4184B5QTkoCCRSOx2+5///Oe77rprr8cC2X6gnKAIlBM7RdZy4v3vf/9LL72U3BSJRNcm+WxIX19fb29v6j0//elPP/GJT1Aa7i4C5cTBAsoJJkA5wQQoJ7IGygkmQDnBBCgnmHAg5cQ6UsIqYhoQMwC61+wjAoA1XA2r4HQBFo3mQnCyR4UY7l+NTm2jqyjiNXOvL1eRIPDF8KI1MGMN2Cb9kzMBO90GUHwWv4ZfJRVIlbn1ylxFPraX05jUogqN274Wo6cPMxZVxOPx0dHRixcv9vX1vfnmmxRPWgEACIfDra7i1FRzZTJefR1LQCdvGcdjS8uJ2bkKguiWye/q7j527BjdSO1QNGacX0pGaq+FaPxlhDxOs7hcLa3skFWp5ZVcCt93Hm/QOLWwvXna0WjUYDCIxeKioqJwKDptXNCP2LT903qtPRqhGhTEYqFyZXmTWtLcIVEfqRXmrWvD5Vn06i4YdX0mXZ9pSmOlvnBUVFFItn5S9SilqhqKe20vUE5ADgRnz549ffp0bW2tyWSCk+frEignKALlxE6RtZz4x3/8x1/+8pfJzby8vNXVVSo7vvnmm6dOnUq959e//vX9999Pabi7CJQTBwsoJ5gA5QQToJzIGignmADlBBOgnGDCwZcT6yECIGYEcT0R04HoEEjM0T4CWgKwZoA1I1gzwDoBunFnfBI42cuCpKtwro34EpOBhC2Lg6x3FS1c1o6fvu4m4UTYHpy1BmzW4MyEb3I5QnXxPUkBli8TSKUCiTK3vl5Yx0H37JtlF4oqLBYLKSouXrxoMBhoHFwk4sllXJmMJ5dhZaX0IrXX1iKzcwLvamtx8U3KhhP0iypwnLAseUZmHBrL/LB13uGh0Y6JzUIVFSVkRUVXnbhAkLlP3XblaRfl85JyIvVhiQRuMS9qL0/pNTa9xub3UfUuKIpWy4qb1RL10dq2w/K8wnVzSO/SqmlgUnfJrPnr2JTWSr2jFCkqmo81NPc21HXIqMfqMgTKCcj+JxqNdnd3j4yM/PGPf3zXu96118OB7AhQTlAEyomdIms58dBDDz399NPJTQzDyKT7jLz66qtphWAvv/zy3/3d31Ea7i4C5cTBAsoJJkA5wQQoJ7IGygkmQDnBBCgnmHC9yYk0yAZQZKp2TANwSlfepJBsANUM2CqAtQJk3TsUTvaY4PF4AAC5BdhqdDqlroJqBnIq611FK5dVsN2D3UvIBlDWwMxMwDbhnwzEg7R2RxG0glcuFUhkOVKZQCIXytjInn1UMi+q6BSJSVexYVHFwsLC0NDQ8PAw6SrCYcpL5DweVyzmymVcuZQnkyEYlnmftyGi0ej8POFckmKck7V1xzo6ent76S6pLK35kxUVpvklWgqnWpSvllZ2yKvapZV15ZmLOZjkaRcV5Egrc4921h3trN8sTxvH8VmLi6yoGB20rK3QeMVWVBepj9Q2qcWth2SlleveyEFfyDQwqTk7rrtoMl+ZpN5RqrAsv+Wmpt0RFVBOQPY5BEF84hOf+PnPf/6FL3zh29/+9l4PB7JTQDlBESgndoqs5cTjjz/+ta99LfWeeDzOYm0QTZbGc889l1YnodFo0iKy9wNQThwsoJxgApQTTIByImugnGAClBNMgHKCCde5nEgjMQuiQ0RMB+J6EBsHBL0u/wCwAdYAsA4EawZYM2DXra354GQva0g5kXb9dRRf80aMrtDISsS4EjGGE7SLBsB6VyHitXFYW5W/HCxwAl8IL1oDMwaXyRFz2MKzcYLqJfAkXJQryamRCqQygUQmkFbxK3doqBlJK6qY9i3TWiDgsbCmgnKyAdThYomIm96jKdn9aXh4+OLFizROAFMitXm1cnYRvcWRuNsdsdoKY9GmgsI7Ojp7e3qamppoLYgHItFx26LGOq+dcWitjgjlKgcAQEmeoKm6rENW2S6rbBVvmnGdZBfytBfmPNrL03qNbXx4ZsnhpXH8ktyrGRXtEknduo/ZkD9svDyhu2jSXzKPnTfEo1T/RPkleY3d9c09DR2nW+vUMgTdZlEB5QRkP+P3+//pn/7pN7/5zUMPPfTd73531yqKILsPlBMUgXJip8haTlzrGLxeb35+5qn8j370o8985jOp97jd7rTTjP0AlBMHCygnmADlBBOgnMgaKCeYAOUEE6CcYMKNJSfWEQcxE4gNX62riE/TDkJAchNobQRvFhQcB1g7QPfd7Hefs6GcSCMUXyYrKlYixpWIPpzwZPFE61wFv52DXg9f8S6Xi8PhCHIF9uDchG/SGpyZCdgcoQW6YRXJBlAygbReWCtkC3dowBnZ6aIKh8ORrKgYHByk2CQAAMDKz+PJZFy5jFtTzRGLEQpX7yXBw+GI3Q7mF+r4OScbGk729Bw7dozWNCmB42bHMllRMTg1uxKgmgQOAMjhYsrKErWsSi2tPFRbJeRxM+6y03na7iWfYcSm7Z/WaW326SXqv0thsbC5Q6pSS1QdkrqGilSpEA5EprRWfZ9Jc3Zcd9EYDVONvsjJ5Td013fc0qLqaWjormdjNP5nNwPKCcj+JBAIPPvss//2b/+G4/gPf/jD9773vXs9IsjOAuUERaCc2CmylhOjo6Pt7e2p9xgMhsbGxow7fv3rX//KV76S3CwsLCTPNPYbUE4cLKCcYAKUE0yAciJroJxgApQTTIByggk3sJxYD+EDMTOIaYjoEIiNAdxN+whoCcCaEc4hgHUArBkgmbvA3+BQkRNppLoKT0QfYeAqivntIl57AUfJRvmZ99l/kHIibboSTISsAavZNzkTsE35Lb64j+5hS7kl9bl1ZAMomUCKoTS6G20jO11UMTc3Z7VaNRpNX1/f+fPnnU4nxSOjXC6nqpIrk3HlMp5MitKZ8BA4Hl9ajs7YisLhrqrq011dnZ2dKpWK+hEAAHPuVY11Xmt1aK0OyxINeYCiiKykSC2rVMsqD9fWVBTmZtxlJ/K0U1lx+XWaGZ3GZtDapkwL1PMkcoRcZXM1WVGhbKlOlQqRUHRy2EKKCn2fKRKiqqD4Ql7jEYXqmLK5t6HleCPGzfKVD+UEZH9y7Nixubm5T3/60w8++CA8U7sRgHKCIlBO7BRZy4lwOCwUChOJd1o3vv7667feemvGHT/1qU/953/+Z3LzjjvuePXVV2mMeLeAcuJgAeUEE6CcYAKUE1kD5QQToJxgApQTTIByYmOSYRXRYRDTAoLG1coAgHVhFVgnwJoAgH/edLKQE2msdxW6SGKF7hEQgOZypIXcxoKrpRUNrANilTaUE2mQYRUTvskJ3+RM0B7F6fUxYyGscl6ZIrdeIayTCaSV/AoE7E0PkG0sqmgtrMJQltPpFAgEQuHVMhGHw0FWVAwPD9MoqkBRrLSUW1OddaR22GLlut2K/IKe2rqbent7enr4fBqqzOUL6OxO7YxDa53X2Z2xBNUMBgBASZ5ALasiI7Ubq8oyDjyZpz1qmB01zlMXFSiCiKveydMuL9n4FRv0R8y6OW3/tF5rM4/PxeNUfxcen9PYVkNWVKjUEg73nWlAIp6wjNo0fx3T9ZnGLxgDq1SjL7g53Dq1rLm3oeOWlubeRg6PhqiAcgKyP9FoNO3t7XCmd+MA5QRFoJzYKbKWEwCAI0eODAwMJDd/+ctffuQjH8m411133ZVqIx5//PGvfvWrFJ9xN4Fy4mAB5QQToJxgApQTWQPlBBOgnGAClBNMgHKCAgkQt7wdrK0BMSMANBYBAQAAyQFYI2Cr3g6rqN+ZcR4wmMuJNNa7ivFIgkZ3e5JrXEUjC8ncCWdPoCInUkkQ+GJ40RqYmfBPTfgms2gAxWfxa/hVitx6RW59rUCWh+3NTIlhUQWfhTUWlMs4BYdLpMerldcWVQQCAa1WSzaAeuutt5aXlykemZWXy60Rc2qquXIpTyZHMBrfR2SkdnTGVgXQYzLZUbX6+PHjtGbyoWjMOL+UjNReC9HwN0Iep1lcrpZWdsiq1PJK7pbfpNFoVKfTJxCh1eEbN80PjdnW6ORpiwoFbY3Vh1olrQ2Vm+Vph4JR09isXmPTa216rS0aoZonwWazZIoy9ZG6JrW45ZBUkFKxgSfw6ZEZ3UWT7pJJ89cx/0qA6jExlqxV0nG6lez+xOVnmKRBOQGBQPYDUE5QBMqJnYKJnPjGN77xr//6r8nNRx555Fvf+lbGvRobG00mU3Lz/Pnzx48fpzrcXQTKiYMFlBNMgHKCCVBOZA2UE0yAcoIJUE4wAcoJ2hBBEDOAuJ6I6fDIGIpbaB8BLQFY8zt1Fej1E9dMi22XE2mkugp3ZCyaWKV7BARh5WKS/ekq6MqJNMKJsD04aw3YJvyTZt/kaoz2HycZVqHMra8X1nHQvfny2vaiirQHJIsq+vr6tFotjlOqGEBYLKyygieXcWUyXl0tS0gvySPudoctMzyPuyGv4Ba1uren5/Dhw+SSNxVwnLAseUZmHBrL/LB13uGhkXHNZqGKihKyoqKrTlwgSC8kikajBoNBLBaT79ydztOOxxPWCaf28pReY9MN2wKURQiKorUN5U1qSXOHpK1LnlfwztQUT+B207y+z6w5OzbyN92am2r3MxabJW+TdJxubT6mbD7eKCxIN1sAygkIBLI/gHKCIlBO7BRM5IROp2tpaUlu3nzzzX/729+23iUSieTn5ye/d6uqqux2+/48uYVy4mAB5QQToJxgApQTWQPlBBOgnGAClBNMgHKCCWtra9HwfHH+wtVU7ZgW4LSv1gesGsDpRLBmwFYBrAXsm+XvnWan5UQa61xFeDSK01hFJbnGVTSxkD37xGYoJ9IgG0BZAzMzAZvZNxlMUG2AQ8JC0HJeuVQgkeVIFbn1UoF4TxpAbUtRxRZJFX6/f2RkhHQV/f39bjfVZJpkpDZPJuNUV9Hr/uTzReyz8XlHNYLeVF93WN1x4sQJiURC/QhLa/5kRYVpfgmnsw5TLcpXSys75FXt0sq6chG4Rk6ksaN52okEbjEvkhUVIwPTvlUa3fYqqovUR2qb1OK2LnlJ+TofvGBxav46ruszjr6pX56j+n+KstDadmlzT0NzT4P6lpbcoqv+CcoJCASyH4BygiJQTuwUTOQEAKC9vX10dJS8XVBQ4PF4kC0nT1euXOnu7k5uPvzww9/97nfpjXi3gHLiYAHlBBOgnGAClBNZA+UEE6CcYAKUE0yAcoIJ10z2cBC3gtgYERsDsTEQMwBAtSHJVRAuYDcCrBXBWgDWCtjS6zisYpflRCoEwH1RmzdiXIkYViJGb9Qcx+nGigAU4RRwlSJeazGvTcRr47F2dda6vXIiFZzA50OOqYDF4rdOByzzIQdOUA0YIOGz+HVCeWOusiFPKRfIWEh6OcLusBINjnjmRjxzWveszusIxulFbkiERd3FsqOlsiMlskJO+sQGx3Gj0djf33/p0qX+/n6z2UxxfQPN4XOlUq5UwpPJuBIxQudLn4jHIzO2kHlC5A8cras72t3d1dXV3t6OYVRDEVaD4ZEZh8bqGLE69LPOSJzGB1RZvvCoUtJdW1WQCDbV12Z857pXAqPGuVHj/Khxbtq2jFPOu8YwVrOi8ohadqRDVicp2fAxBE5YJhZ1wzM6zYxu2Lbi9lP/RcTykkM99Ydg6xZhAAAgAElEQVRvUrZ0SlPDtAmCsBvnx84Zxi8YRs8ZPAtUM2xQFlrfIe++q6P77g5JSzWPxwNQTkAgkD0FygmKQDmxUzCUE88999z999+f3BwYGOjq6tri8T/84Q8ffPBB8jabzTabzXK5nN6IdwsoJw4WUE4wAcoJJkA5kTVQTjABygkmQDnBBCgnmJBpshcHcSuIDhOxYRDTgbgFAHqLvAARAKwhJayiDuxRIvFOsIdyIg0C4L6odeXtugpvxJwg6HUHAgDwWMXF/HYRr72Q21jEbUaRnf042jk5kUYEj9gCdmvAZg3OzARs8yEHrd05KEeaI1bk1jfnNylzFewd/rNsBsOiihpB4dES+bFSeU9pbS62QW3T2tralStXyEjtvr4+cmElMyiKlZby5FKuTM6tqcbKy6gPCY9EwlPTIb0+NmWRFxf39vb29PR0dnY2NTVtfXFhkgSOmx3LZEXF4NTsSoCqn0MRpK6sqLdJfrRefKi2esN2TGkk87THTfOjxvlojKoUKczP6W6X9hyq7WqTCgWbVpUtzHn0GptBa9denl6Y81A8OJeHNbWLu0809N6qKi5LfystWJy6iyb9JdPwG2OL1iWKx8wtFv7f8v8AKCcgEMieAuUERaCc2Ck+9KEPPfPMM8lNu91eU1NDffd4PK5UKi2Wq81zH3300SeeeGKLxydf8QCA+++//9e//jX9Ie8SUE4cLKCcYAKUE0yAciJroJxgApQTTIBygglQTjCB3mQPXwWxMRAbI2KjIDYGcKr9Q94BFQGs5Z26CnTvl/WZsH/kRBoEkViLWcmiipWIYTUykSDoXXSPoYIiXouI1ybitYm4LWx0+78Wd01OpLEaW532Wy0B63TAYvFbgwkaFSdclKvIrWvIVTbuaUUFAMA8Z7PEV01Bl9Y9O74yH0rEKO6Ioaz2ouojJbKjJfK2oioWssHHZiKRMJlMpKW4ePGi0WikuPTBLsjnymRcmZQrk3KqqhDKn8mx5eWweSJknghPTgk5nJaWFtJVdHd3U/x0IghgWXJrrQ6t1aGxzs+5qWaQ5OfwjijEPUppj1JSmk8pWiMaixunFkcNc6Om+XHjfCBE6c3FZqEtDVVbl1OQLDm848Mz48MzuuGZuRkXlYMjCCJvKO86ruy6SaFsqb7223DRujR23jB23jB2zrBgcW5xKBzgfyN+B6CcgEAgewqUExSBcmKneP/73//SSy8lN6empqi/CEieffbZD37wg+Tturq6iYmJzS6+WF5erqmpIb90BQKBXq+n1f5yl4Fy4mAB5QQToJxgApQTWQPlBBOgnGAClBNMgHKCCYwme/gSiOneDqsYBvQjEA56sPa+lRNpEETCF5tJqaswJQgaa44IQHM50kJuo4jXXsxry+PIt6X8Za/kRBorUe+kf8rsm5wJzFiDthhOdZV/bysqnE6nQCAQCoWAQVEFn4WpRTVkRUVTQflmMRurq6uDg4NkpPalS5eCQUp5HgiHw62u4tRUc2UyXn0dS7BB9vIG4Hh03hGamAibJ8PT00QiUVFR0dnZSbqKjo4OijM0ly+gszu1Mw6tdV5nd8YSCSp7VYvyj9SLTzTJjyrFXGpfx9nlaRfm56hVNcc65ccP121RTgEA8HoCprFZg9auvTw1ZVogKLSWyivIaeuSq4/WHj3ZWFi8gW7xLHp1F4y6PpOuzzSlsaata0E5AYFA9gNQTlAEyomd4p577vnDH/6Q3DQYDI2NjXQPctttt73xxhvk7d/+9rfvfe97N3zY448//rWvfY28/Z3vfOfzn/88/fHuHlBOHCygnGAClBNMgHIia6CcYAKUE0yAcoIJUE4wYfsmewkQnwSxMSI6CmJjID4JAKXVwBRQwJalhFU0gr3LaqbIQZETaeBEfC06tRIxeiI6d3hsLWoFgMaJLY9VLOK1kTEVBdyGrLs/7RM5kUqciM8E7JaAxeybNPkm1mJUfRsX5dbn1jbmNjTkKWt3paIiVU6k4YkER1fmNG775WWrwbuQoLZqIeIKjpbKj5bIjpbIK3M21YRkUQVZUTE8PGwwGCgNF0GwslKeVMqtq+UrFKy8XCo74aFQeHIqZJ4Imc1xlxsAwGazFQpFZ2cnqSvUajWVj/1gJDZmW9BY5y9N2Mbti1SiI3gc9uHamh6lpLdBKimhsbQ0u7AyZpwfGrMNjM6srmUuynmnnEItq5NuVU4BAPCvhfRa+9igdfCC2W5ZznhwFEUb22q6blIcPq6UK8s3fIxn0Tt+3qD92/jAnzWueQ+AcgICgewPoJygCJQTO8Xhw4eHhoaSm2fPnj116hTdgywsLKjVaqfTCQBoaWm5cuUKGeuUislk6ujoCIVCAID3v//9zz//PMXulnsFlBMHCygnmADlBBOgnMgaKCeYAOUEE6CcYAKUE0zYscleHMRMIDZ8ta4ii7AKwAJs2dWiCrYKYG0AoRqZu2scUDmRRhwPeiLjrtDISsToCmtjOI1gXhRh53PqRby2Yp66hN/JZdE4Cd+HciKNpciyftVg9k+a1szuKNUYgN2pqNhCTqQSjEdHPHP9y5ZLSxaDd4Hi+gUZUNEhqjlWKi/lbSUSFhcXBwcHyQZQfX195Jl1RtgiEV9Zz1Mo+I0NKHeruoEkcbc7ZJ4MT0yEJibw4NVnyc3NbW1tJV3F8ePHqZw4BCOxSybrH/q1hqVV52qAylNXFeUfVYiPKsRHFZJcPqXRAgBwgpi0LA2O2YbGbBr9bCKR+QOQejkFAMDpWBm+NKXtnx66OBEKZu4rVVAk6OypP3KyofNYfY5w44PP6GcH/jR88Y9Xftj3HwDKCQgEsqdAOUERKCd2BIfDUVdXlzqtyRgasRlXrly59dZb19bWAABnzpx55plnWKx3rmEZHR295557bDYbAOD222//v//7Pz6fz3j4OwuUEwcLKCeYAOUEE6CcyBooJ5gA5QQToJxgApQTTNilyR4RADEjiOvfdhVTtI+A8AHWtN+Cta8POZEKGaztCo+6wyOu8EggNk9rdwFWVcxrL+A2FvPaC7hKBGz1ltz/ciKV/SYqKMqJVNyRwKDLdmnJcmFpaiFINZIhmaTdW1YrZG+1Yh6Px81mM1lUcfHiRUqnqyjKk0r4qia+QsGprgJUrhS8pu9T8idkA6hkXcVmS0LRaNRgMIjF4iDBujxpf0tvuTxhj8QzB1yjKNJQWXpEIT7RJGuXVqKUr2tc9YWGx+1DY7aLQ9PulcxGBEWRellpT2dt76Fahbxs6+eJRmJ6rf3yW6b+N41LDm/Gg7NYaENrTfdJ5ZETDeLaDT75o9Eol8sFUE5AIJA9BcoJikA5sW0Eg0GPx+N2u4eGhp588snJycnUn6Io+sADD9xzzz1yubyoqEgkElE/8uDg4Hve8x6HwwEAUKvVX/7yl1tbW/1+/7PPPvuDH/wgHo+jKPrZz372W9/61oFYC4By4mAB5QQToJxgApQTWQPlBBOgnGAClBNMgHKCCXsz2cOXQWz87bCKrIK1ESHAlFddBecQYNXswCgzc/3JiTRC8WVvxOgKj7rC2pWIASeo5jEAADBUUMhtLua1FfPbRbw2FpJexX6w5EQq+0FUZCEnUpkNrJDlFJeWLGuxMJVdWAjakF92rFR+tER+uFiCoRlaVzkcjmSk9vDwcDic4VlYQiGvrpanUPAblWxqqzlENBqemQmbJ0MTE9HZuXVHY7GUSmXSVXR1dSUnJ0k5kXznRmJxrdXRP2m/PGE3zG0VFp2kUMA/XFdzVCG+qVFGMUYb7Hw5xcKcZ+At88A50/jwTDyWubFeRXWR+kht1wll57E6jHP1BQnlBAQC2Q9AOUERKCe2jY9//OM///nPKT44kUjQOvNcXl5+7LHHnnnmmVgsfTJ96tSpb3zjG93d3dSPtrdAOXGwgHKCCVBOMAHKiayBcoIJUE4wAcoJJkA5wYR9MdlbF6ytATjVa7rfYV2wdjtAd8kWXPdyIpU4HvJGze7wiCs04o6MRRM0/psQhJWLSYp57SJeWzG/Q8CuBAdZTqSyV6KCoZxIkiAI0+ripSVL/7Jl2G2PJDIXEADKSdpJYrHY2NgYaSnOnz9Pdi/Ygnf6PjUo0WuaM2/8i6z5whZLSG8IGox4IL06QSAQtLe3k6KitbWVIAiJRLLhO9flC1wy284ZrP0TNl+I0tJ8bZnohEp+tF7cWVuFsajGjSTLKfqGLS5P5l5qtMopwqHoyIDlyjnzwHmTe8mX8eBcHtbULu4+0dBzuim/iA/lBAQC2XOgnKAIlBMHCYfD8fvf/16j0Xg8ntzcXJVKdffdd6tUqr0eFz2gnDhYQDnBBCgnmADlRNZAOcEEKCeYAOUEE6CcYML+m+wlQNxy1VXE9SCmAwT91bGkq+AcApgaIDvVu/WGkhNpBGLzrrDWHR51hUeyiNQu5rfzEvWF3Maaoi50/6WJZMduiortkhOphBNxvdehcc/2L1uuuGbiOKWcGBFXcLhYcqxU3lNaW5VTQGUXi8XS398/MDBw5cqVkZGRrVbAUZRTVclXKHKam7hSKaW+TwQRnZu/2vfJYiE26tckEokOHz7c29vb1dXV1dWVn79BADiOEybH0uUJ+1sGy+jMAk5h8YfPwdqkFSea5KdUtZVFVOfhO11OYZtaGjhvGnjLbBi1ExTCwKtlop//8fMAygkIBLKnQDlBESgnILsNlBMHCygnmADlBBOgnMgaKCeYAOUEE6CcYAKUE0zY95O9FFcR04CYEYDMvUrWkxas3QIQqpG2GbmR5UQq4YRnJaxbiRhd4VF3WJsgMsfzJmGj/HyOopinLua1ifjtHPQ6mb0wFxUKYT2GbqptdkJOpMIkSftYqfxIiayAQ0kKkkkVyQZQJpMJ30SKoAIBv76OLKdgF9Hv+zQ3DzZZwKmoqOjt7e3p6ens7Dx06BDvmlqNlUBocGq2f8J+3mhdWqWUGF8tyj9SLz6qEPc0SAVcqvOiHS2nWFsJjg5aLr9lGnjL5Pdt2mULJxJv6J8AUE5AIJA9BcoJikA5AdltoJw4WEA5wQQoJ5gA5UTWQDnBBCgnmADlBBOgnGDCAZvsEUEQM6QEa0/TumAfAAAAG7ClAGtGsE7A6QTsWrBlaPPWQDlxLQSR8EYnXOERd3hkOaSJJKiuy5OQkdoiXnsxry2PI98PsefM2QlRsdNyIhVX2D/ktu9cknYqa2trY2NjpKs4f/6807lxAkQ2fZ98vvC0JTwxEdQbEqtrmz0Mw7D6+vqkq2hqakLWL/lPLbrPGyz9k/bh6flYIrMrZaFoq6T8ZJP8iELcWJXBHyTZ0XIKHMenTYsDb5kGzpmmjAtp61pQTkAgkP0AlBMUgXICsttAOXGwgHKCCVBOMAHKiayBcoIJUE4wAcoJJkA5wYSDPdkjfCBmBnE9ER0G0SGAL9M+ApIDsMarwdpYM2DX0VoNh3IiI6H4sjs8SjaA8kbMBKDUKYiExyoq5KoKuY3F/HYRT81Crocvl6XI8oRvcsI/NeYdZyIqdlNOpLILSdqpkKnapKu4dOlSMBhMf8TbfZ94ynpebS1CLfIh7nYH9YaQzhC2WojYVjEbeXl5LS0tpKvo7u5O/agMRWOjMwtvGSxv6qcdnk1tRyqi3JxOefWJJtmJJnl+DiWnAna4nMLpWBm+NKXtnx7qmwwFIgDKCQgEsj+AcoIiUE5AdhsoJw4WUE4wAcoJJkA5kTVQTjABygkmQDnBBCgnmHBdTfbWBWtrAe6lfQQkF2AKgHUinE6AtQI0wywOyglaxPGgJzLuCo2sRIyu8EgMz5zTmwRF2PmcehGvrZinLuF3cFnXw9+ciaioQitbC5vbSlq3aP20o+xOkva6Z0wkTCZT0lWMjIwk1hcuoFwuVyLhNzflqFRsEaVXCBGLha3WjH2fklRUVJCp2r29vceOHUtOF+fcq5cn7f0T9kvmGX84c1szFEUaKkuPKMRH68WHaqvZLEpfXkzKKXoP1eYKt9Ih0UhMr7Vr+6cv/nX8l688AqCcgEAgewqUExSBcgKy20A5cbCAcoIJUE4wAcqJrIFygglQTjABygkmQDnBhOt5ske6iugwiA2DmAEQIdpHSAZrY80A6wBoetgvlBNZQwDc7tQEkIkAMK1EjGtRC63dyUhtEa+9mNdewFUiDHpz7RO2q6JiRwe5GeFEXOO2a9x2jWd2R5O0U/H7/SMjI8NvYzAYUn/6Tt8nhQLNoZR+kfD7w1PT4YmJkMEY92buXsVmsxUKRdJVqNVqFEUTOD5qWzhnsF6esBvnnVRWjAoEvK468VGFuLdBWl6QS2WoYCfLKaLRKJfLBVBOQCCQPQXKCYpAOQHZbaCcOFhAOcEEKCeYAOVE1kA5wQQoJ5gA5QQToJxgwg0z2UsJ1o7rQWwc0AltvgpaAjiHEE4nYKsA1gwQHpQTTHC5XBwOh5yuhOLL3ojRFR51hbUrEQNOxKgfh43mFHFbinlthdzGYn4Hhu52p6Nt50CLil1L0k5jYWFhaGiIFBWXLl0i35sAZN/3KWSeDE9MhIwmnNoCvVAobGtrI13F8ePHZTKZ2xcctsy9pbecN1pXg5RaYJEx2iea5MeUEg6b0lC3vZwCygkIBLIfgHKCIlBOQHYbKCcOFlBOMAHKCSZAOZE1UE4wAcoJJkA5wQQoJ5hwo0724iBuBdFhIjYMYjoQtwA6WQgAAABYgC2L4PU42piTdxhgbQDZm7Xgg0uqnEgljoe8UfNKxOgOjyyFBqMJqgnMAAAEoLkcaTGvnWwAJcCqtnXIe8CBFhXvJGk7JxdClFIZUASRC4s7RGK6SdppWCyWixcvkq5iaGiIXGRHOByeVMpT1vMVCk5NNZXjELF42Gqh3vcpSbIBVGdn57FjPc5Q7PKEvX/SPjQ9F6fgD3gcdru08mi9+IhC3FRdRvFJt6WcAsoJCASyH4BygiJQTkB2GygnDhZQTjABygkmQDmRNVBOMAHKCSZAOcEEKCeYACd7AABABEDMCOL6q3kV8Sn6h2ADrAFgHW8Ha9eCg99oaKfZTE6kEYjNk3narvDIWtQKAI1zcB6r+O087fYirgo94AIpO1HBQljinGpVXtPeiopdTtJOJRaLjY2NJV2F0WgkCCKl71M9Sm3W907fJ6M5vrJCfQAsFkupVJKiQtnchheUDlocF00zi15KsStkOcVRhfiYUiLkUbI1qeUUWv0sFR2SLKfoaq0pFuUDKCcgEMieAuUERaCcgOw2UE4cLKCcYAKUE0yAciJroJxgApQTTIBygglQTjABTvY2AF8DcR0RHQIxHYiNAdxN+wiIEGBKwFa97Srqd2CUBx6KciKVGO5fiehdoRFXeNQdHkkQNFZO2Sg/n6Mo5qmLeW0iXhuHlU9/yPsIw7zRQSzY43MHTlTsfpJ2GsvLy7/73e8sFovBYBgYGFh2uxn1fTKZ8TAl15IEw7D6+vre3t7mw0eJogqzJ3R50h6NJzLuSMZon2iSnVTJG6u2yo1IhW45BQLwvt89CqCcgEAgewqUExSBcgKy20A5cbCAcoIJUE4wAcqJrIFygglQTjABygkmQDnBBDjZywwZrE0WVcQ0AKfRZegq64K12wEKMyoAyEpOpEIQCW90whUe8UaMy6HhYHyR1u4CrKqYR0Zqt+Vx5IDBYvee4HQ6BQKBUCgEKRUV46s6V4SqS2MhqDinZm9FBZmkTVqKUc98gqCXpN1bWleZQ1syRaNRg8EgFovJtBiHwzE8PNzX13fx4kWtTkeUldHr+4TjsXlHaGIipDeErTPU+z4lEQqFbepOeccRrEK6nMCsbkr9rwqF/MO1NUcV4puaZKV5VHNWrLOuviHL1uUUBJ7o//1jAMoJCASyp0A5QRF46giBQCAQCAQCgUAg1zVoKeCeQrinAABpwdpEdBwBFIK18WUQeRNE3ry6bLnOVRwCKLyYIBsQhFXIbSzkNpKbofiyOzxKNoDyRsxEphCRQGw+EJu3+f4MAOCxigq5qrcbQKlZyAFT7KXcklJuSW/xMUBHVCQI3BqwWQO2Py28uleigsdiHyuVHyuVAwAC8ejo20naeu/CFnu5I4HX5g2vzRtASpL20RJZflZJ2pWVlZWVle9+97sBAPF43Gw2k67iwq+fm00kuPX1Oc1NrM0VGoKinJpqTk11/i2nEoFAeHKKLKeIe6j2ffL7/X0XzvVdOEduFlbW1HWfyJU2eFmCKL6p6ljxh14fnXh9dAJFkIaq0iMK8dF6cWdtFbZl5YesplhWU/zBv++iW04BgUAgkP0JlBMQCAQCgUAgEAgEcuPAAux6wK5H+H8PAFjxLLMIW37OLEEWVcSMAGTuzbLeVbAAW3ZVVLBVAGsBSJYJwDc4fHZJtfB0tfA0ACCOB73RCXd4xBUacYdHo3iGS9HDCc9C8MJC8AJYAQjCKuAoRLy2Qm5jCf9QDrt8V4a/bRxcUSFgc0hR8QUVjSTt2cDKbGD4xZlhFEEa88s7ROJOkfh4WZ2AnY1hYrPZKpVKpVJ96EMfAgD4fL7R0dGh4eE3RkdGPZ54VQVPLkc2L3BkCQSC9jZBextg0PdpxTE7+H+/BgAgCMorrSxu7ChStuOCgs00BU4QhjmnYc75i78N8jlYm7TiRJP8VHNtZeFW1jM/l3/qmPLUMSWgVk4BgUAgkP0JbOsE2W2SbZ1yc3PPnDmT+qPc3NyPfvSjKpVqe58RVvozAbZ1YgJs68QE2NYpa2BbJybAtk5MgG2dmADbOjEBTvaY4PF4AABkcxgAACCCIGZICdaeppXeDAAAgA3YUoA1I1gn4HRe38HaDNs6UYQAuC9qJTMqViLGtaiF1u48VjGZp13May/gKpF989+R2taJCge39RPDJO2uYil7/VdDWlsn6thstguXL78+Njay4l4RCtmVFYBK7AOOR+cdoYmJsHkyPD1NJCj4y2tg84WCmlqBWFFQ14LmUPpPT8Zo9zRIBVxKEzOynGJAM/0vD94NYFsnCASypxyItk4ajeZXv/pVeL2B/tWvfkV+eMLMCcj1iV6vb25u3uyntbW1ly9f3t5n9Pv94XAYLq9nx9raWjwepzvrhZBMT09jGCYWi/d6IAcSl8vF4/Gon69CkuA47na7hUIhn59NZ4AbnFgs5vV6CwoKMGwPFi8OOpFIZG1traioiEUtihOSyvLystPpbGpqgnIiC+BkjwlerxcAUFBQsOFPEeBnE9NsYGbhoxgxigLawdoE4MeR+jhQJpCGONKQQGQHLhphCzweD4fD2eXpSpTw+OITqwmDNz7uS0wSIEZ9XxbCF6CyAnZLPqspn93MRvZyorW8vJyTkyMQCLLY1x33WEJWa8RmDk14YlS7D7EQtJJToeDXK/h1cp6Mjey2Sk8QxFTANbgyO7w6N7rqiOKUVvn5LKw5r7wzv/pwYY1CWIwAJBaLmc3m6urqzd65lAaTSAwZDK/rdcPLyws8Dk7tohY8EonYbCG9IajTx91UY8zT4IrK8+RNAolCUEUpvpvDZrXUlHZKyjtlFfVloow+JRqNVlVVASgnIBDInpKUE88999ytt966hyOZnp5msVhSqTTtfoIgmpubl5aWNttxaWmppKRkZwcH5QRk9zGbzQ0NDZv9tKOj4+zZs9v7jD6fLxKJwPPV7IBygglTU1MYhkkkkr0eyIHE5XJxudzc3Ny9HsjBA8oJJkSj0dXV1fz8fFg5kQWknCgsLISVE1kA5QQT4GSPCVvLiTRQ4GLhRhQ3snAjm9AhhJfu0xFAmEBrE2h7Am2LI00EIqI94v2Ex+PBMGwPpys4iKzFJ9fiE6tx3UpsJEon6hwBaA6rphBryWer8tgKAUu6Y8PcGCZyIhVXzG0JWS3hGWPAREtUVHErlTkKZU69nC/DkN2+KCGCJ0a980Pe2Sse+4R/Gae2MlPEyVEXVHXkVRZ74m2SOiZyIo3JpaWXhgcvLS4sAARHKRnEd/o+mSfwUCiLJ0UxTk6FNLdWlVfbjOVRuji3SMA/LK/sUdQcklfm8jbuIBeNRsvKyrIYDwQCgewEL7zwwm233baHA5iammKxWBt29Th8+PDU1NRmO7pcLpFox6dqUE5AdptkWyeRSPSNb3wj9UcsFuvd7373tpfkw0p/JsC2TkyAbZ2YANs6ZQ1s68QE2NaJCbCtExNgWycmwMkeE9LbOtECXwIxHREdBrFhEDMAgv7q5Lpg7Q6AbttK6+6wO22dqBOIzZN52q7wyFrUSqslF49V/HaednsRtwnd+Uhtum2dqMC89VO9sI6D7vYcgHqSdipV/PyesjomSdobEo7Hhx2O14z681arPRzatb5PnHyRUKIQiBW50gaUkzm3BkWRhsqrMdqH66pZKd+eiUSCy+UmshoGBAKBbDuvv/763lZObNHWaX5+/tVXX8XxdWk9Dz/8cDAYBLCtE+R6JSknpFKp1WrdhWeE56tMgHKCCVBOMAHKiayBcoIJUE4wAcoJJkA5wQQ42WMCIzmxjgSITYDYGBEfB7ExEJugFKy9DhSwpQBrRbAOwOkC7A1Oofcb+01OpBJJeD3hMVd41B0eXYkYEgSN5jZslF/IbSrmqctzjhXxWnYopmIn5EQqi2GnyWc2rpmNPvNKlGpFBYZitQK5Kr+xo6BdnFOzQ2PbAkdwtX/Z0r9s7V+yuCMBKruwEKSpoOJoify2ysbmwsptHMxyMHDRbjs/YztntaxEKb2E8HA4PDEZNBiDY2N4MKtyCjaWU10rlChzpQ1cEaUCiEIh/2i9+FRz3UmVnIuxAQBf/OIXn3rqKegnIBDIntPb2/uXv/xlb8/Nt5ATG1JUVLSysgKgnIBcr0A5cbCAcoIJUE4wAcqJrIFygglQTjABygkmQDnBBDjZY8L2yYk04iBuBdFhIjYMYjoQtwCAZ94pFVQEsFaEcwhwjgFMtT+TKvaznEiFIBK+2AwZqb0c0gTjVK/NBwBw0EKVup4AACAASURBVLzSnK5Sfnel4CYeaztPCnZaTqSSUlGhd0VcFPcq5oo6CtQdhW0NuQ0sZA8+nLNI0q7IyT9d0XBHVVOHqAbZ1neNfXW1b9Z20W4/Z5sJRKOZd8Dx0NRUYHA4ODaOZxv8wM7JFUqVuXKVUKxg8TJXh3Ax9okm+bs7G483SlmbfJ9eO9mzzrr6hixDYzatfjaeyPBJhSJIs7LyjpOqW3sbcvhbTRejkbhea9P2T/e/aZy1LmccvKg0t/fW5jve2ylTlG/4gAWL8/Ifhy//eXjsvCEejW99NEF+zskPHDv9wRPNvZt21c6CYDDo8/lKSkrgdCUL/H5/IBCAPceyA65NMQHKCQhkHVBOHCzgFwAT/j977x3f1nUe/J+Li7259xQpLnFTJCVK1KIsUsu2bMvbsZ04q0kzW6cjTfO2vzTt2/Zt0zRO4r3jeGlPalGTe4l7iBQnCALEHhfAvb8/KFMkhUUckBKk5/uHP/7gHtx7QAE4D57vPc8DcgIHkBM+A3ICB5ATOICcwAHkBA4Q7OGwbHJiIYwe2dqRrZ2xtSFbO3IsITmOEEKsEMQtJrjFiFuC2Cn3jqgIFDmxCKNtTGVpVVlapy2tOmqA8c4bEYgVxM+MFG6IEpbJeen42ylWUk4suK5lqkvf3a3r7dR3e7mjQsqRFsrzCoPys2SZK99GGyHkYOi2mbGrUzeuKgdb1KM2Lzppx4mCKmMyK2OysuRR/p2M1WFvGBu/eHP40s3hTuWUx4wSQ1Gm6x3G5hZzVzdj95BSdwXBYgmiEiSJ6eKENEFEnMdiU6Fi4a6ijF0F6Rkxi5cGN8GeVm+uax2+1jRY2zI0ozW5vwSfxykvSanclLU2J4HlqUvHzUFlXU1P/cXejqZhu93DP19mXnzFw/mbKrNFYr7TAYYZY/3JltqjjfUnWnQqvfuzJWXHV760ddtz5bJQP3THATmBA8gJHCA3hQPICQBYAMiJwAIWABxATuAAcsJnQE7gAHICB5ATOICcwAGCPRxWSE4sgtYh+3WGakC268jWhmhvewMghBArGHFyv9pRkYmWp+KQlwSonJiPnTZpqF6VpWXa3KKytFK0zptn8Uh5mKAoSrgxSlTOZfn48u+WnJjPDKXpM/Rf13V6uaOCy+JmSTOKg4sKgvKFpN/aPCwJi8NWp7hxtKeh267pM0577KQdLZRtW569FAihGbP56ujIpZs3LwzfGNd7yJLTZrPpeqeppdXc3e1bX4pZSL5IHJ8iil8tScrgSDw0qpGwHMXxYS9XbcpJSZx9xMtgz/vtFCFBoq3r06o2Z6Ule046W8xUS+1g3YWe2poe1ZS7jxuHyy7dnL5tT97ajatJ0vkXHe2gB1qGrh5uuHa0sb/phpv8HpvLLnood/vzm8oeLSbZpMd5ugLkBA4gJ3CA3BQOICcAYAEgJwILWABwADmBA8gJnwE5gQPICRxATuAAcgIHCPZwuDtyYhGOUWRrZWZFha19CY21WUGIu5bgliBuMWKvXnlRcR/IifkwiNZR/dPmFpWlbdrSbLJPenwKQZAh/NwoYVmksEzGTV3S5e4FOTEfhWVqtkdFh65TY9O6H8wm2FmyzMKg/EJ5npSz0m8AiqI6Ozvj4+MJMb9WOXRVOXhJMTBm0rh/VrwoqDImqzImK1PuvGoQJr0q1aWbw5duDl8ZGbE63O2QcOj1xpZWY1OzdWgYYaWkCH5YtCQxTZyYLoxNJtyV3mLsyvEI2rB+VdTavJysrKzExEQvgz2t3lzfOny1afBK46DO4K64VmpSeNWmrIqN6SFykcfTMgzT3zVRV9NTe6G79/qYm5GhEdJte/K3P5wfm+juV/nkjanao01XjzS0nL3ucL05IzQmePvXNu/42uaYVF+21ICcwAHkBA6Qm8IB5AQALADkRGABCwAOICdwADnhMyAncAA5gQPICRxATuAAwR4O94ScWIAD2boQdYWhGhDVgBgP92LfhhAhTi7BK1vJHRX3mZxYhNE2pjDXThhrFOZamvHcY4BHBkcK10UJyyOEpRyWZ+Vwr8mJ+YyZx2vV9XXqhjHzuPuRBCISRfF58tx1ISVR/GVJ+t/JnJyY/8nt1ylPjHUcHm0fNqjdP31Z91IghMx2+7kbg593ddYMD9lpd3sO7BqNqa3d1NJqGcTNDJB8kWx1jjyzSBid6KbyG8PQxpF+TWeDQKfYsK60rKyssLAwPz9fJPKsE2x2R13L0IkLnRfr+m2us/8sgijMjt+xKXPzutUCHsebyY8OTZ8/1nb6YLNi3F2dsdTM6G178rfuzpXK3QX56knNhU+unHj77GDbsLuzFSbvemX71mc2CFwUj3IKyAkcQE7gALkpHEBOAMACQE4EFrAA4AByAgeQEz4DcgIHkBM4gJzAAeQEDhDs4XDvyYn5OJCtC9kaGaoRUZeRdxWHEJonKjgFiJuH0HJ9Kd3fcmIOB2NRWVrHjTXjxnMmu8LjeIIgg3lrokXl4YKSIF6Gq2H3spyYY8qqbJ5prVPX9xkGGOQheRIjiM6X5+bLc1MlKcuR9J/DqZyYw3tLESOUb41KWz5LobFYzt4YPNrXe2HohsNt6olPUY6u7uHjJ6hJz28w93ClwbK0vKA1JdygMDfDaMqi67+u7W01DHWxCCItLa3wKwoKCtxH0Qaj9WJ9/8kLnQ3tw25elkjA3VicUrk5qyg7wVOPDIQQYmims+XmmcMtZ4+2WswudaA35Z5m6WscPPr66XMfXzbpXW5HE0oE6x9Zu/35TfnbsgkvZglyAgeQEzhAbgoHkBMAsACQE4EFLAA4gJzAAeSEz4CcwAHkBA4gJ3AAOYEDBHs43NtyYj4+iwoh4uQtk6h4QOTEfIy2sXFTzYTx4rSlkWY8NzcWcWIiBCXhgpJI4Xo2a0FkEhByYg4VpW7TtDdrWtu01x2Mh34JobyQAnl+QVBuuiSddFdryEfcy4k5fLAUhSHxfp3pLSYNhuP9vcf6ehvHx91noGL4gjiL1X79eueVq11dXTgJK0FErDxzrSwtjy101wjabtBp+1q1vS2msVvZCTabvXr16sJ5CATO+4tMKnXVl7oPVbeNTbqrqRUeInmoPGP31uy4aK9yfEaD5erZrjOHW1pqB938BULCJRu2r6ncV5i02t2WHcpiu3a44ejr1c1n2t2cLS4tevOTZZUvbw2Pd/fbH+QEDiAncIDcFA4gJwBgASAnAgtYAHAAOYEDyAmfATmBA8gJHEBO4AByAgcI9nAIHDkxn/mi4gqiPbQHuI2/RcUDKCfmoGjdlKluylw7Ybpotis9jicJXgg/L0JYHCXcJOUmoUCTE3MY7MZOXVeTpqVxpsnisLofLGaLc+XZJcFrs2VZbMJvi6OXcmKOWUtxaKT9pvEuW4oxve7UQP/nnZ0dyin3I7PDI6qSkuIt1v7WtsbGxsbGxs7OTh+uSBAsUVyKPLNImprN4vDcjLSqFdqeFk1XA6VRzX98kasoKiri8xfXQeoZUBy/0HHyQqf7phRpqyIqN2U9tDFdLvUqSvdvuafR3omzH1089e55xbDLDyyLZOVtWbPrlYr1jxSzOU76ZoOcwAHkBA6Qm8IB5AQALADkRGABCwAOICdwADnhMyAncAA5gQPICRxATuAAwR4OgSkn5uNA9kFENTLUFR9EBeIWEtwixFmLCK9Kwy/iQZYTczCI1lh7psy148YataWdQe56DMwyu51CQGXHSDdIJYH63qNoqkPX1axpbZxp1tk8bOXhsrhZ0ozi4KKCoHwh6fw2/CVceolyYg7vLUWsUL5lOS1Fr0p1rK/3QE/XsMbdngOSIPKjonamrn4kLYPS6RoaGhobG2f/Oz7uoR3IIlhsjiQ5U565VpyYRrCcpN3nMCtGNV0N2u4mu8lw51Eej5eTkzNXACo7O5vDufXtQdns9a3DJy501tT22R0uPwgcNlmcl1i5KXNjcQqH7W4ms/i33BNDM81n24++Xn3lYL2dcrn5SRIsLn+8dO93diTnJs5/HOQEDiAncIDcFA4gJwBgASAnAgtYAHAAOYEDyAmfATmBA8gJHEBO4AByAgcI9nAIfDkxH59FhQBx8n0QFSAnFmF1aJTmhglTzYTxIuVF6S2S4Ifwc6NEG2NEW4TsFeom7Xdohu43DNSqG+pnGmcod3e4I4TYBDtNsjpfnlsSslbOkfl2RZ/lxBz3lKX4srvzi67OKaPRzTAuSW6IT9iVuroyJVXI4SCExsfHG7+ioaFhcnLSyysutXW2rq+NtrlUAk5rQGn15vPX+k6c72jrHnMzE4mYv3Xd6spNWdnpMd40pfBvuSfDjPHCp1cP//7kQMuQm2Gphcnbn9tU8Xy5JFiMQE7gAXICB8hN4QByAgAWAHIisIAFAAeQEziAnPAZkBM4gJzAAeQEDiAncIBgD4f7S07Mh0b2ga9ExVVEu7s7ewELREURItwtByAnXDG7nWLCWDNhujhj7UaeWkkjhEScmCjhxmhReSi/gOXTRpZ7gTHzeK26vk7dMGb2cF8/gYhEUXyePHddSEkUf2liBl9OzPGVpWi7afSgVZbVUtAM0zQxfrSv91BPt9rssnszQojPZq+Pi38sI3N78ioOeXvbwXxXUV9fr1B4bqzNCw6XpeXL0wvct852WC36gVutsxnaw8agRa4iJCLxStPNY+euTyrdubr46OCKDelVm7OiI7zyVWPD0+eOtlUfap4c86Lc065caZC7HwV9jYOn379w5sOLOpXe1Rgun1O6p2jXKxVp61YZDAaQE74BcgIHyE3hAHICABYAciKwgAUAB5ATOICc8BmQEziAnMAB5AQOICdwgGAPh/tXTizEMYKsl/0uKkBOeIPVoZ40XZkwXVSYrtloJ3VyFsFmCcL4RVGi8ijhBgE7UD/XU1Zl80xrnbq+zzDAeHIzMYLofHluvjw3VZJCuL6Xfw4/yok57hFL4WCYayMjn3d1nhrsN1Iu9ysghGQ8/tak5F2pqzclJrLvWDrnu4ra2lql0l1blK9aZ+ezhe46oNzZOtsjs66ioLAwOjZFT4m7R2mrzeVgFkGsSYuu3JxVUZYuEnoORP1b7snLvtmhscGljxTu/+HDUcmQYV8yICdwgNwUDiAnAGABICcCC1gAcAA5gQPICZ8BOYEDyAkcQE7gAHICBwj2cHhQ5MR8bouKa4j2kIe9DSFAnEzEKSR4ZXOiAuTEkmAQrbK0TRgvTplrZ6xd3jxFyk2OEpZHCIvD+EUE4bk6/z2IilK3adqbNa1t2usOxuF+cCgvtECeVxCUmy5JJwnXeeRlkBNzeG8p4kRBmyNXL5OlsNjtl2/ePNrXe6K/12x32RoBIRQkEFSuSt2XkVEYHeNK7AwODs5Wf2poaGhqatI4a3SB3zrbIxwOJyExRSCLMTmkInmsUBrFIp2ETFwOe8PaVZWbMkvzk9zohDn8W+5JOao6++HFI388PXnDZdNygkXkb82ueK68/Il1PAHEzN4CcgIHyE3hAHICABYAciKwgAUAB5ATOICc8BmQEziAnMAB5AQOICdwgGAPhwdRTsxnVlTYGhF1FTk814G5xVeiQmdZQ3CLpDJ3NWEApxjt432TpwxE+zRVZ6dNHsdzSVm4YG24oCRatIlPhqzADP2OwW5s0bQ2a1rbtO0Wh9X9YDFbnCvPLglemy3LYhOLV9VllRNzzFqKgyNtI15YisqYzIfjc1Mk/v8s6KzW6sGBo329NcNDdrdVlaIlkodWpexKXV0UHeNmGEVRXV1dg4ODra2tjY2NV69eVakWOIZ5rbPTCbeL8q3W2V1NdrPnLUF3QrBIgThUJI8Vy2NEQbFieSyLXFDQLCRItHV9WtXmrDTvtin4sdzTbN/s0+9fuPh5rdXk8u0qlos27V+3+1sPpeTDb17PgJzAAXJTOICcAIAFgJwILGABwAHkBA4gJ3wG5AQOICdwADmBA8gJHCDYw+FBlxPzuS0qriGHt811EcFHnKyvdlQUIsLdDdfAfBQKhUgkEoi4KkuzwlQ3Ybqgozz/PCQQS85LCxeURIk2hvJz3TQ0vmehaKpD19WsaW2cadbZPLQN57K4WdKM4uCigqB8ISm4dYYVkRNz9OuUB0daD420KcwuexLMkiIJq4zJrIzNWg5LMWOxnLsx+EV355WbN92nsVKDQ3amrn44LT3JWU7tzmBvfg2oy5cvz6bk0ILW2e5+0HnZOtsjBMESSMLmXIVIFkOyb80wMTakanNW1ZasELnI43m8L/dUsG5Vxd789dsy3ezPMGiMF/589ejrp/saB91cNCEzdvvzmyq/vk0WKvE4wwcWkBM4QG4KB5ATALAAkBOBBSwAOICcwAHkhM+AnMAB5AQOICdwADmBAwR7OICccM5tUVGLHBNeP41EnAzEXU/wyhCnABH8ZZxh4DMrJ8Ti21X+jbYxhbl2wlijMNfSjOckL48MChMURgk3Ros2cViBlxKlGbrfMFCrbqifaZyhPOxOYBPsNMnqfHluSchaISNYSTkxC80wzeqRE2Odp8Y7766lmNDrTwz0HevrbRj30HV81lI8lpkZJ73daNpjsDc+Pn758uVLly41Nja2tLQYjcZbrbMzCrlyd7+Ll9Q62yN3ugoOh1eYHb9jU+bmdasFPM9N400G65Wznf4q9zTUMVL9Qc3xN8/opl3+63N4nHV7i7Y/V168s4DlRUGqBw2QEzhAbgoHkBMAsACQE4EFLAA4gJzAAeSEz4CcwAHkBA4gJ3AAOYEDBHs4gJzwzG1RUYccHpKh8wBR4YE75cQcDsaisrSOG2vGjedNds+7WGa3U0QJN0aJyoN46YG4nWLMPF6rrq9V14+bPcgwAhEJwrgoa+S22C1pEatXZnrzmbMUJ8c6pyxeWYqq2DWrJP7/RTmi0x7t7f208/rgjDu1wyKIgqionamr965ODxEKlxTsORyO7u7uuX0VnaMKfnL2crTO9sh8VxEcFvtQxaZHd5YUZScQXrzZ/VjuSTujvXqkvu5w65UD9Q67yx4qYbEhW5/duOuVCuibPR+QEzhAbgoHkBMAsACQE4EFLAA4gJzAAeSEz4CcwAHkBA4gJ3AAOYEDBHs4gJxYGo4RRDUwtiZkrfFFVHALEbcYEe7Smg8ObuTEfIy2sXFTzYTx4rSliWZsHk/LJ0MihKVRwvII4ToOy3MNnHuNKauyeaa1Tl3fZxhgkId0TYwgOl+emy/PTZWkECuuZO4dS9GrUh3r6/2yu/OmVutmGEkQ+VFRe1NXl4WGx4aH+xDs2e32jo6O+vqGc63dnRqKCory0DpbpdD2+tI62yOzriIkIrG0pPjJfZU7tpd7/Cj5pdyTyWTS6/VhYWHqCc2ZD2qOvVE9PuCyWw/BIjLXpW1/flPFcxt5Qih5B3ICC8hN4QByAgAWAHIisIAFAAeQEziAnPAZkBM4gJzAAeQEDiAncIBgDweQE77jGNGrznFZHVymFjnGvH7afFGxFhGBV4zIX3gpJ+aw02aluX7CdHHCdMlsn/I4niS4Ifz8CGFxlLBcyk3Gm+xdQEWp2zTtzZrWNu11B+PyFvVZQnmhBfK8gqDcdEk6Saz0OuKDpdgZuyZ5GSxF+5Tii67Oo729SpPRzTAui1wfF7cnLb0yJVXI8VwfyRVGs+VPZy4fbuwe1FHuM2uYrbO9ISg4tLh4bWlJcWFhYVlZmZtv9SWVe9rxaGFy2u1yT3NyYi5c6WscPPr66TMfXrQYXfbNFsmEm59cX/HcpjUb0n16cfcJICdwgNwUDiAnAGABc3IiIiLigw8+mH9IIpEUFBRwMIIDp8DvVRxgAcAB5AQOICd8BuQEDiAncAA5gQPICRwg2MMB5AQO09PTXC5XKpXO21FxEUSFlyxVTsxHRw1MmC4qTHVKSwPjKXGPEBJxYiIEJVHCjeHCUpIIsCXeYDe2aFqbNa1t2naLw2X+dxYJW5wjzy4JXpsty2ITK70cz1mKE2MdSouHLPzyWQoHwzRPjB/t6z3Y0z1jNrsZKWCztyQl70vP3JSYyMZYfzVGS3V738H6jpYhd1W5GIfDMNyj7W3BbJ3tDVFRUYVfsX79+pCQkDvH+FDu6U45MYtJZ758oK76g5qm6jY3p7rVN/vlrbKwB/FXHsgJHCA3hYMbOWG1Wuvr6y0Wy/wHH330UYPBgEBOAPcr/f39qampro7u2rXrT3/6k3+vqNPpKIqCrzDf0Gq1drvdaSgDeKS/v5/D4SQkJNztiQQkt3/tA0uEpmmVSiUSiUBO+ABFUVqtViaTgZzwAYvFotfrg4KCQE74gFKpnJiYWLNmDcgJH4BgD4fZO+NW4JfnfYlKpeJwOIvCFYJRko4WlqOWtF9lMUso/USTaQ5WLk3mO8hS5gEQFUqlUiAQ+CYn5rDROhXVpKIapqyXrbTa43iS4Mk52WG8dRG8DQLSXfvfexCKpnpMfW366y26NoPDQ+qfy+KmCVMLpHl50hw+a6VbntAM06Ydr1b0Vit6pq3uNjEghJJFIRURqx+KTE8U+dmSUg7H1bGxkzcGq4cGzXa7m5EyHq88LmFHUvKGuDjSmzYOLhie1pxuHzjZ1j+q1rkZ5t/W2d4QGRmZl5eXn5+fn59fXFw8/wc+QzM97WMXjl+vOdlhtbisnMbhsnPWJqzbtjqjICosLNRVuDLaM3H2o0tnP7ikVbr8C7C57LytWVueLivZU0CySZzXFVgYDAaz2RwW5v8u8Q8CkJvCob+/nyRJpzfO7ty58+LFi66eCHICuD9pbW3Ny8tzdTQyMrKlpcW/V9Tr9VarFX6v+gYsADgMDAxwOJz4+Pi7PZGAZHp6msfjSST3/y9zvwNyAgeQEziAnMBBqVQqFIrMzEyQEz4AwR4OICdwUKlUXC7XTbjCQtNc1M5BDVymjkQeGh3Pg7ShFBvKthO5VqbofhUVSqVSKBSKRP5pC8Eg2kgPahzNKnutztGFPHVrQAjxWZHBZHEIu0RGZhMokFYui9VyZfCqUq7upfu1dnddFhBCJCKT+UmZgvRcUbaUXOn3Es0w1/WT51WD51UDKsrkfnCiIGhL6KptYalxfJl/p2F1OOonJ48NDdaMjdrdyoBwoXBzbNy2uPicsHCcJh59CvWp6zfOdQ1rTBY3w2wGra6vzb+ts70hIiIiJycnNzc3JyenqKhodvOc2Ug1Xh64Ut3T2TzqJlUoCxasLU/dVJUVv8rlsks76M7LvWc/uNx0os1uc7m3KShSVvZ48ZZn1kckPRD5eqPRaDKZQE74BuSmcBgYGCBJMjExcdHjDMOkpKQYjS4V8uTk5Ars9QE5Aaw0c2WdBAJBWVnZ/EMkSX7/+9/ftWuXf68IO/1xgK1zOEBZJxygrJPPQFknHKCsEw5Q1gkHKOuEAwR7OEBZJxyWttGTnkJUI0NdQVQDsvd7fREScTIQp4DgFiHuesTyc9L2LoJT1sk9VseM0tw4YaoZN9bYaA8tEBBCbJYgjF8UJSqPEpYJ2AFQcYWiqM7Ozvj4+ODg4DHzeK26vlZdP272YL8IRKSKV+UH5RUFFUTyV/pl+lDxaVdcdpLYz4lIrdVysrf3UHfXtckJh1tLESORbl+16vHMrKww3xcXmmbq+kcONXRWt/ebKXft3O2aaXVX43K0zvaG+TWgSktLKROx1HJPrsaoJ2Yu/Pnq8bfO3Gi/6e5Uhcm7Xtm+9ZkNAvFK7/JZSaCsEw6Qm8LBTVmnTz/99I033qAXfh9euHDBZrMh2DkB3K9AQ+zAAhYAHEBO4ABywmdATuAAcgIHkBM4gJzAAYI9HEBO4OB7FUpaiagGX0QFOwlxiwju+vtAVCyfnJiDQbTG2jNhrJkwXZyxdnuznULKTY4SlkcIi0P5hawV79ngJfPlxNyDU1Zl80xrnbq+zzDAeHqlMYLofHluvjw3VZJCIJwdAktmzlIcH+uYvhuWYjbYQ3z+2ZHhL7o6G8fH3f+xUoNDdqaufjQ9I0Eu9/miVpv9QufgoYauS91D7qWInOVgKQa7zhxRjo/4fDlMZl1FQUFBeFC8ZpxTf37IYnbZIYPDZResW1WxN3/9tkySdBnDzPbNPvvRJbPB5VYSoVSw/uG125/flL8tm8AornXPAnICB8hN4QANsQFgASAnAgtYAHAAOYEDyAmfATmBA8gJHEBO4AByAgcI9nAAOYGDf1pkPaiiYgXkxHwsDrXCdGXCdFFhumqjPXRBQAhxWdJwYXG4oCRaVM4n761fQ07lxBwqSt2maW/WtLZprzs8dQsP5YUWyPMKgnLTJekksaILkA+WYndcdiK2pVgU7I3r9ScH+o719TaMe+gQkxocsi8jc19GZjhGLbIpneFUa9+p1t7mG+4ux2WT+fERcVy7fay/pbHh6tWrKtVd2FExS2RkZGJcKtsRbFLxZYIoLtv5yw8Ok2x8aM2ORwuT01x2c7GaqdojjUdfr24+0+4mGxmXHrPja5sfenFLUETgfbO5AeQEDpCbwgHkBAAsAOREYAELAA4gJ3AAOeEzICdwADmBA8gJHEBO4ADBHg4gJ3Dwj5yYj2MSUbUMVYeoOuQY8vppJOKkI24xwS1B3FJE+KeLw3KzwnJiDpqhlOamSdOlCdNlg81dqZlZCMQK4mdGCTdGCsuCeBkrMEOPuJcTc+jthuaZlkZN83VtJ0W7vPN9FhlHVhCUVxRUkCXNIIkV7VHsYJi66aHjox2nx7tmPPWlyJJHVcVmVcVkxQh93MfgKtjrVU0f6uk53Nt9U+uujQdJEKVxcXtWp1elpEp5PN/mgBAaVKiPNnUfaeoad9s6WyLgVWSn7CpIl9OWpqbGpqamxsbGpqYmrdtJLisifpCYGyEVREkFkXJBDJtc/EdIz4nb/nD+pqocscRljaaR7rGT75w7/X6NesJl5Sg2hyzZVVj50pbinQUs13syAgiQEzhAbgoHkBMAsACQE4EFLAA4gJzAvHS2WgAAIABJREFUAeSEz4CcwAHkBA4gJ3AAOYEDBHs4gJzAwf9yYj63dlQ0IFsTsnV4U5IIIYQIHuKuJ/hViL8DEfd0JHC35MR8jLYxhbl2ylw7abpipz2kxRFCEk5ConRvouRhHnk3e8h7KSduj6epDl1Xrbq+eabV5PDwMmUc2cbQ9Q9FbAvirvRrdDBMi3d7KVgEUR6R+sKqkvXhyUu9isdgr1el+rK788uuLoXR3RyEHM7+rDXfKiyKFGO1Ge8cVRxq6Dre3KM2uPunSYkMeWlL0e6CDBaLQAiNj483fsW1a9emp6dx5uAzBEFI+JEh4sQwSapcGDu/RJhAyN3zVOn+b5S7URQMzTSfbT/6evWVA3Vu+mZHJIY9/bN9VV/fGuiKAuQEDpCbwgHkBAAsAOREYAELAA4gJ3AAOeEzICdwADmBA8gJHEBO4ADBHg4gJ3BYXjkxH3oaUfVLExUEH3HXEfwqxK9EhGDZZ7h07gU5MYeDsaosLQpT3bjxnN427H4wi+BEizYlS/eFC4rRyjZsmGWpcmIOmqH7DQO16ob6mcYZyl2vYzbBLgjKq4rckSJecvYfnzlLcWz0usrqrgZXljzq+VUle+Kyva9J5WWwRzNM08T40b7ew709KpNLbcAhyd2pad8rLknGy9952To7NkT29a1rHy3OIhdGC/NdRW1trVKpxJmMb3BJYbA4IUSUFCZN4bFvCRuBiLfnyZKnXtkkFLvbZWKYMV749Oqh104Otg65GpOYFff8PzxR/sQ6/057JQE5gQPkpnAAOQEACwA5EVjAAoADyAkcQE74DMgJHEBO4AByAgeQEzhAsIcDyAkcVk5OzIdWIapuCaKCECDeZkLwCOJuRARnRaboFfeUnJjP7HaKCWONwlxLM+6qIQnZEXHiqlWyJ4Rsl0X2lwOf5cR8xszjter6WnX9uHnCzbAkUcJDERXrQkpWuNbTLF5aijhR0POrSvYnFvBJz+/wpQZ7Doa5NjLyeVfn6cF+A+X8/cAiiM2JST8oKc2JwH0neNM6OzpY+nx5wf51OVy283+U+a6irq5uamoKc1ZLRcwLDZOmhoiSgkUJBMGSBgkff3HDI8+u4/I8/AP1NQ6efv9C9Qc1erXzbSsZpatf/uen87auWYZZLzsgJ3CA3BQOICcAYAEgJwILWABwADmBA8gJnwE5gQPICRxATuAAcgIHCPZwADmBw92RE/OhVcjWylCNiLriWVSwpIi3leBXIV45Qnf/i/qelRNzOBiLytI6bqwZN54z2RWuhhGIFSZYmyzdFyPaQqxIBt8vcmKOKauyeaa1Tl3fZxhgXLyF5BzZlvBN2yO2Sdh359/LG0sRxBU+npj/wqrSML67Sfoc7Fkd9kvDN4/29Z4c6DPZnG9uKIqO/mHJ+rL4+CWd2SlTOsOJ5p4jjd1dY87VQnSw9Btb1z5SnMUhPbzr7qKrIFncYFFCuCQ1VLIqJibmqW9srnq8iM3xMGGryVrz2bUTb59tr+lymrQs2pH30j89tbrI20zrPQLICRwgN4UDyAkAWADIicACFgAcQE7gAHLCZ0BO4AByAgeQEziAnMABgj0cQE7gcPflxHxoFbKeYcxHEVWLkMvq7QghxApC/EqCvxNx1yJ0F26Hn+XelxPzYNSW6zf0B0YMp9y0phCwI5IkexOljyz3Rgr/yok5pqxT1YpzF5QXTQ6z0wFcFrcspHR7xLY4Yawfr7sk7DR9crzzrb4rHRrnGz74JPuR+LyXUtYliJ3/cfCDPa3V8n5r69stTWqz8z/U2piY7xYVb0pM8kvNr85RxR9O157rGHCavYuUS17eUrSvdA3P6+hraGhotrF2Y2NjQ0OjSrVC/Sok/PBQcXJKYu4P/urFyseKSS8aSAxdv/nOP3xy5WD9nalLgiA27Ct58f88FZ8Rszzz9T8gJ3CA3BQOICcAYAEgJwILWABwADmBA8gJnwE5gQPICRxATuAAcgIHCPZwADmBw70lJ+agtch6lrEcR9YaT5ZCjnibCcGjiFuK0Ep/+QSUnLiFg7FOGC8O6r6YMte6GjO3kSJatJlFLMuCuExyYhYbbatV1x+dODFqHnM1ZrU4ZUfk9sKgAu87PfidRtXN13svX5jsdZrSmu2Y/c3VGwpC4hYd8lewRzkcn3d1/LaudlyvdzogPTTslYLCvWnpbH+s7P2T02+dbTja3E3TTl5xsFj45PqcFzYVivlLflHj4+NXr9X96fPjFy9eVSuHbBbnL8ePkCxOeFBiZeWOn/zNt7OysjyO767r//CfP7t2pPHOQwSL2PhY6dd/9Wz0qgDI+IOcwAFyUziAnACABYCcCCxgAcAB5AQOICd8BuQEDiAncAA5gQPICRwg2MMB5AQO96icmIOeQZaTjOUAopo8VHwiIxHvIYJfhbiFK9bhORDlxBw66saw/siQ/oDVoXE1hsuSxoorUmRPSbl+Lj6zrHJijl5930lFdcNME80473wQxJVvDit/KGKb+C7VekIIDRvUHwzW/Xmo0eqwOx3wVcfsHJK49cb2b7Bnp+lDPd2vNdT1q9VOB8RJZS/l5z+TncMj/RAdDShUb56pP9bc47QdRZBI8FRZ7gubCsR8d92nXWG22g5Xt7/xwamR4V6jZtQwM2rQjC63q4iKjNmzZ1fF9orKykqJROJmZMfl7jf/7uP2ms47D7E55I6Xtjz/D/tDopc9i4oDyAkcIDeFA8gJAFgAyInAAhYAHEBO4ABywmdATuAAcgIHkBM4gJzAAYI9HEBO4HCvy4k5HBPIeoqxHPfCUkQjXsXKWIqAlhOz0Aw1bqwZ1H0xZa5z84cN4mUkSfclSHaSBN8v110ZOTHLlHXq3FTNOeUFo915PSsOi1McXLQ7qipWcNeq66isxo8H698frNNSzussze+YvRzBHs0w527c+G19bcuk82JToULhs9m5X88vkPB80QaLGFNr3zhTf6C+w+5woijkIv7TZXnPledLBb6832YVxftfXFNrTAghyqIzzIzOugqjZoyy6HBn7wI+n79hw4aKioqKioqCggKCcP7901Td9vqrH/Q3O0kl8YS8nd/Y9szf7pOHy5ZpkpiAnMABclM4gJwAgAWAnAgsYAHAAeQEDiAnfAbkBA4gJ3AAOYEDyAkcINjDAeQEDgEjJ+ZwjCFrNWM5jignBVIWQMYg3jaCX4W4Rcs0l/tATsyhtw0P6Q4N6Q9ZHc5vn0cIcVjiOPFDydLH5bw0zMutpJyYxeKwXFXVnlRUj5nHXY2ZrfVUFFTAuku1nkx26rPh5nf6r46btE4HBPOEjyXkPx1fSJqoZQr2GsbHXmuoP3tj0OlRMZf7XE7uNwvXBvH9oKnGZ3TvXWj67Gq71e5k14iIx32yLPflLUUyoR8UxRyUWWvQjFn1E2yHYnigg6IoH2fvloSEhMrKyh07dmzbtu3OL1iGZi5+fu2tv/94rM+JChJKBHu+u+OZv9knlAqWY244gJzAAXJTOICcAIAFgJwILGABwAHkBA4gJ3wG5AQOICdwADmBA8gJHCDYwwHkBA6BJyfmcIwiyzHG/AWyD3gYyU5B/CqCvxuxk/07hftJTsxCMzaF6eqw4eiY4SyDnJdCQl9tpIgXV7JZPoZqKy8nZmEQ06nrOjlZ3aJpY1zsFAnnhW8JL98StknEvjuBKM0wFxR9v++uaZ1x3jODyyK3hK76bsbmtOCoZZrD9amp1xrqjvc574ch5HD2Z635VmFRpNhdFSMvmdTo3znf+Nm1dqvNiaIQ8jiPFq/5+ta1YVKRDyc3W2yfH2/+8ECdzmC58yiHzWTGEVzHxKmTx7u6unw4v0dIkszLy9u9e/eePXsWbaew2xznPr707j9+ohhS3vlEWajkiZ/sffQHu7h8znJMzDdATuAAuSkcQE4AwAJATgQWsADgAHICB5ATPgNyAgeQEziAnMAB5AQOEOzhAHIChwCWE3PY+xjLcWQ5guyefprNWgrBXkQm+uXK95+cmMNsn7ppODag/cxkd17kByHEZgljRFsSJLvCBSVLPf/dkhNzTFoUpxVna6YvWhxWpwP4JH9dSMmOiIoYQfQKz20ObzpmfyttQ37w4o7Z/qJXNf37hoZDvd1O+0NwSHJ3atr3ikuS/ZH4UxtM715o+uhSs4VyoigEXM6+kjUvby0Kl/rycZtVFB8cqNM7UxQCPuexqvyyvLBrVy5WV1efOHFC76JDOCZhYWGbN2+uqKjYs2dPVNQtsWSn7CffOf/uL/40o3CyXSYsLuTZv3u88uUtJJtcjiktFZATOEBuCgeQEwCwgDk5cScSieRnP/vZX//1X/v3ivB7FQdYAHAAOYEDyAmfATmBA8gJHEBO4AByAgcI9nAAOYHD/SAnvoJw9CPrCcJymKBvuh/JkKsYXiXiP8ywsLK697GcmIVB9LSlYchwYMJ0gWact2tGCEk4SfHinQmih7mkt4Xy77qcmMXsMNfNNJxUVE9YJ50OIBCRIUnfHr41V5ZNrFSj9UX06ZUfDtYfHmt31TE7Uxb5bNLa3bHZpIsmB5iM6nRvtzb/ubPD4qz4EosgNiUk/uXakjX+WMJmDOZPrrZ9eKnVYHEijTgkuacw/ZsVxREyXz50JjN14FTbhwfrDUYnJxfwOY/uyH1mbxGHjS5fvnzmzJkzZ840NzcvR8qRxWLl5eVt27Zt27Zt5eXlHA7HbLAcee3UJ/920Kh10hkldnXUk68+su3ZjQTr7rwJ5wA5gQPkpnBwIyd+/vOf/9d//ZfF4kQ9IpATwP1KU1NTYWGhq6MhISEdHR3+vaJer7darfAV5htardZut4eEhNztiQQkAwMDHA4nPj7+bk8kIJmenubxeBKJHzY7P2jQNK1SqUQiEcgJH6AoSqvVymQykBM+YLFY9Hp9UFAQyAkfUCqVCoUiMzMT5IQPQLCHw+ydcSvwy/O+RKVScbnc+yxcYaMbPHSOz5wgkcvuArPYUJqVqLSgLTTy5dOnVCqFQqFI5Eu1mcCCYtRT9jOTthNm2uVGCgJxQtglUZwqOZnnsRU5RVG9vb0xMTH3wieXQUy/ZeCi7kqXucdVradQTkiJeG2peK2AdXfaAMzYzAcnOz4dbzM4nPdIiOFL90Vl74nI4LGWJYaZsVg+7+/7pLdb76JJQ25Y2DfW5KyNiMS/ls5MHWjq+aKxx2Bxci02i7UlI+G59Wtignz54lLP6I6d7z5xadBktt15lM9jV21K2/fQGpGQixCampo6f/786dOna2pqtFrnjUAwCQoK2rBhQ3l5eUVFhYQvPfK76lNvnKcsTuYWmx6978dVxXvyl2MaXmI0Gk0mU1hY2F2cQ+ACuSkcBgYGSJJMTExc9DjDMAkJCW6ax0xOTq6ATgM5Aaw0N27cSE52Xq6UJMlXX331F7/4hX+vCDfT4QB2GgfYOYED7JzwGdg5gQPsnMABdk7goFAoFArFmjVrQE74AAR7OMDOCRzup50Td0ATtmaCOsmiThLMtNuRLIaTx3B30NxKhljCr4b7fufEIhhEq63tY6YTI8bjDsZ5NSSEkJgdHy/eHS/azWW5FA8URXV3d8fGxt5Tn1yFdeqM8vwl9RUr7fzVCUhBcVDR9rCtUTw/pOB9wGSnvhxte3ewdtKsczogmCd8Mr7g6cQiOXdZJIqBor7o6fpjU6PS5OQGf4RQYVTUK3mFmxMT8e/wN1qpz65df7emWWtyckM0m2TtyEn9xtai+FD5kk5rMpn0er1ILDt8puOjQw1Od1EIBdyHt2c/vadQIr7Vi9vhcLS2th49evTYsWPLtJ0CIZSUlLRz587ydZvGL6tOvV1jszpRFBmlqS/8cn/OpszlmIBHYOcEDpCbwsHNzomf/OQnv/vd72hn1ecQ7JwA7leg50RgAQsADiAncAA54TMgJ3AAOYEDyAkcoKwTDhDs4QByAof7Wk7MQSOqibEcR5ZjiHZvKUjEzSP4VYi/G7E839z6oMmJOWy0fsRwekD7Zy3V52oMi+BECEoTJLtjxFsJtHhduEfKOjnF5DBfVF4+oTg1bVU5HUAgIlOasSOyIk+ec1dqPVms1uM3Wj+aaG3XON8bxGWRVbFZ304rTxIvyz3alMPxeVfH/9TVTrjozZAeGvZKQeHetHQ2dkhgstq+qLv+5pn6ab3xzqMsgqjISf1e5bqkcG/fSLNyIiwsjMViGU3Ulydb3v+y1pWi2FeZ9/yjJWIRb/7jSqXy/Pnz1dXVhw8fnphwuZcIB5FIVJhfGEJHTteZeA7+nQMKKnK+8S/PphY6v2t2+QA5gQPkpnCAnhMAsACQE4EFLAA4gJzAAeSEz4CcwAHkBA4gJ3AAOYEDBHs4gJzA4cGQE3M4ENV8q3s2rXY7ctZSPIIEuxDhsnTMAysn5pixdt3QfXHTcNxOm12NEbAj4sVVq2SPC9lRcw/ey3JiFgYxLZq2k5PVHbpOV2Mi+REV4Vs3h2/ksXiuxiwHc8Feu37SY8fsb6dtzAuOXY5p2Gn6UE/3aw11/Wrnn6Z4mezFvPxnsnN4JG5YZaZsn9def/tsw5TOcOdRFkFszEj6ix3rMmI9L6Pz5cTsIzqD5dOjTX8+0mgwLUFRIIRomm5ubq6urq6urr5w4YLN5mSjAz5BohCRSRaEwkNRJIlu/yUJgijZVfDSPz+dnJOwHNd1CsgJHCA3hQPICQBYAMiJwAIWABxATuAAcsJnQE7gAHICB5ATOICcwAGCPRxATuDwgMmJORyIqmXMXyJLNWKc5DpvQ3ARt4zgVyH+Q4hY3FsC5MQsNto4Yjg5qPtcY+12NYZArDDB2mTpvmjRZhbBvvflxBzDpptnps5fnr5K0c5rmgtJwYbQsqrI7aG8FfrJuSjY69EqPhysPzjS6qpjdkFI3AurSrdHZyxHx2yaYc7duPE/9ddaJ503FQ8VCp/Nzv16foGEh6twKLvjUEPn709dU2idfGwJApVnJH/nodKsOHep8zvlxCxavfmzY82uFIVUzH98Z8GTewrFQuevQqVSnT17trq6+tixY6Ojo0t5Wd7CQqQchQQTEcEoXIpuJVsJFrHxsdKv/+rZ6FUrIQxATuAAuSkcQE4AwAJATgQWsADgAHICB5ATPgNyAgeQEziAnMAB5AQOEOzhAHIChwdVTnwFY0XUZcZyHFlOIcZ5Df1bEDzEXU/wqxB/ByJuxScgJxYxY+0a1h+5qT9G0c47IiCE+GRogmR3nGDPUK8mIOTELHq7/oLyUrXirIpyvkuAQESePGdHZEWmNGO5az05DfamLYY/3Wh4b6BWZ3PSoQEhFC8Kfm5V8f7EQj72PganNIyPvdZQf/bGoNOjQXz+C7n5L+bly/lOihQtCZvDcby55/enakdUGqcDSlfHf7+qLCfeeV8QV3JilllF8cnhBqPZiYuSSQSPVeW7URQIIYZhWlpaTp48eeLEiStXrizTdgoBEoWh6EgiftZSsDnkjpe2vPCL/cFRy5uEBTmBA+SmcAA5AQALADkRWMACgAPICRxATvgMyAkcQE7gAHICB5ATOECwhwPICRwedDkxB2NB1BXGchxZTiLGZYUihBAi+Ii7juBXIX6lYkoHcuJOHAw1YawZ1H0xZa5DyHm6hkAsvj09SbY7LeIRkljRmkg40Azdqm13X+spXhhXEb6lLHQdl7VckZibYM9opz4fbn67/+qESev0uSE80dNJRc+tKlmmjtnXp6Zea6g73ue80pSQw9mfteZbhUWRYpfV0rzE7qCPNXf/8XTt8LRzRZGfFP29yvXFKXGLHncvJ2bR6syfHfegKJ7aUyQSevgnNhqNV69ePXz48MEDB4dvDnt6Tb4gQtIIFBtFJAiQiCfkPfL9qqf++hFx0OJtXv4C5AQOkJvCAeQEACwA5ERgAQsADiAncAA54TMgJ3AAOYEDyAkcQE7gAMEeDiAncAA5sRjGjKznGfOXiLqEGLe3PBMSCyoj+FV86XZEcFZqfoGE3jY0pDs8pD9gdThPHyOEuCxprLhilexJGTdlJeeGyZBx+KzygttaT8INoet3Ru0I4fr/q8ljsGen6eqJ7jf7LrfPOO+YLSA5e+JyXk5dl7g8HbN7VdO/b2g41NvtoOk7j3JIcndq2veKS5KxM4Y0w1S39f32xNUbU853tOQnRb+8Ze3mrNuNo72RE7NodeaPDtV/dqzZYnXyVSCTCh6r9EpRzDI4OHjyxKmPPvjsWt1Fu8P528ZnCETIUHAUkRCB4qQS6Z7v7njmb/YJpf73TyAncIDcFA4gJwBgASAnAgtYAHAAOYEDyAmfATmBA8gJHEBO4AByAgcI9nAAOYEDyAmX0DpkPcNYjiPrRYScl/K/BUuGeFsIfhXilSMEy8diaIYa97SRAiEUxMtIku6LF1exWctyR/9yoLPpaqYvn1acUVMzTgfM1XrKkmb68breB3uNqpt3sWP2qE73ZnPjn663W+xOPkEsgticmPTDknXZ2JlummFqOm/87uTVrrEppwPmKwrv5cQsGp3p40MNbhTFM3vXPr4zn8/z1lDOqLX/+au3Pv3TgQl1n8484eWzvISFyDAUFUkkJIemPPmTRx79wS4u35/qFOQEDpCbwgHkBAAsAOREYAELAA4gJ3AAOeEzICdwADmBA8gJHEBO4ADBHg4gJ3AAOeEZWousZxnLcWStQcjhbiRLjnibCX4V4m1CiFyp+QUMBtvNm/rjQ/qDJrvC1RgOSxwnfihZ+ricl7aSc8PBztibZlpOTJ7uM/S7GpMgjN8WvtlftZ6WGuz1aBVv9V85Onrd7mwfA1rmjtkqk+n9tta3W5p0VieNphFCZfHxPypdXxgVjXmhWUXx2qlrnaPO32AZMeHf2La2LCXWYFiCnJhlVlF8erTJSjkRLXKp8Om9RUtSFGaj9fAntW/99uCIonNaP6gyDjlc7MLxDR7iR6D4zMic7/3yW5UvbyHZ/vlGAjmBA+SmcAA5AQALADkRWMACgAPICRxATvgMyAkcQE7gAHICB5ATOECwhwPICRxATiwBWoOs5xjzAURdQ8h5kvcWZATi7SD4VYhbiJa5N3LAwSBaaa7v13w2bjrv5s8YxMuIl+xKkOzisgLmzXnDOHxScfqaqs7BOJdYUo60PLSsImIrZq0n34K9u9sx20BRn3Zef62+XmkyOh1QFB397cLircnJmB8YhkEXOgf/WF3bfnPS6YCUiOBnSjP3lRWS5JLDlRmt6U+HPSiKJ3YV8Lje/gF1GtNnb186+NFVi9mqtyim9H1Kfb9/t1OIkDQ1NOMnf/OjZ3+4n2Dhfh2BnMABclM4gJwAgAWAnAgsYAHAAeQEDiAnfAbkBA4gJ3AAOYEDyAkcINjDAeQEDiAnfMExiawnGctxRDW5qVOEEEJkFOJtB0txJxRFtXVdIcM6J23HjXbnfREQQiTBjRKVJ0v3hQtKVnJ6OGht2ovTV04pqmco55022AS7IChvR+T21WIf22zgBHu3Omb3XZkw65wOmO2Y/fyqEtkydMw22WyfdLS/3tQ4odc7HZAeGvZKQeHD6X7Yw3Gt9+b/nLjSNuw80Z8SGfLSlqLdBRmspefr3SuKIJnwqT1LUxTaGePn71w+8OEVympHCFF2o9p4U6nvU+r7bA7nJmmpEIgIF0Y9/9zz//DvfyeR+N6NHOQEDpCbwgHkBAAsYE5OSCSSp59+ev4hmUz2/PPPZ2dn+/eK8HsVB1gAcAA5gQPICZ8BOYEDyAkcQE7gAHICBwj2cAA5gQPICRymFW0S7jUucxZRjR6GkjGIt43gVyFu0YpM7V6HoqjOzs74+PigYLnSXD+o+2LceJ5mXPb2kHKTEiS7EyWP8Ej5Ss7TZ2ZrPR2fPNlvGHQ1JkmUsCVs04bQ9RzW0roC4Ad7sx2z3+i7fN1Fx2whm7s7NnuZOmbbafpQT/fv6usGZpx3sY6XyV7My38mO4eHvYej6cbY705eq+276fToqoiQl7cW7SpIJ5ceuqg1pk+ONPz5SBNl84+iUE5qP3vn0rFP621fOQ+GYfSWSZVhaErfqzWP+SX5yWaxt5Rv+/6P/6KqqsqHcBfkBA6Qm8LBjZxoaGh45513bLYFXWHeffddq9WKQE4A9ysdHR1r1qxxdTQ5Obm2tta/VzQYDBaLBb7CfEOn09ntdvi96hsDAwMcDic+Pv5uTyQgmZ6e5vP5YrH4bk8k8KBpWqVSicVigSBgOiLeO9hsNo1GI5fLORx/tr97QLBarTqdLjg4mCShVviSUSqVCoUiMzMT5IQPQLCHg0ajQQjJ5YGRsrzXUKvVXC4XwhXfUCqVQqFQJBKRaJLL1HDoMxymzf1THCiKYlVYiZ0OInElpnivYrPZenp6YmNj5z65FDMzSZ2aoE6YaZcbKQjECeWURnN3BrHzA2Unyoh1rEZ3qdnQ4mCc17CSkOJiSdFG6XoZW+blOf0Y7LXpJj4YabqqHnLVMbs0KOFrcYVZ0kjMC90JzTCXx8be7GjrmJ52OiCYz38sNe3ZjEwR9stsH536+GrH1f5Rp0cjZeJn16+pylnlg6KYVhu/PH39ZE2vze6klpdMwn+4ImtvRSbH65YP05O6Qx/WXzje4XAseMNQdpPKMGhCY0pdv1bnfFPOkggLDX/yqf379+/PyMjw/llGo9FkMoWFheFP4AEEclM4DAwMkCSZmJi46HGGYbKyspRKpasnTk1NrcA7FuQEsNL09PSkp6e7OlpYWFhdXe3fK+r1eqvVCr9XfQMWABz6+/s5HE5CQsLdnkhAMj09zePxcLbNPrCAnMCBoiitViuTyWDnhA/MyomgoCDYOeEDICdwgGAPB5ATOKjVag6HA+GKb8zJiblHSGaQ7TjFpatZ9LD75zpYaRT7BYpVgdCD+J1JUVRvb+98OfEVjNrWMmY5prRdohmX/YFFZFyy8GsR3M2Boihm7JqLmstXtLVGh/OOC2yCXSot3hPzlp0HAAAgAElEQVS6U0h6jn79Huz16JUfjjSemepzZVCKg+N/kro5Qbgsdx9fGR97s621SeG8RYScz/92bv7+9Az8f+nro1Pv1LTUDow5PRodJPlhZem6lFgfzqxUG/58tPX0JeeKIjRY9K2n160vSPT+hGPD6s/eunLtfA9DL054MoiRR1uRdOzo8cNGo/O305JIS0t76qmnnn76aW/2Q4CcwAFyUzj09/eTJOm0qkdxcXFfX5+rJ05PT4eE+H8H2CJATgArzVxZp5CQkF/96lfzD7HZ7L179/r9hyXs9McBts7hAGWdcICyTj4DZZ1wgLJOOEBZJxygrBMOEOzhAGWdcICyTjgoFAqRSOR834m9j7EcR+bDyDHk7hTsVYToW0iwF6EHa8feXFknV59cG60fMZwe0H6qpXpdnSSYl5Ub+tMQfs6yTdPP2Bn7NVXdscmTIybnt/DLONKn4p7YELre/XmWKdhTWgyfuO6YzSPZ30vf/HLqevxuEE65PjX1WkPd8b5epwm+svj4/1uxI8ofGrV1cOSP1XUXe286TSXuKcz4+ePbBFxf9moopnUfH2o4cKrVZnOiKCo3Zf70W9sFvCWcebh/6oPXzl463XFn2lMg5H7z1R0Gx8333nvv+PHjDofzHuzew2Kx1q1b98ILLzzzzDNu9tJBWSccIDeFg5uyThMTE8eOHVv0KfjRj35kMpkQlHUC7legIXZgAQsADiAncAA54TMgJ3AAOYEDyAkcQE7gAMEeDiAncAA5gYM7OTGHrY2xHEWW48jhvDEvQgixVxHi7yH+zgdnF4VHOTGHytJ6Q3dg1HjaTpvvPEogVoJkz5qQv+CTy35jrB/p1HWdUpxpmmlhnDVUz5GteTHx+TCeyx+wyxrs6WyWT240vj9QO2Vx0rM6JyjmVwUPp0iX68b57mnlaw31R3t7HHck+qQ83i83b30kfQk1iJxiMpn0er2KQq+fqTt7fYC+40LJEcG/frYqI8bHFXliSvvOZ9dOnO+wOxZvQ0mKC/3lj3avSlhaaqKnffS9/z3TeNnJjeE7Hi387t/unlZNffbZZ++8805LS4tvc56PQCDYvXv3888/77QpBcgJHCA3hcM93hCb/Md//MflvgYAzEej0fz3f/83Qkgul//whz9cgStarVa73T5/vzDgPRaLhaZpSHH6hkqlIklyBb7K70uMRiObzebxeHd7IoEHwzAmk4nH40HXBB9wOBwWi0UgEEDXBB+w2+1Wq1UoFEJ63QeMRqPBYIiIiCCW557K+xsI9nAwm80IIagE6Bsmk4kkSQhXfMNoNHK5XA8JYjKC4G0kRC8RvK2I4CHHBGLuqMRCzyDLSWQ5ThAixFn9ICgKh8OhVCplMpnHT66QHRkt2rxK9qSIE03ROrNdsfA4o6F6BnWf0YwtmJ/DIgIj+AnjhZWGFM+2wh63TFD0gj6uCuvUOWWNg3GkSlJYhJM3w7IGezySXRgS/9yq4gRx8LBRrbYueLsqLPo/DzeaHba1oQmks7lhEioUVaWkPpqRySDUPT1tp2/n960Ox8mB/l7V9Pq4eAHGbwSbzUZRVEJkWFV++vacVJOV6leo5huKGaP5y7oOmmYKV8X6ENJIRPyNa1OqNmdZrbb+YeX826k1OtPRs9eFAm5mapT3Jw6NkG7bnVdYlqIY00yOzcw/NNA9cbm6c/2W7MpdFd/+9refeOIJiUTS39+PU+7Jbrd3dnZ+/PHHb7311vDwcFRUVGTk7Y4jFEXZbDZoU+QbkJvCQaVSsVgs7+9E+dd//VeLxYIQevXVV1cgRAQ5Aaw0ICcCC1gAcAA5gQPICZ8BOYEDyAkcQE7gAHICBwj2cAA5gQPICRy8khNzkOEEbxMheongliLGgOyDiwfQM8h6GllOECw5YqcESjcF3/BeTsxCEtwgXkaS9OFo0SazY9pgW9DSg2bsSkvjqOGUkB0p4SYuy4yXARFbuEaWuT1iq5AU9BkGHMztmiQOxtGt72nWtCYK44O5i3+LrUCwRxKsdFnk08lFGfLIJtWIwW6dO0QzTJNqpEbRlx8SF8JblmVLxuNvTkx6IitrQq/vU6vmH+pXq7/o6koOCk729SfqrJwQiUQEQQSLhduyUx7KTe0cUSi0hrkxNMM0DIw2D46VrI4X833ZniIW8cqKVlVsSO8ZUEypbu9BcdB0bfONvqGptbkJ/KWUeAqLlFXszU/JjG6+NmC13LZZOo3p9MHmoBBxSmZ0eHh4RUXFj370o40bNyKEBgYGbDab61N6QK/X19bW/uEPf/j0008NBkNqaqpYLAY5gQPkpnC4x+UE/HQEEEJodHT0L//yLzds2HC3JwIAAAAAAAAAAAAATmEhbgkh/18i9AjiVzkxEPZ+RvMjZnoXMn+JEG4d+fsPOS+9LPL/lUf/XsZNWXTIYBu5MvmTmvFvaymXnVHvQXgs3q6oqv+b8/8VBRUsOnTTNPLLzl+9NfSe2eGkpNUKQCCiIir9SMV39ycWLnqndmgm9p37w390VNvo5XqXRojEv925+3937g7i8+c/rjQZv3H4wF8cO6KzWl09d0msigh57/tPfuehUhZrwaus7R955N/eO9bU7fOZ46KCfvfPT7+8f/2iM1+s63/uh2/XtQ4t9YSlm9N//+X3C9cvePNTVtt//eOBf/rRRwa9BSFEkmRFRcV77703Njb27rvvVlRUYN410tnZ+bOf/SwmJmb79u0fffTRbB1/AADmAzsnHnSGh4d/8YtfvPjii1euXGEY5sc//vFyXxF2TgQWYKdxgJ0TOMDOCZ+BnRM4wM4JHGDnBA6wcwIHCPZwgJ0TOMDOCRyWtnNiEawQgl9F8HcgegbZBxYfpdW3dlHcp4WelrpzYhEiTkyydJ+AHa62XncwC7o3G+3jN3RfGO2jofw8NitgvhYEpKA0pDhJlNij7zU7FryiIePwxenLUo4kXhg3+8gKB3tcFntL1OqSsKRG1U2t7bYmmd1CcWaiOzsoJlzgh1bVTkkNCdmXmTkwM3NDs6CiUZ9adbinJyMsLE4qW9IJ5++cmHuQRRBrU+LK0hLq+0d15tt/f8ruqG7vH1VpS1fHc9m+/LUJgihYE1eSl9TQftNgvG1TzBbbqZpOncFSlJOwSF24RyDkbt2VyxNwWutuzK8ZNTKovHC8PSM3LjTi1h+Ez+fn5ua+8MILX//61yMiIkZGRlQqlYuzeoZhmMHBwSNHjrz99ttdXV0SiSQpKQlCviUBuSkcYOcEcI9y48aNH/zgB2lpab/5zW9m33MAAAAAAAAAAAAAEBiwVxPy37jbRaH9a2Z6N+yiuBOCIJOl+3bEf5Eie4pY2GqCQfSw/ujJm/t6NO/QjO9lbVaefHnuv2T/00MRFcTCN4PGpv3D4Jv/2fubaavvyWVM1oYmHNr27VdWl7EW5qN7dVNPXnjzPzqqqWXbQhEmFL2x95FfbasQLrxvaUyve/bzT//2TLXZbvfLhXISov7842cfL81e9Pjhxq59//5+841xn8+ctTrqnf94YVtZ+vwHGQZ9erTpO3/38dikZklnI1jE/pfLf/3GSyHhC5yQYnzmr15688AHV5mFXb5jY2NfffXV7u7u69evv/rqq+HhPvb6nkWn073//vvbt2+Pj4//wQ9+0NrainM2ALg/ADnxINLX1/fcc89lZWV98MEHVj9t5QMAAAAAAAAAAACAleaWojgMimKpcFnSvNC/eiju00hh2aJDFK1rV/3P6ZEnJ02X78rcfENICp5PePrnmT+LFcQsOtSsaX21/e+PTBynGdrpc5cbPsn5SVbF+xtfTBAvuHnZwdCv917ed+4P7TO+p+/dQyD09JqcE8+9UBwTO/9xBqGPr7c9/PGH7VMKV89dEmI+9xdPVPzHC7ukggW1pMbVupd+9+n/O3rJ7vDxjy8W8v7Pj3f//ferFrWa6OybeOmn75262LXUE+asTfrdZ99bu3H1/AdtlP33/3r0lz/4UK91UgosKyvr17/+9cjIyMGDBx977DHMPXOjo6O/+c1v8vLySktLf/vb36rVapyzAUBAQyxSgsCDQH19/fj4+M6dO0mS/M53vvPHP/5x9vHY2NiRkZHlvvrQ0FBSUhJCSCQS7dy5c/4hiUTyzW9+s6SkxL9X1Ol0FosF028/sGg0GrvdHhoaercnEpD09vZyOJzZNzywVKampvh8vlQqvdsTCTxomlYqlRKJBDa9+gBFUTMzM0FBQT5WmXiwsVgsWq02JCSEzWbf7bkEHgqFYmJiIicnB4pi+QAEezjMJkS83+kPzGd6eprL5UK44hsKhUIkEvm5N6y9hzH8L7KcQMhZooOdQoi+iQR7EQrs4o0URXV2dsbHx/vxkztlrm2Z/ncddUencYTCBSV5oT+VcpP9da0VwME4qhXnPh39wkovvh0zXhD3qHxPTkT23Qr2LA77/3aff7PvCr0wHUcSrJdT130/YwuXtVzvT5ph3m1t/vWli5RjgagjWaxXCgp/sq6M7SkIMZlMer0+LCzMfbgyMaP/249PNAyMLno8Jz7yX56tig+V+zZ/hNDQqOoX/3mkf1i56PHKTZk//eZ2AX9pVW0Zhjn44bU3/uOE3b7gDxIWKfvZv+3Pyk9w81ytVnvw4MH333//zJkz+JlVHo+3f//+n//856mpqZinul+B3BQOvb29JEmuWrXqzkMXLlx44403Ft25fvDgQYqiEEJqtXoFCpWDnHjQaWtry83Nnf3/lZET7e3tOTk5ro7Gx8c3Njb694oGg8FiscBXmG/odDq73Q6/V31jYGCAw+HEx8ff7YkEJNPT03w+38+/Vx8MaJpWqVRisRgKiPuAzWbTaDRyuRw6dviA1WrV6XTBwcHQscMHlEqlQqHIzMwEOeEDEOzhoNFoEEJyue+pogcZtVrN5XIhXPENpVIpFAqXo1sMGw3wHW/xmHNOFYWDSDITz1lZOwJXUdhstp6entjYWP9+cmnGPm47MmR5z84YFx1iEewozq4k/tfYRCB191HZ1Z9Nf9lt6l30OIGIYnHRo6F7eKy71jDmun7yVz1nbpoXlyRKEgb/bPXWLEnE8l16QDPziyuXe2YW36qfFRr6y3UbEtzaVrPZbDAYQkJCPIYrNMN82djzh7NNtoUiRMTjfHtr4e4831PwNrvjnc8bjp7rWpTOjImQ/fSVTclxS85dDHYr/ueXR5WTuvkPkiTr4eeKH32hhPDU02JsbOzzzz//8MMPBweduL0lwWKxKioq/uqv/iovLw/zVPcfkJvCYWBggCTJxMTERY8zDJOWljYzM+PsSQghpFAoVuDuH5ATDzparXYuoFkZOdHb25uWlubqaFlZ2bFjx/x7Rb1eb7Va4feqb2i1WofDAQuAb/T393M4nIQEdzdcAK6Ynp7m8XgSyXJ1h7uPmZUTIpEIdk74AEVRWq1WJpPBzgkfsFgser0+KCgIdk74gFKpnJiYWLNmDcgJH4BgD4fZX6QrcFvcfYlareb8/+zdZWATWdcA4DuZaNvU3UuhlOJFtkhxdxZffGHRhbI4LIu7LC7LLlJkWdzd3aFAsdKWUqSSNk0a1/l+9P2SSagkk6Rp4Ty/mJORCyTt5J655zAYcLtCje2SEwVo2ndM1T8MzeVCUxRaWgUlfbCK3r48piiUSuWbN2+CgoJs8clVafNTpPEfZccIZFyBh0FzruAwKJjTHStXFcKfip7tzzosUouM4q4Ml17eP9biFvnopK3JNep/3t/dm/5YYzgvR8OwLn7VJlZuxqbZ6oZKrdX+/Szh72dPjS7NptNH1YoeXK06rYhezVKpVCKRmJKcKPDmS87cI9c+5gqN4s2jwqZ2auTMoZ4cuvMkbe2OG/lig/6pDAY+sFvdHu1rFDX+okglii1Lzt27+tYoXq1OyPg5nVw9TPoxlZCQsGXdX0eOHVVoCqkKZZaYmJgJEya0b9/ewvN8S2BuyhLJyck4jhda1aNRo0aJiYlFHZibm1sK/+aQnPjeEQSB43jB26CUyzp5eXlt3LiR/BKO461atbL6smhY6W8JWDpnCSjrZAko60QZlHWyBJR1sgSUdbIElHWyBNzsWQLKOlkCyjpZwiZlnb5WQqGnSpjjL+Wu0JMtyjoZESjeJOSszJE//folV1blWh6TPTnRNrq0LUjU0v2fDl3LvkF89Tao7VpzcOgAD6bdfgYm8D/NfHI8VZRjFA92dFsU3bWepw0fdHuamTHx/Lk0gfFD042Cg1e0autXWNrVxLJOZAqVevXpW3tvGr+X/Ny4i/u1qxseWOhRpsjOEc1bezrhlXHxqHo1Q/4Y38HD1ezE55lDDzcvOa1SGnQId3V3nLKkV52GFU08SR5PMK77pEu3L/DQF+1XGT6zREdHx8XF9e/fHxYlI5ibskwxZZ34fP7Vq1e1WoP36tChQyUSCYKyTqDUMJlMlUqFSj05ERoa+v79e1tfDsH3VcvALwBLQHLCEpCcoAySE5aA5IQlIDlhCUhOWAJu9iwByQlLQHLCEqWUnCjwbaUoSiE5USBDciMhZ4VEXUijZj+H2FqeUxwZxn2ny7K3oqTtabu+yDKM4g4458eAbq19WtAw+/wKVmjUG95c2/7ujtE6BgyhXqF1ZtRoy8FtVW5UplYvv30zPuGp0QeDy2LNaBzbr5rxshIKyYkCl18kzz14USAxWOiAYeinxrUndY5lUJ181xLEoTNPN8ZfM2q17ebiMGtc+5jaZn8TT379ZfHk/V/Scw3GScN6DYkdEtfKxL81QRDH1p3dOPWfz6q0DCJdiHJLPqZoVapUmTJlSv/+/b/zrycwN2WJYpIThXJ3dy9YWVs6yQn48gMQlNUGAAAAAAAAAPDNolfGXNdhnicRuz1CX9V7Ub8jhFOJnM5IdhQhTWHHf6f8HJu0CT5U3WMcnWb8yEuG9OaFj71e5K5Xa6V2GRsFlbkRi6vN6+nfHTfMQkk1sj3p++a8Wpgm+WCXgbFw+qSqrf5t8nM412DilUDoQNrjLpc33+el2ejSHDp9TtPm8d17+BqmCUUKxczLl8acPpkns7RCUYGW1SsemzI4topBtoAg0N6bTweu3/+BV2TJ++LRMKx3x+jNi/r5+7iQ43lC6eRFh9dsv6JSm/eJrljFf+OBMc071DQYp5Y4sP3G9OE7crONi4MVCsOw7nEdNt5aXjesQT2seWOsQ0WsugOimIh9/fr1zz//HBwcPHfu3II2UQB8YyA5ARA8oAcAAAAAAAAA4Bv3vxTFCUhRmA7HWJVdh7QNOhzC7Wj0j6YhFG8FO89//DE1/8jXDSrKJhzD23u3meI/oYqTcSPMNMmHua8W7v6wT6FV2GVsNd0Dj7cYPalqK7rhFM1HSd6QW/Gzn56SqpU2unRscMj5AYO7RVYxip9Nftd6T/zF1BSrXMWD67BxWLdp3Zox6QbJoZcfs3qs2rPnq7pPpouq5Ldj5aDWjSPJQYJAB08/Gf37vk+Z5k3ocxxZ05b1mryoB4tt8CDv84fvR/dc//CmcX/1olSuV3HLkxWxPWLYyCEUVW6ItauPtQxCFRmISqeNrKysefPmhYSExMXFfflSyGImAMovmJUGAAAAAAAAAADA94EeCSkKc3Ho3vW857cMjPdgG9f5kal5T3iLrnwakit/ZpexUeDJ8JhUMW5khWFcusHD7BpCeyHr0swXc14Ii2wPa1N0Gu2XiEaHmo2IcvUlx3VLKO7ybFUZ25nFWt22/cYOndzYbHI8VyodcfL42DOnhAp5UceaDsPQgNja+3/rH+FnsEZEoVIvO3Ztws6TeRKKCzWcHFhzf+s0a1x7Nssgo/A6OXPo5F3nb7wy94StutRev39MaCUfcjA/Tzp77O7NS0+rTVuQ4eji8MeBiWNWD6UzcISQM3KrjNWKxTrWxBqFcitSqGKSn5+/bt26ChUqDBo0KCnJ1DQJAGUcJCcAAAAAAAAAAADwPYEUhfncWFWbB2yv5z2PjXsYvZSneHn187B7WdOk6ky7jM1cGMIaezZcXmNxc++mRi9lK3jL365en7w5X5Vvl7FFuvgcaPrLpKqtGDSDFQafpIKfb+2a/fSUxGZLKDpUijg/cHCLsApG8TPvkjru3XP3k3V6lFb09fh3Qr+fW9SjYQYfvcsvkruv2HXzNfUETPtmVbevGFgpzKAHlVSmnL/2zIJ1Z2RylVlnC67gtW7fqK79G5CDBEEc33t34sCtGZ/4ppykoMTTmlsLfUK9CiI0RPNCfhXFtZrinfu1H+Dl5WXWqBBCCoVi9+7dUVFRP/30U0JCgrmHA1DW4HPnzrX3GICdLVmyRKlUIoScnZ0nTpxo68sJBIK1a9cihHAcd3V1fUzy4sWL4OBgDodj3SsqFAq1Wu3o6Gjd034n5HK5VquFtrrU5Obm4jheCu2DvkkSiYROp7NYVBa9fucIgpBKpSwWC1oKUaDRaORyOYfDwan25fueqdVqhULh4OAAFSMpkEgkYrHYx8cHw76aIwMlgZs9S8hkMoSQ1e/AvxNSqRTHcbhdoUYikTCZTDu3eKV5Yuz2GLs10gqQ+qvaNVo+UlxE8vMY5oAYlQvJYdiJRqPh8XguLi72+ORirqyICs49aRidr3hBGGZu8pWp70VHtYTKnV2DhpXRWynyzR6TxqztWrMKNzJZnCJWi8m7fZZ9uca7yaQxw53CsFL/r6dhWB2P4JZ+lZ/nfebJDQb2UpBx6tOLSs7eQY42+ZrpyGB2qRzp4+R499NHlVZfrUukVBx5/SpbKo328nZxcrLwdoVOozWICK4V6nf/3UeJQp9rkSlVZ56+EUoV9SsG4ZTuJ12dOR2aV5XKlK+TDTqfJ3/gXbz1pmqEv7cH1/Sz4XS8XuMIvyD3p3eT1Sr9uz03W3Tp+FP/YPeQcO9iDtfxDHBvNaBJyvO0jJQsfVSDSZPV3dv2HBDX523S29xc8/pmEwSRmJj4119/Xbp0ycvLq3Jl40pl3xiYm7JEbm4ujUZzd3f/+qXs7Oz9+/c/fPiQPD17+vRplUqFEJo2bVop/KLBCIKw9TVAGcflcsViMUIoMDDw40frZMKL8fbt28jIyKJerVev3oULF6x7RZFIpFAoPD09S94VfCU/P1+tVhf6IwyUKDk5mcFghISE2Hsg5VJOTg6LxeJyzbh3BAW0Wm1ubq6TkxPMNFGgVCqFQqGLi4ud50rKJ4VCkZ+f7+bmRqfT7T2W8ofH42VlZUVFRUFqhwK42bNEQXdNV1dXew+kXOLz+QwGA25XqOHxeA4ODmUnrYgT71jq7QzNZYQKmSTRYOFK+kAl3r4s1J9QKpVJSUmBgYH2/eTKtdkp0u0Ziotfv8SmeYU7/OzHalP6oypRoTd7KkJ1kX/lIv+KmlAb7R/OqdDXp6cv0wfZg4bQ7k1/8nfaPZXWIA+EIdTON3JipWZcuq2So5/Fotm3bj7JMl4KE+LEXdS0WVVPs5/3L5RAIl926vatpHSjeJiX6+zuTSv6UJ+IePLy05/brucJDepE4TitT8da/brUppmZXMn4yF8751Tau2yjeKsuNQfHNWcwTbr1FYvFZ7ZcPrriLDnPgRDyr+gzYduIt59frVix4smTJ2YNTKdGjRqjR4/u1avXt/qIFcxNWSI5ORnH8bCwsK9fiomJefv2bVEH5uTkeHgYL5WzOkhOgNJOTiQmJlavXr2oV8PCwh48eGDdK4rFYrlcDt9XqYFfAJZISUlhMBjBwcH2Hki5lJOTw2aznZycSt4VGILkhCVUKpVAIHB1dYV1JxQUJCfc3d2/1S9FNgXJCUvAzZ4lIDlhCT6fz2Qy4XaFmrKWnChAR8lszQ4WcbWoFIUM+0lBa2ffFIVKpXr79q3dkxMFBOpn72SbJdpCSvG40mtW4oxypBnXCLKvYm72MpSZB3KOpMk/GMVxDG/mEtvevQ2O7HOHkyrJXfzuyhuR8cy4B9NhSsVmjT0KmXC0Ci1BHEh6s+7JY/ISCoQQTqMNqBI1qkYtupVuWs6/SFlz/oFcZZAZYuL4kNgafWKqmptI0BHky9fsuPH0lXH76FpV/CcMjXVzMe+7kkqp2ffXzQtHjMsohVbyHjeng09AyR9GiUQilUqFHyVrf/k756NBVSgGi/7THz+2G9H8/v3769ato/zMbkhIyIgRIwYNGsQ27B3yDYC5KUukpKTgOB4aGmoUJwiiSpUqxazaycrK8vY2aXmQJSA5AUo7OZGWllaQrONyuf369SO/xGAwhg8fXqtWLeteMT8/Xy6Xl8LH6ZskEAjUajV826cmKSmJwWAUmp0GJcrOzmaz2c7OzvYeSPmj1Wp5PB6Xy4VFrxQolcq8vDw3NzdYOUGBXC4XCoUeHh6wcoKCrKysjIyMGjVqQHKCArjZswSfz0cIwbd9anJycphMJtyuUJOVleXo6FhGUzvqN4R4E5KfKzRFgegRmONwxOlqrxSFUql89epVcHBwGfnkEkibLjrzPHetQmNchR9DtGBu+xoeE1h4mRgqKulmj0DE7Zy7e9P/E6slRi/5sL2Hhg6s6hxVKsM0piG029/dXf/6qlJr3ASlXUDUvFqdXJi2eiwpKTdn4vlzL3nGqZGavr6r2rQLd7PO/+z7bP60vWdffzK+SoOIkIX92ng7U/xBQRDo4JknG+OvqTUG+RU3F4fff23XINrszNmdK6///OOION9gQQbHkTV+dpfmHWoWf6xYLJZIJD4+PsIc0fLB6x+cfWq0Q8sBTeI2/cJxYj99+nT16tX//vuvRkOl5423t/fo0aPj4uK+pRLTMDdliaSkJBzHw8PDv37p3r17u3btMnqnxcfHKxQKhBCfzy+FdxEkJ4DdkhOhoaHv31PvdGQ6+L5qCfgFYAlITlgCkhOUQXLCEpCcsAQkJywByQlLwM2eJSA5YQlITliiTCcnCpTVFEVZS04UUGrz3+bFvxPu1RLGbYcZNG6k25BKLv0Fy0UAACAASURBVP1pmP1XpppysydUCfd9PHg7565RHENYQ8+Y/sF9uXT7vG+T83kznxx/nvfZKO7Jdppbq2MrvyILaFtIrdVueHB/w4N7GsMpRDadHvdDgxF16lJe3GBwFY1266X7f128rzW8ipsTZ17v1s2rFjKvaqLXyZlzVp/6nCkgBzEM9ewQPXZQUwbdvAUx2RmCJVMOvH5mXIqqZeda42d3ZbGLfJPrkhMIIYIgjq07u3XqLqMST0GV/Wftn1ihRghCKCUlZd26dVu3bpXL5WaNsACXyx06dOjUqVMDAgIoHF7WwNyUJYpJThTK3d09Ly8PlVZyAr78AAAAAAAAAAAAABiiR2Ku6zDPE4jdvpBu2OokQjiVyOmM5GcLz158Z5g05+oe41oH7fdzaGz0kkorepG7/uLHPhnSm3YZm7lcGC6jKgyfFBHnyTIotl6wrmLq85lXs68T9vhPr+jsta/pz5OqtmLhBg+C5MjFv97bP+HBQYFSVtSxlqDTaBNiGhzs3TfExaB4kVytXnb75qBjhzNEIitcBaeNadtg66gePi4GuZ88sWz89hMz/z0nUxrnvUxUpaLvjhWD2jSpQg4SBDp4+snImf9+zMgz62zefq4r44cPGN0Coxn8WLh8MmFcn01p77KKOpAMw7DucR2WX5zt4W8w8/vx7ZdxMTOOrj2DEAoPD1+7dm1aWtqcOXMo1HATiUTr1q2rUKHCoEGD3rx5Y+7hAJQaSE4AAAAAAAAAAAAAFKbEFIVgPJHTCVIUBbiMkEZ+a5v4b3JmGhfMEak+3M6YcOPLmHxlil3GZq5arjWWVV/Yya89DTOYOhOrJdvTdi1+vSJDbtwsuhTgGO2XiEYnW46u5xli9NK5z686Xtp48ctrG126tq/fkR979o6obPQxuJ2e3nbvrn2Jz61ylR8qBh2bOqhD7cpG8ZOPX/dZ/e/XdZ9M5OjAnBPXcda49hzDlQ1vU7J+nrL7+EXzBo/jtAFjWizaMtjNwyCPkp7KG99vy7E9xmtuilK9SdRfCavqtTOoba6Uqzb9tmPZ4PVyiQIh5OPjM3fu3PT09DVr1vj7+5s1ToSQUqncvXt31apVO3fufP/+fXMPB6AUQHICAAAAAAAAAAAAoGiQojCHN+eHVoH7anpOZtCMyx9ly+5f+vRTQs4KldYKz9rbGpPG7BPUc0HV2eGOxqV634jezkqcd+TzcTWhLvRYmwp2dI9vPHh+7U4c3GCqPVchGXf/wIQHB/OUUltcl02nT4yuu7Pbj76GBdlECsXMy5fGnD6ZJ7PC0g0nNmvZgA6L+rV1YBn87d5n839at2/T+btaqgXq2zerun3FwIgwgzqQUply+ZYLf6w6KZYozDpbdIOK6/ePqRYdSg4qFaoty06vmHlIJlWachIXT+6i0zPHrB5KZxhUl7q0+8aYetPev/hf8SgulxsXF/f+/fv4+PjKlY0zNyXSarWnTp2KiYlp3LjxyZMnocI/KFPwuXPn2nsMwM6WLFmiVCoRQs7OzhMnTrT15QQCwdq1axFCOI67uro+Jnn37l1AQACHY+U+TgqFQq1WOzo6Wve03wm5XK7VaqFyPTW5ubk4jn9LTahKk0QiodPpLBbL3gMpfwiCkEqlLBaLwbB/Vd9yR6PRyOVyDoeD4+YVnwUIIbVarVAoHBwcoGsCBRKJRCwW+/j4YNao2vy9gZs9S8hkMoSQ1e/AvxNSqRTHcbhdoUYikTCZzHLW5InmibHbY6wmSJuFNB+MX9XmIvlZpLiE4f6IHmq7UWg0Gh6P5+LiUpY/uRhG82BXD3XuqtKKhIokcs6GQFq+IjFNdIJJc3ZjVS4k2WNLFG72XBguTbwaO9Id3omT1YS+Q4CG0LwRvX0iSAh1CHFnlvaXPgzDqrr6tw2Iei3MyJDlk19KFvGOpT8LcXKvwLVygX6VSqVUKqv4+fesWu1TvvAdP9fgunz+4devKrq7h1njK3Blf6+2NSMS0zOzhGJdUEsQj1I+PU39HBMR7Mim8tPDhcvp2LyaVKZ8lZxBjr//mHvtblL1SH9PdzMaijg4sVp2qaXVaF8mpJPzku+TMm9felm9bih5aYVSqVSpVF832sEwrEpMpeqxVR5deCYT69tL5OeILu6+7hXoEV4ztCCC43jNmjVHjx4dFRWVmpqakZGBzPTx48d9+/adOnUqJCSkYsWK5h5uRzA3ZYnc3FwajVZomyIej3fw4MEHDx6Qp2dPnz6tUqkQQtOmTSuFXzTQEBuUdkPspKSkYtK8P/zww4ULF6x7RZFIpFAooG0ONUKhUKPRlKlOa+VIcnIyg8EICTFebwtMkZOTw2KxuFyuvQdS/mi12tzcXEdHR7h1o0CpVAqFQhcXl3I2V1I2yOVykUjk5uYGDbEp4PF4GRkZ1apVg9QOBXCzZ4mChofwLAU1fD6fwWDA7Qo1PB7PwcGh/KYVceIdQ/kPQ3O50KUSSvqPCsZUZJv+z0ql8s2bN0FBQeXlkytSJ7+RbMhTPvv6JX922yinyTSs9O4cLLnZE6iEB7OPJIiMSwDRMfoQ/wG1uTWtNEbzaAli/8enm1JuK7QGazgwhH6LaNY3qLYVryWVSiUSiYeHR8HtytnUlMV37+QrDRYcYAjNbhT7Y4TZT/cXSqPVbr/+dNetZ1qtwQfNx8Vx89DOPi7Uf4A8eJb+57brQpHBUg8Wk75gYvvqlf3MPdvzh2kb5p8W8CXkINuBOWd93/BI34JNiUQilUq9vLyKOokgO3/tiL+fX3tlFB+6uG+nMa2/3v/u3btr1qw5f/48tanddu3arVy5MigoiMKxpQ/mpiyRnJyM43hYmPEKMIRQTEzM69dF1oLLzc0thX9zSE7YTWJi4pkzZ8aOHWuVu7GsrKzr169//vyZzWaHhYXVq1fPw8Oj5MMQQqWenEhMTKxevXpRr4aGhj58+NC6VxSLxXK5HL6vUpOfn69Wq+EXADUpKSkMBiM4ONjeAymXcnJy2Gz218+VgBIVJCecnJzK8sN0ZZZKpRIIBK6urrDuhAKFQpGfn+/u7g7rTijg8XhZWVlRUVGQnKAAbvYsIRAIEEIUOm0ChBCfz2cymXC7Qk15T04UoBMvOdptTKKQEvMqrIaYtlCLFTkRSZlKpXr79m1gYGD5+uTyVDdS5P/Itcbtgt3p0VUdZuNYKd24Wn6z90zy4mjuCaHaYLECDaP19exZj1vHGmOk4rNcuCTpSoLwCzmIIRQXHtvTv4a1riKTycRisS45gRDKlkoX3LtzL8PgujQMm9ugUfsw474jlL34lL3oxK0socHUf6Abd+3Atu6O1N85eULZmh03E14bDN6Rw1wwsW14sKlTajpCvnTTonMvn6STg1wXzuz1vf2C3JAJyQmEEKEljqw6c+TPM1qNVhfEaNivm4Y2/LFeoYckJiZu3rz5yJEjarXZFcY4HM6vv/46YcKEsv9gFsxNWSIlJQXH8dDQUKM4QRCRkZF8Pr+oA7Oysry9vYt61VogOWEHL168WLFixb///qvRaDIyMnx9fS05W0JCwty5c0+ePKnV6n9ysVis3r17z5w5MzIyssQzlHJyIi0trSBZx+Vy+/XrR36JTqcPGzYsOjraulfMz8+Xy+Wl8HH6JgkEArVaDd/2qUlKSmIwGIVmp0GJsrOz2Wy2s7OzvQdS/mi1Wh6Px+VyYeUEBUqlMi8vz83NrezfoJdBcrlcKBR6eHjAygkKsrKyMjIyatSoAckJCuBmzxIF30jh2z41OTk5TCYTbleoycrKcnR0/EZSO6oEQrwJKa4Zr6KguWGuqxGzkXWvplQqX716FRwcXO4+uRpCkSzc9zpvm1pr0BHBmRne2G+9A92nFMZglZs9qUZ2+NOxS9lXtARpBhlh/YP7tvVtZY1hUkEg4mDak6UvLkjV+m4HGEIza7QbGP6DVS4hlUpFIpGXlxf5doVA6L/E5wtvXJeqVLogjmGr23XobKX1EwghsVy56uSNQ/dekIMVfT12jOnt6simfFqCQAfPPNm067pKrS/Y5eLM2bSgb2ig2fkJgiCO7733z6pzatLZPH2c/9w9wtvPVSwWSyQSH5+S3+fPrr1c3H8tPyNPF6Ez8AUnptdtW6uoQ1JTU9euXfv333/LzG/7ERERsWHDhtatC1mcUXbA3JQlkpKScBwPDw//+qU7d+7s3r2bPKWMEIqPj1coFAghPp9fCkv0IDlRqhISEhYvXnzo0CHdP7slyQmCIBYsWLBgwQK1Wk2j0Tp16hQbGyuVSh88eHDmzBmCIBwcHNauXTt8+PDiz2Ov5ERoaOj79+9tfTkE31ctA78ALAHJCUtAcoIySE5YApITloDkhCUgOWEJuNmzBCQnLAHJCUt8U8mJAqoEIn8hUhkVL8Ix7iTkONyKnRXKb3KigEyd9Zi3MFN6hxx0oPs29lvnzCxk7sy6rHizlyxOWfNuo1Al1EUwhPUJ6tHRr72FZ7bER0ne6Lv7kkU80qjQrJrt+1eob/nJC01OFPggEAw+duSDUKCL0Gm0LR27tKxgtfUTCKEj9xPnHbxEbohdPdj371E9HFkW/W++ePtl0oJDEpk+qePtyd2yqJ+PJ5Uf7wn3U2aP3aNU6FM1IRW9V+78BcM1JiYnEEL8TMGUlnPTX3/WRRy4nJVX5laqU9y/Z2Zm5po1a7Zs2SIUCovZ7WsYhvXv33/FihUWPj9tOzA3ZYlikhOFcnd3Lyj7WTrJCfjyU0pu377duXPn6OjogwcPWiUhpFQq+/TpM2fOHLVa7ebmduXKlePHj0+ePHn27NmnTp26deuWp6enVCr95Zdfpk+fbvnlAAAAAAAAAAAAUCRGLcxjP3IcYRjVEKLlRN4opM0v/KjvD4fu08hvbQXnnuSgVJ159fMwnuyxvUZFQUWn8DlRM71Z+io9BCL++3ho/8dDdhxVkKNbfOzgis7kUaGFz87uSXlg0+uGuLru69ErkJSsVWu1o8+cvPI+1YpX+fGHavN6t8ZImb4X6Zmjth6VKVVFH1Sy6pX9V/3Rk83SV/rKzhGNn3MgVyAp5qii1Poh/PdVfXFcP+P6ITl71uh4ucyMQbr7ui49/4d3sH4uXiqSzeiw6FNScU2wfX19ly5d+vHjxzVr1gQGBpp+OYIg9uzZExkZuXbtWo1GU/IBAFgPJCds7tatW507d27cuPGpU6estU6FIIjhw4cfPHgQIYTj+LFjx5o2bUreoWHDhkeOHClIZS9btmzlypXFnE2p/F9ymEJ9OgAAAAAAAAAAACCEEMIx7hTMdTUy6qCguELk/ojUb+w0qjIHQ7Rorxk1PSeTF5SotKKbGWPTxefsODBzebE8Z1aZ6ss2eBb+VMbZ+LQ9RGGd0kuHB8sxvrFxfmLR87N7U22bn/Djcvd07+njqF8OpdJoxp45dfeTNUt0dKtfdWrXZuRIQtqXuB0nlWqLptSrV/afP7ETnZRR+JQpmDj/kEgsp3C2H5pWnrTwR4yURXn74tPyaYc1am0xRxnxCvRYdHqmk5u+MY+Qlz+zwyJ+pqCYoxBCXC43Li4uJSUlPj7elGLv+vMLhRMmTKhbt+7du4X00QHARiA5YVtpaWk///xzgwYNbt68ef/+/ebNm1vltKtWrdq9e3fBn+Pi4po0afL1PrGxsUOHDi3489SpU8+ePVvoqQiCUP1/WUBdlqJ0SCSSg4bOnz8vlUpLPhIAAAAAAAAAACib2J0wj2OIXtEgqPlA5PZEMns+U1/WVHLpV897Lg3TV4PUEqoHWbNe8f+y46jM5cF0n1VlepCDwVPql7Kv/pWyTUOYMRNt5VEVlp9Y+Ozs3tSHNr1uwfoJLwf9fLpcrR52/OiDz5+seJUBsbVHtjboonE36cPUPWc0Wov+wRvVDf/91/Y0UkYh+QNv8uIjMgWVZRktOtUaNb0jOfL8Ydrfyy8RWjOyVqFVgxafnslyYOkiGalZM9otFJuwpIPJZA4aNOjly5cnTpyIiYkx/aIJCQmNGjUaNGgQj8creW9QzolEohMnThhNz5by/DD0nChVWVlZgYGB5AUKFHpOJCUl1apVq6DFDZvNTktLK6piXXJyckRERMF/sY+Pz6tXr74uSZmVlaUbAI1Gk0qlLBbL+ERW9e7du4iIiKJebd68+YkTJ6x7xfz8fKVSCZXpqBEKhWq12sPD7E5QACGUnJzMYDBCQkLsPZByCYo4U6bVanNzcx0dHaHnBAVKpVIoFLq4uEDPCQrkcrlIJHJzc4OeExTweLyMjIxq1apBzwkK4GbPEgU1hUuhoPA3KTc3l8FgwO0KNTwej8PhfFM9JwxhSMqUz6WrLxrFVYweSuY0hDEKPcoUSqXyzZs3QUFB38YnN1f5+KngDzVhMNka4tAjkvsrZoMHam10syfVyDakb34v+0AO1nWOHhIwAMdwK17ILHyldNSjA6mSXF0EQ2hKZMveQUX2VS6eVCqVSCQeHh7F36684/N/PnNSoFDoIo4Mxj/tO1bzsmZ3qA0X7u+9/Zwc6VAr4vduTcjZBQpOXn65YddNciS6WuD8Ce0ZDCr/j7s2XD2x9z450rZH9C+T25h1kkdnE5b236AhLQ2p3qTKH4d/Y7DM+DFy7dq1WbNmPXv2rORd/5+Hh8f8+fMHDhyIWfZPahUwN2WJ5ORkHMcL7YfarFmzx4+LrKeXm5tbCs2NIDlR2ipVqpScnKzbpJCcaN++/blz/1vn2L9//z179hSzc9OmTW/cuFHw57i4uDVr1hjtsHr16okTJ+o2t2/frltvYSPPnz+vWbNmUa8GBAQ8efLEulcUi8VyuRy+r1KTn5+vVqvLaac1u0tNTaXT6cHBwfYeSLmUk5PDZrO/4e+rtkMQRE5OjpOTE4fDKXlvYEilUgkEAldXVwaD+pTBd0uhUOTn57u7u+O43b6El188Hi8rK6tq1apl4etfuQM3e5YQCAQIIVdXV3sPpFzi8/lMJhNuV6jh8Xjfw7MUHOK4E/EnQgYllNVYZD62SIMoNp5VqVRv374NDAz8Zj65Em1aomy2QmvwmLYHvUEVznQasvLzIra72VNolduzdyXLU8jBKIfIQV4/MSzIRVkoTyWLe3E8TZani2AITagQ292vGoWzyWQysVjs6elZ4u1KUl7e2CuX8pX6/ASXydzQvFWk9eYWCAKtPn//9LNkcrBbdMS41vUsPPOBM8/3nUwgR2Lrhk74OZZC2oMgiG2rLt84+4oc7DWsYeef6pp1niu7b2+b8i850qBbnbGbhmI0M4ak1WoPHTo0e/bsgucSTFSzZs3ly5fXqkUxoWUtMDdlidTUVBzHv35wliCIypUrF9M+PTMz08QW7paA5ERpa9as2fXr13Wb5iYnHj16VK+e/ufs/v37e/fuXcz+5NwDk8lMTU0NCAggCGLmzJl8Pv/58+f37t0j749hWIMGDWrUqBEWFjZ16lTTB2a6tLS0gmSdo6Njhw4dyC/hOD569OhCq1RZIj8/Xy6Xe3tbM0X//RAIBGq1Gr7tU5OUlMRgMArNToMSZWdns9lseBSRAq1Wy+PxuFzuN/9t3xaUSmVeXp6bmxusnKBALpcLhUIPDw9YOUFBVlZWRkZGjRo1YOUEBXCzZwk+n48Qgm/71MBCT0tkZWU5Ojp+F6kd5SNCMB4Zzrwjmivm8idixVI5n1L56tWr4ODgb+mTK1Nn38qIEyqTyEF3drVGvmtYuDUXiNj0Zk+pVa55t/GFMJEcrOJceWKl8WycbfXLmShXIRl8Mz5ZpH8HYgj9UbPDTxXMnsSXSqUikcjLy8uU25WnmRkDjx6WkOrDuHM4+3r0jrDew+9aLTH937Nnn74lB0e0+mFc+4YWnnlD/LV9Jx6RI93b1po8ohWFU2m12sWT99+6+FIXwTBs/Oyu7Xual5+In7t/z3yDunBdxrQdt2G4uePJzMycOnXqnj17TJ8QptFow4cPX758uYuLi7mXsxaYm7JEUlISjuPh4eFfv3T+/PkdO3ZoDUuiHT9+vKCyE5/PL4UlevDVsbRZeOe6fPly3Z8xDGvdunXx+5O7XCiVyo0bNy5evBghFBYWFhYWVqdOnaLWSXC5XEvGaQovL68DBw7Y+ioAAAAAAAAAAIDdMOtinicJwW9ISeoxqxUQecOQ4y8YdxJ0A0UIcejezQK23smcxJPpC4zw5YlXPw9p7LfeiVE+FqMzacyJEeM2pWx9yNf/LV7nv13yZuWUyr850R2LOdZ2PFiO8bGDB93cmSLKKYgQCC14dgbDsH5h5s2Pm6W2r9/Orj8OPnZY+v+NTvkyWf8jB//r2TvczTp5NRoNW9yvnVShuv4qVRfceum+A4sxrIVF6yfGDmomkihOXX6hixw9n+DsxB7xU2PzB0mbuqSnkC958TitIEIQxPoFJ5yc2bFtzFi/MnhuHxFffHyDvmP8iU3nfUK8e0/pYtZ4fH19d+3aNXz48DFjxrx8+bLkAxDSarVbt249ceLEsmXLykiVJ2Atbdu2bdu2rVHQ3d29NNtOwK/A0mbJysG8vDxyP4bQ0NAS81c1atQgp0Pi4+O1Wi2GYSNK0q9fP8rjBAAAAAAAAAAAwP/QPDD3HchxBELkST0CSbYSeSORtsiSGt8VBo0b67cx2KkdOShWfbr2eVie4lVRR5U1dIz+a/ioWM9G5GCq5P3SNytFapG9RlXQHzucq3/qnEBofsLpfe8fFXOU5er6+2/t1JWF6x+MzpFKBxw5/DHfau95Ok5bNahj/YpB5OCa07d23bCoYDiGoWmj2rRoWJkcjD9879/jVDqKM1mMeRsGhlXWl8fRarXLph98fCe5mKO+Nmb10NgeBq2t/5m+5/yOqxSG1KRJk6dPn65Zs8b0R5MzMzMHDx7crFkzE1MaAJgIkhOlzZKVg4cPH1aQGgoV07lBh0ajRUVF6Ta/fPly+/ZtygMAAAAAAAAAAACA+XCMOwVz24Qww6lAxTUitwtSPS/iqO8LDWPU91kY5TaCHJRr+Ne/jMiQ3izqqLKGhtF+qTC0jY9BCaAP0vSFr5blKc2o9W9dnmynQvMT/9k4P9EoOHhr5y5MUkOyTLGo76EDn0X51roEi0HfOKxbdFgAObjyxPUj9xOLOsQUNBo2O67DD7VCycFNu6+fvPSiiCOK4+DEmrW6j2+g/gljtUqzcOK+d6++mDEknDZt17jqsVV0EYIg1oz668HZpxSGxGAw4uLi3rx5M3DgQNOPunHjRu3atePi4kQiuyXbwDcGek6UtoEDB5JbWJvVc6Jbt27Hjx/Xbf72229//vlniUcNGzZs+/btus0//vhj/vz5Jo/X+nQ9J0yE4/jIkSOXLFlC+YoikUihUEBlOmqEQqFGo/mWipmWpuTkZAaD8XXTIWCKnJwcFotVCiXmvj1arTY3N/d76DBpC0qlUigUuri4QM8JCuRyuUgkcnNzg54TFPB4vIyMjGrVqkHPCQrgZs8SBV0xS6Gg8DeJz+czGAy4XaGGx+M5ODg4Otqn0I0d0bQfOMqpNK3hE9MYS8GYoqR3N+UMSqXyzZs3QUFB3/AnN1125K14I4H0ZdAxRKvCjQtkm1fB5muldrNHIOIY7+SlXIOn2t0Z7nHBoz0ZdvuFla0Qj3p88JNMoItgCE2LbPljQA1TDpdKpRKJxMPDw9zblcsf0qZcu6Ih1bUPdnbZ3r6jl/W+sEgUyl93nknKzNVFaDRs3o/NW1S1qAekQqn+feWZl+8yyaedPqplbL0KZo9QIkl/n7V65llBrkQXdHZ1mL/5J/9gM6ZcpPmyWR2WfUj8qIswOcw5xyZF/lDR3CHp3LhxY9KkSUlJSSXv+v/8/f1nz55damVXYG7KEsnJyTiOr1q1au/evUbtJYpXOj0nIDlR2gYNGrR7927dpunJCYIgfHx8eDx9C6NVq1bpml0XY8GCBbNnz9ZtNmvW7OpVKmu+rOXJkyd16tQx6xAajfbw4UPK39UlEolCoYAfYdSIxWK1Wu3q6mrvgZRL6enpOI4HBASUvCv4Cp/PZ7FY3+H3VcsRBJGXl+fg4MBm263tXvmlVqvz8/OdnZ1hep0CpVIpFotdXFxw0sNxwER8Pj8nJ6dSpUpQxpcCuNmzRH5+PrK4Md53SyAQMBgMuF2hhs/nczgcDodj74HYAQ2TBzpvceMYVzXgy5p8zh+pJUqYNFer1ampqb6+vt/2J1dCf5rJ/ovAVOSgi7Kll6KfYXUs85Tyzd4DzeObmjvkiCNy6MXo7oHZ7XdWrlo2P+NWllqqi2AIDfOo2co5tMRj5XK5VCp1c3OjcLtyl5e98lUieVo0wMFhYc1oV+tliURy1cILT74I9X81Oo02oVm1mgEWteCWydWrdz36nCXWnxanjexTMyrcvNPKZDKZTKaU4H8tui6T6Av6u3o4jPqjmauHGXmafJ54w5CdeRn66liOrpyx2wd7hVL/m6pUqj179mzZssWsZgP169efMWNGaGgo5euaCOamLJGeni6Tyfr27WvugZmZmT4+PiXvZxlITpQ2ysmJd+/eRUREkCMHDhzo1atXiQdu3bp15MiRuk03Nzc+n2/yeK3P3JUTNBpt+PDhK1asoHxFeJjOEpCdtgSsnLAErJygDFZOWAJWTlgCVk5YAlZOWAJu9iwBKycsASsnLPHdrpzQYaqPsFTLEWEw+a6hVZazVmix4h5v+h5WThQQql4/zZ+p1ArIQX922yinyTSM4s1G6d/s3ci7dSDrCIH0k29cOndc0KgAln/pDOBrWQrx6McHPsn0U9s0DPujSpuOflHFHIUsWDlR4ETyuzm3bmhJ85ARbu7/tO/owmJROFuheCLpqO0nMwX6RAKLQV/1U5vaoX6WnDY3TzJp8YmsHH0hIxaTvmhSh6oRppZCQQhJJBKpVOrl5fXqafriSYeUCrXupeAKXnM39nNyNuPZso9vvsxqv1Scp1+E4RHgtuTihlTO3QAAIABJREFU7x7+Fv1YeP/+/dSpUy9cuGD6IUwmc8yYMTNmzLDps3EwN2WJgpUTy5Yt+++//8xKBMDKiW8T5eTEyZMnu3QxWMB4586dBg0alHjg8ePHu3XrRo58+fLFz8+in8uW0CUnQkND379/XwpXzM/Pl8vl3t7epXCtb49AIFCr1fBtn5qkpCQGg2FWNg7oZGdns9nsb/txMBvRarU8Ho/L5UJyggKlUpmXl+fm5gbJCQrkcrlQKPTw8IDkBAVZWVkZGRk1atSA5AQFcLNniYLnluDbPjU5OTlMJhNuV6jJyspydHR0cnKy90DsSvWcEIxHms8GQZoL5rIKsZoWdZBSqXz16lVwcPD38MkVqz7dyhgnVqWTg96c+g18VzBoVN48drnZu5p9fUfabnJ+wgF3mFJ5QkWn8FIbg5EMWf7gmzvTJfoeGDQMWxzdtVtwcc1NpVKpSCTy8vKifLuy/2XijEsXyBORVb28/+3Ry9l6+Yn0HMGQjQd4+fpZeyc2859RPasGWfQA+OdMwehZ+3JJyQAnB9aG+X0qhZl6+yEWiyUSScFz6PeuvVkw4V+NRr+SJLJG0NJ/hrI5Zrwt39x/N6XVPLlE35s2rHrwn9fnO7lamvQ9efLkuHHjPnz4YPoh4eHh69at69Chg4WXLgrMTVkiKSkJx/HwcFN/4Li7uxc8vFI6yQn48lNupKWlGUVMrBXz9YM8GRkZVhkSAAAAAAAAAAAAKGLUwDyOIGZDg6BWSOT9QohWIGRGZfBvlRMjsFnANjeWwRP92bIH1z4Pk6mz7DUqczX3bjomfASO6eteSjXSpW9Wvcx/Za8h+XGc42OHBDvqpx21BDHzyfFj6c9set0+Vav90bQZOfKSl/3z8aNSlaqII8wW7Om6deSPro76p/jFcuXov48mk9pRUBDg67pmdi9nJ9JppYrfFhz6+IVKk/OYZpETF/xIro715vnHxZP3k9MVJYr8odLv+37D6fr31fsX6XN/XKGUW/qP2blz55cvX06bNo3BYJh4SEpKSseOHYcPH65QKEreGwASSE6UG18nJ0x8Qof1Vf5ZKBQWuicAAAAAAAAAAABKD80dc9+OnMYZzs8QSLKV4A9GWoumU78NbNy9qf9WP4dYclCoTL7yeYhQaUb/XvuK8agfV2ksg6af6lVoFSvfrn2c99ReQyrITwQZ5id+f3L8ePpzm153aK3ombEGC4MeZ3z55eRxuVpd1CHmqujr+ffInlyOfjYsTyIbtvlQWjaVRIJOhWDPVbN6cNj6/8Q8oXTiwkM5fHExRxWlZedaQ+JakyMPbrxd9fthQmtGhZuYTnUmbxtDTnI8u/ZyUb/VWnOSHIVydHRcunTpy5cv27RpY/pR27Zta9iwYXp6esm7AvD/IDlRbhQsqCEzsV7H18kJgUBQ6J4AAAAAAAAAAAAoXTjmNB5z24xohg8gKu8Rud2RyrZPspcLdBqnod+fFZx7koMydfb1zyN5ssf2GpW5arvWnBwxgY3rp2jUhHpD8pYH/Ef2GpIfx3lX48Hk/ISGIGY+OWbr/MQv0XV+rf8DOXLnY/qIk8eVGo21LhEZ4LVpeDcOU59I4Iulv/x1+EteviWnjarkt3R6dwZDv1jhS5bwtwWH8sVyCmfrM6xJj8GNyZErp59tXnrarJO0Gthk8Lw+5Mid4w/Xj9tGYTxfq1Sp0vnz50+cOBEYGGjiIU+ePKlbt+7169etMgDwPYDkRLkhk8nImziOm1ghEcdxowgkJwAAAAAAAAAAgDKE1QLzOIzokQZBTQbB/wlJ4+00pjIEQ7Rorxk1PScjpH9IXKnNv5nx60fxOTsOzCxRzpFTIn5zwDm6iJpQb0z56zrvlr2G5Ofgsqvx4EAHV12kID9x4qNt8xOTGjQaVbceOXIz/cO4s6fVWqtVM6sV6r92aGcmqepRpkA0YsvhHJGkmKNKVLd68PyJnXFcP6Gamp4zaeFhGaViSsMntW3bvQ45cmLfvQPbb5h1kv6zenSPM2j2cGrLhX2Lj1AYT6E6d+6cmJg4fvz4rycYC8Xj8dq2bbt9+3ZrDQB82yA5UW5IpVLyJofDKWpPI6qvKvdJJBb9IAYAAAAAAAAAAICV4aGYxyHEMVgfgAglkb+QEE5GhKyIw74jlVz61fOeS8PouoiWUN7PmvWK/5cdR2WWCG6lGZFTuHR9N28tod32fuf5zEv2GpKfg8vu2CFG+YkZj22en5jaKHZQzVrkyIWU5PFWzU80iAhZPqADTmrf/SFHMPKvI0IplYUOOk3qV5wxpi2plhJ69S5j2tKjSpXZlakwDIub27VhS4OuKjvWXDx/xLwlQaNXDWnSq4HBSf747+y2K+aOpyguLi5r1659/Phxw4YNS94bIYVCMWzYsJEjR349JwmAEUhOlBs0msF/FpvNLmpPI0ql0ihi+rEAAAAAAAAAAAAoJRgLc1mCOS9AmGEfWtlxgt8HaaCSOwrhdmrst55BcyTFiFd5WxNyVhDlpIV4qGPIrCrT3Zj6YkoEIvak7zv6+YS9hmSX/ASG0NxmLX6qXoMcPJv8btqlC1rCjL4LxWtZveKCvm1opExCUkbOmL+PShTGc2Vmad+satzQFuTI4xfps/88ZVZH6wI0Gm36sl7VokN1EYIg1s47fuviS9NPgtGwGbvHR7fS/2MSBLFm1F+3jz4wdzzFqFmz5q1bt+Lj4728vEzZf+vWrS1atMjKKje964FdQHKi3OByueRNjcmV+L5OTpjYrAIAAAAAAAAAAAClzaEv5n4A4QEGQdVrIqcrkl+w05jKEG9O/WYB2zl0H3IwWfjf3cwpGkJhr1GZxZ/j90eV6d4sgxneI5+P7/94yF5D8nNw2RU7JOCr/MTJjy9sd1EMoQXNW3aLrEIOHnn9asbli1bLTiDUuU6V6d2bkyPP0zPjtp9QWNaCu1fH6IHdDTpn3HyQvGTTeQqJFSaLMW/jgPBIP11Eq9Uun3HwxeM0009CZ9LnHJocXitUfxKNdsmAtS9vvzF7QEXDMGzQoEFv3741scrTrVu36tat++iR3RqrgLIPkhPlhlFywqgFRTEUCuPfzY6OjoXuCQAAAAAAAAAAAPtjVMM8jiKWQbNcRIgJwa806Z8YVj6WCNiOC7Nii4CdLsxK5OAXybXrX0YqNHn2GpVZvFieM6tM9WUbpFhOZZyNT9tDICvOzJvB38Fl91f5iemPj56yZX6ChmEr27TrHFGZHDzwMnHetatWvEq/RjXHd2hEjtxP/hi3/YTKshbcowbE9u4YTY6cvfZyzXYqxZQcndjzNw7yDdCvp1Eq1HN+3Z38+ovpJ3Fw5iw6NdMnVJ/0UsiUs7stT3/9mcKQiuHm5rZ27dpbt25FRESUuPOnT5+aNm26f/9+644BfDMgOVFuODs7kzcVCgVhWjb26/bXAQEBhe4JAAAAAAAAAACAMoHmhrltx7hTDKduCFy+rYLbfBri221gZQOH7t00YKsXx6CZMF/+4urnIWJV+ah/5cF0n1VlepBDIDl4KfvqXynbNIR98k+F5iem2Tg/gWPYn23bt6oQTg7GP3u68MZ1K17ll5b1h7UwaMF9++2HaXvOarUWpYLGDW3eqrFBH/tDZ57EH75H4VQe3twlfw9189T3I5GKFb+PjP/8IceMk/i7Lb8w29XbRRfJzxVNb7sgO92Mk5goJibm0aNHXbt2LXFPqVTat2/fuLg408vAgO8HJCfKjfBwgx/TBEGYuHgiL8/4qYGQkBCrDQsAAAAAAAAAAAA2gSHHEZjbZkQzeFrRifmSq/oZaaz8NHS5w6Q5N/bbEOjUihwUqz5d+zxcrPpkr1GZxYXhPDNySgXHMHLwdu7dbe932mlEyN/BZUfjgb4c/VtOQxDTHh+7nvnOdhel02gbO3SKDTaYrdr29PGWRw+teJUJHRv3a1STHLn4/N3SYxYt0aBh2Kxx7WOiDf4Ht/5769QVKukcvyD3+RsHOTixdBFhnmTW6F3ifFOrpyCE/Cv6Ljg+je2oPwnvU+6szkvkEusXPeNyuUePHp0zZw5G7g9ehHXr1nXq1OnrWUrwnYPkRLlRtWpVo0hmZqYpBxp97J2cnDw9Pa02LAAAAAAAAAAAANgOqwXmcRIxDPoG04gMIm8UIqT2GlQZgWPMGJ+lUW4jyEG5Jvd+1nQtobLXqMziRHeaETklytmg78LNnNu3c+7aa0jBju67Ygf7cPTVxTWEdvrjY3ylDd9vTBzf2rlrg8AgcnDl3dsvedlWvMqM7i1+/KEaObLv9rO7SR8sOSeDji+e0rVWlMEKmNX/XMnIFlI4W6Uo/7nrBjBZdF0k4yP/nz/Pm3WSyB8q/bF/Ip2h7wnx/kX6noU26WiCYdjcuXP37dtnSg35c+fO1a9f/+VLM3p9g28eJCfKjaioKKM85KdPJj0IkJWVRd6sU6eOKflMAAAAAAAAAAAAlAm4P+b+L+L0Ngiq3xDCyQh97/0nEMKi3EfW8pyCkea48hSvE/kb7Dgms7Bx1qSI8TVcDCbNd33Ym6u0W/GuYEf3XY2HkPMTeUrpyjdUuimYjk2nb+vavX6AfpZfo9XOvHxJQ6HHdBEwDM3p2aptLYNOCXMPXpIpLUplsZj05TN+rFxB30FErlCt20FxTUaNemEzV/TFcf37+fyRx68SzCtWVr9D9OTtY8kTgIdXn7J68wmdPn363L59OywsrMQ9k5OTGzRocPToURuNBJQ7kJwoN1xcXCpXNmgQ9PmzST9T0tLSyJsNGjSw4qgAAAAAAAAAAABgcxgLc1mEOc9DiPS4ofwiIV5nvzGVIRVd+tb3WUD+x0kS7M2Q3rLjkMzCpDF/ixhXlbR+QqqR/fN+h72aYyOEQpzcdzYe7EBn6iLnMl7f4qfZ9KIcOv2fzl1DXfV9oZ9nZe54+sSKl6DRsCU/tasR7KuLfOHn/3XxvoWndXRgrvy9h6uzgy5y40HyrYcp1M4W0zxyyPjWuk2CINYvOKHRmJeJbNk/tveULrpNtVK9/td/TOxfS0HNmjUfPnzYsmXLEvcUiUQ9evSYPn26Vgu5VQDJiXKlc+fO5M23b9+actT79+/Jm02aNLHmmAAAAAAAAAAAAFA6HH7ScEYbRMSbkPyUnUZTtgQ5tavk0pcUIB5lz5GpeXYbkJnoGH1kheFOdH1tnEThq0tZFnVEsFCYk8ekqgZzzX+m3hAqzeh/QAGXxVraqjW54sefd29/EAqseAkGjs/r05pOWpqw89rjN58tfau4uzr8OrgpObLqn0syOcU1GT8ObhQe6afbfJ+UeXyv2ZW+Bs7p7RvmrdtMuJp4dd9tauMxhYeHx7lz56ZNm1bingRBLFu2rFu3bvn5+bYbDygXIDlRnnTp0oW8+fjx4xIP0Wg0qampuk03NzdTcpgAAAAAAAAAAAAog7ScMXmyRqQAQQhnINVzuw2oLKnuMd6VFanbVGgED7J/J8pP5Ss3puvAkP7kyH8fD2bITWo4aiP9wurV89T3qc5VSpclXrT1RX8ICOxdVV/kSqZWz7x8yboP/Ff09RzctI5uU6PVzj90Sau19CLtm1WtWz1Yt5mdI9p+4A61U+E4bfzsrhhNn6aJX38p+4t5SRoWhzn6zyHkyJZJO8UCCbUhmYJOpy9dunT37t0cDqfEnU+ePNm4cWPyvCX4DkFyojxp0KBBYKC+9N6TJyWva3v58qVUqm9Y1L17dyaTWcz+AAAAAAAAAAAAKMOwT/lj1FiUPkDIibzRSJNV9CHfCxrGjPFZyqDpFx/wZI/f5G2345DM1dDjhxj3+rpNpVa5OWWrhtDYazw0DFtSpxsHZ+gixz4+u5JhUiUPS/we29TXyUm3eedj+rE3r6x7idFtYoI8XHWbL9IzD9y1QpJv8sjWTIa+nfX+U4+T3lPs6V25emC7H/UZFIVctXXlWXNP0rBrvZhO+pPkZQl3zTtAbTymGzBgwOXLl/38/Erc88WLF/Xq1bt06ZKthwTKLEhOlCc4jv/222+6zS9fviQlJRV/yIMHD8ibY8eOtcnIAAAAAAAAAAAAUCq0BFPCWIFo3qRQNiEYhQi5/QZVVjgxgqK9ZpEjr/h/8WSP7DUeCoaGDXRn6psuvJd8OJVh9pS0FQU6uI6Pak6OzE04na+y7ZuNy2L90aQZObLg+rVc0tO3lmMx6HN7tyJ1jEZrz9zKFootPG2Qn1v/bvV0mxqNdvmWC1qqnR5+ntDW1V2fbLt18eX962Znhn5dP4ztyNJtHt9wLiUhjdp4TNegQYNHjx7FxMSUuCefz2/Xrt2yZctsPSRQNkFyorQZNXsxtxHNiBEjPDw8dJsldre/fPmy7s/t2rWLjo4263IAAAAAAAAAAAAoa7TIE3PbgDBSaQRVIpH/h/1GVIYEObUJ4XbSbRJI+yB7tlIjtOOQzOKAOwwPG4qRmnsf/Xz8vSTNfiNCg8Nj6niQqhXJRSsTbf6oe4dKEW3CK+o28+TyhTevW/cS9SsGdYzWNyEXy5VLj12z/LSDe8SEBLjrNl8nZ564QHFNBteFM2xiW3Jk4+KTcpnSrJP4hHj1mdpNt6nVaG3aGVvH39//6tWrQ4YMKXFPjUYzffr0IUOGKBQKW48KlDWQnChtRh8zlcq8xjhOTk6TJ0/WbR45cqSYnSUSyenTpwv+TKfTFy9ebNa1AAAAAAAAAAAAUEYxamPOCw0ismNI8o+dRlO21PaczmWE6jZl6qyH2bMRsvlsrLVUd6nazCtWt6khtH+lblNpKbZWthwNwxZGd2Hh+mpFB9Me385OsfV15zdv4czSP/J/7M3ry9buTzCtazM3J313hIvP311NtPTvxWDgU0a2Jq/J2LT7em4exU4PrbrUrlm/gm4z+4tg/7Yb5p6k77RuQZX9dZsv77y9sPMatfGYhc1m79ixY82aNXQ6vcSd4+Pju3fvDvmJ7w0kJ0qbXG6w8E2pNC/biRCaOHFiVNT/iks+ePDg7t27Re25Y8cOkUhU8Ofx48fXrl3b3GsBAAAAAAAAAACgjOJ0R47DyAFCtAIprthrOGUHncaJ8V2Gk1aWZEhvpQgP2nFI5uof0teHra/c9Vn25fDnY3YcT5iTx4jwhrpNAqHZT09J1GZPapnFx9FpcsPG5Mjsa5elZj7mWzxXR/bEjrHkyOKjVyUKS/9etasGtY7Vr8mQyJR//1fk9F3xMAwbM6MTnY7rIge330xP5Zl1EjqTPnadwc+KrVN3C3NE1IZkrri4uCtXrnh7e5e459mzZ7t16wb5ie8KJCdKW25uLnkzO9vsrjhMJnPv3r1sNrtgc86cOYUuxeLxePPmzSv4c0xMzKJFi8wfLAAAAAAAAAAAAMoujDsVscj9ALSEYCJSl9Cf8nvgwqxYzWM8OfIsd7VQWW7+ZVg01ogKw2iYfuLuTMb5NyKbd6IuxqDQepFOXrrNz1LB6leXi9nfKvpXr1HXP0C3+UUkWnX3tnUv0bVe1R8q6YtWZQpEG89RTCSQjRvcnOvE1m1evZf85OVnaqcKqejdfZA+M6RWadYvOGFuXaY6rWvE9tB3gMjPFe2c/R+18VAQGxv76NGjOnXqlLjnuXPn+vXrZ26lGVB+QXKiVInF4pcvX5Ij9+/fp3CeWrVq7dixA8dxhNDFixcXLFhgtENOTk6XLl1ycnIQQpGRkceOHdMlMwAAAAAAAAAAAPCtoGGuqxG9kj5ASIi8kUjLt9+QyopKLn39HZvpNrWE8lHuLA0hs9+IzBPhVLGdb2vdJoGIranb5Rq7tT3HMdrMSi2ZNP0j/P+mPnyY88GmF6Vh2LJWbcgVpXYmPH2c8cWKl8Aw9EfPlixS3aG9N58+/5Bh4WndXR1GD2hCjmw78FChVFM724DRLXwD9G3SXzx6f+2s2X0sRq8ewiHlS05vvfj6Xuml64KCgq5fv96rV68S9zx69OigQYM0Gk0pjArYHSQnSolarb5//37Xrl3z8/PJ8Tlz5mzZsiUrK8vcE/bt2zc+Pr4g5TB37txBgwa9fftWq9XKZLJt27ZVqVLl3r17CKFWrVrduXPHx8fHWn8RAAAAAAAAAAAAlCGYI+a2FdH0E5dI84kQjEUEPHqM1fWe40D31W1L1B9TFH/ZcUDm6hX4Y5BDoG6Tp8j59+MBO44nhOP6S4S+zpKWIGY8PibT2PadVsHNbXS9euSL/n7lklqrteIlQjxdh7c0uMS8g5fUGksv0blV9eqkTg8ZPNGuw/eonYrFZoyc1oEc2br8rFhkXqbKK9Cj/6yeuk1CS6wft01r8V/TdI6Ojvv371+6dCmNVsKM9H///ffTTz9BfuJ7AMkJm5s6daq7uzuDwYiJiblyxbjyo0gkGj16tK+vr4ODQ2BgYKFnKEr//v1v375dt25dgiB2794dGRnp5OTE5XKHDx+ek5MTEBCwffv2CxcuuLm5lXwuAAAAAAAAAAAAlFN4IOa6BiH9I+1I+YgQQXlnxKQ51/dZiJGmv7LUFz5JztlxSGahY/SRFYbRMf1D/VezrycIzH5k3opGRTSOcvXTbX6SCta9vmrri46pWz/Cw0O3+TYnZ8ujh9a9xLCW9cJ99JdIysjZe/OpheekYdjUUW3ouP7tt/fYw7RPucUcUowGzavENI/UbebliuPXXzT3JD0ndgqrrq9h9e5x6umtl6iNhxoMw6ZNm3bq1ClXV9fi9zxw4MDw4cO1Vs1CgTIIkhM2N2bMmIsXLz4qyc2bN48fP27uyaOjox88eHDx4sVRo0bVr1/fz8+vWrVqAwYM2LdvX2pq6tChQzEMs8VfCgAAAAAAAAAAAGUIsyHmPNMgIt2LpP/aaTRliCe7dhW34eTIc8EKkcq2xYisKMQhuFtAZ3Jk2/udYrXYXuPBMdri6K500pPv8cn3nuR+tOlFGTi+rFUbnDTHtf7BvWS+NWuXMXB8dq+W5Fm0DefvfMoVWnjaCsGevTvpGy2o1JrlWy6a2S1Cb8yMTmyOvs37qf0P3jw3718ep+PjNgwnzxZun/WvINvSv6a52rdvf/fu3bCwsOJ327lz59ixY83trgHKF0hO2FxoaGgdk1E4P4ZhrVq12rx58/3791NSUhISEnbv3t23b18mk1nywQAAAAAAAAAAAPg2OAxCDv3IASJ/AVJaobVveVfF/Rdvjr5oj1orfZD1u7b8lL3q5Nch3KmCblOgEm57H2/H8US6+Ayr1Ei3qSWIWU9PKDQUuymYqJavX/8aNXWbSo3m9yuXrDtpHR0W0OOH6rpNuVK96IhxBRQKhvVp6Oftott89vrT2WuJ1E7l7efab2Qz3SahJTYuOmnu2oLqsVVa/KSvzSXOk/w9fQ+18VgiMjLy+vXrJeYntmzZEhcXVzpDAnYByQkAAAAAAAAAAACAbwHmPBsxY0gBNSEYhzTlZpWAjWCIVs97PgvXl5HJU7xO5G+w45DMgmO0MeG/sHGWLvIo78nd3Pt2HNLYyKYVnb10m6minE1vb9j6otMaxQY562f5H3z+9F+ilStcTeoc6+3spNu89SbtfIKlLaPZLMbkX1qRIxvirwvypdTO1nNI47AIfRuVd6++nNr/wNyTjFw52MnVUbd5Mf768+uvqI3HEkFBQVevXg0JCSl+t/Xr18+cObP4fUD5BckJAAAAAAAAAAAAgG8DHXNdj3B9TXmkFRJ5IxAhst+QygQO3bue93yE9NVskgR7MyQ2n0+3Fm+Wd6/AHuTIzrQ9uUpr1jUyC5OGL4ruSq6z9E/S7cS8Lza9qAODMb95C3Jk8c0bmWJrVrhyYrMmd2lCjiw9di1fZl7f6a/FRIc1qqtfIiAUyTbtpvjew3Ha2N87kesy7Vx3MTfbvA+4m4/LoLm9dZsEQawft02tskP36ZCQkIsXL/r7+xe/2+bNm+fMmVM6QwKlDJITAAAAAAAAAAAAAN8KmivmthVhXH1EnUoIJiBkh5nHMsXXoVGYU09SgHjEmy9T8+w2IDO19mlRw6WablOqkf7zfgeB7FaOv6ZbwOCKDXSbGkL7+9MTKq1t32bNQsM6RVTWbYqVyt+vWLmfc/valZtG6Yto5Ygkq0/dsvy0vw6MdSS1izhzNfFJYjq1U1WLDm3VpZZuUypW/L3qrLkn6Tq2XcXa+nxJWmL68Q1mn8QqKlWqdOXKFV9f3+J327Rp09y5c0tlRKBUQXICAAAAAAAAAAAA4BtCD8dcVyOE6yOKG4ToT/sNqKyo6vqrIy1ct6nQ5D3I/p1A5pXstxcMYcPDhjjSHXSRROGrq9nX7TikCVEtwrn/x959xjdxZQsAv6Ne3buxMS6AuwGDDab30ENCgIT0bMimv112s0l2s+Wl7yYvPYHdZAkkIQlJgNC7aaa6m2KwjW3cu9U10sy8DzIzwtgCjUYaC5//h/zmSKM7J4Nkje6Ze28QHZZ3N6+9zEE/vmP/mDrdXy6nw0NXq/ZUXOH2EK8snaaQiunw59OlBVfrXWwzwE+xfAGzZgZFoX+uPWBhO1jhN2vu8vFn3gm5u0oKT1U61YJAKHjxiycxATMCY8Pffmyr52cszogRI/bt2xcUFOR4t7///e9vvPGGZ1ICHgPFCQAAAAAAAAAAAIA7i3QKpn7xhkf065DxJ56yGSgEmCRR9rJIwPTqthrzL3X+l8eUnOIv8V8VfcOa59/V/thkauYrH9vkTgK7KYY+v3T0QleTWw/qL5e/PPGGmZdeO3yo2+zqzEv2Ivx9nprFrN1CUeivP+7Hra4OCpk3dURSQjgd1jZ0bPr1LLumfPwUjzw/y/6RT17/FTc7tyb5iLHxcx6ZRocGrXHdHzawy8d1qampBw4cCAwMdLzbn//857ffftszKQHPgOIEAAAAAAAAAAAAwB1HuRrJF9k/QGn+hixFfKUzQMgFEal+v7d/5ELn2nZTMV/5OGti0IRxAZl0aCbNa6u+JCneBn9kBAy5P3YsHRIU+Wo1tDM2AAAgAElEQVTBNivp3nyWJSVPjGZWUW416N89wfGIjYemjE4cEkKH1S2d/z18zsU2BRi25jczBXaDFdb/dKq+qYtda3ctzUxMZ1aXqa9p/2n9MWcb+c07q3yDmCngDn9/ovBgKbt8XJeenr5//35/f3/Hu7388sv//Oc/PZMS8AAoTgAAAAAAAAAAAADceTDM500kZmaSQZSZ6nwaEY38pTQgRCnnDVXPp0OKIk41v4wT3Tym5JRHYh70FfvSYYWuclfTXh7zWZM8M1rJdChf7G76qiLP3Qd9a8YshZiZeWlTaUneNZZLOPRJKBD89d4bCgnrDpy+2uLqrEcj4kKXzh1Fh2bc+q91LNfMwATYC39dLBIxs7dtWnekvqbNqUZ8AtWPvn6//SMfPv1vi9nCLiXXjRo1ateuXWq12vFuL7300meffeaZlIC7QXECAAAAAAAAAAAA4E6ESTH/z5HQbqVZspXqegpRRv5yGhBGBb2sFjO33hutzWdb/or4W1zaKWqR6vFhD9s/8nPd1muGOr7ykQnF/ztqEWb3yCcXcys07l1pfIiPz/NZdjMvIfTnwwfNhHPzGjmWHBW6ModZdxq3Ev/46SDl8ntk9f0TgwNUdHimuPrgiUvsmopJCF24MosOLbj1szd3ONvIvCdmJGYPp8P6K40//99OdvlwIjs7e8+ePSqVysE+FEU9++yza9eu9VhWwH2gOAEAAAAAAAAAAABwhxIEY35fIIxZQBhZLlDdf/CWjng3EQnk2WHvCDEJ/Uij4Vhlt9esyTHKL31y8EQ6tFLWTyvXWkjebnjPCo65b9gYOsRJ4tWCbYTrHfkOPT5qTGpIKB1e7ez85Mxpbg/x3F0TwvyYu/jPVdb9eu6Ci20q5JIXHptu/8iHXx3W6c3sWnvomRmBIT50mJ9XcWzfeadawATYc588LhAyXcTfvP5Tc7V7a0uOTZgwYffu3Uql0sE+FEU9/fTTGzdu9FhWwE2gOAEAAAAAAAAAAABw5xInY75vIGR3a7tpL9J9zl9CA4KvJCEl8Dn7R4rb3+8yl/OVj7NWRa8IkjKrB9cbG7Y0/MpjPn9ImRWuYCabKu6s31B5yq1HFAkE78yaLRIwfZufnzt7vrWFw0MopZLX7p1h/8i/th/p0BlcbHba+OE5mXF02N6lX/ud08tF2MiV0qdemmf/yOdv79DrnFsePGF07ILVzPLaZoP589+vZ5cPVyZOnPjLL7/IZDIH+5Ak+eijj27evNljWQF3gOIEAAAAAAAAAAAAwB1NthApV9s/QOk+Qhbn7rC+8yT4rgxXTKJDksILWt/wljElcqH8N8Mew+xqTrsa9zSamvjKRyWS/iNjgf0jH1043GF2tR/fscSg4MdHMSM2CJJ84+gRbg8xKXHYzNR4OuzSm77Yx0HR5X8eny6TMmtmbN1bXF3Xzq6pSbNTMicm0GFHq/bn9SecbeTR11f6hzK1pRNbzpQedXWMiItmz569detWqVTqYB+CIB566KGzZ896LCvAOShOAN5otdp1N1q/fn1Hh6uLCwEAAAAAAAAAAKAXTP0/SDrT7gGC0r7FWzYDBZYZ8je5KISOO8znGw3HeUzIKUk+I+eEMf+mBEXubNzNYz6TQuPvjmYWaTASlu+qzrj7oC9kjx/q60eHJ+uulbVwOXgCIfTy3dNUMmYGsK1nL2iMzg1NuFl4iO+jy8bTIUlRm3cWsG7tmVcWSqQiOtz54xnc7NzyGyo/5W/eedD+kS0f8/lespkzZ86WLVsc1ydMJtM999zTwvU/+iDR0tLy1Vdf9eqeNZtZTjLGjujWuwDAKfot3t7evnr16l7Pjh07dt++fdweUavVms1miURy613BTTQajdVqFYngbwUbGo1GLBZ3dXXxnYhX0mg0ZrOZJEm+E/E+JElqNBqSJHEc5zsX74PjuEajwTAMvjVYMJvNGo1GKBTCtwYLGo1Gp9N1dXUJBHDzkNPgYs8VGo0GIQRvPHZsF3twucKO7YeG1crl6rWDBI7jOp1Oo9Gw+ORi2F9UgisCsuZ6W6f1HdssgikcpziA9Xmxl6hYU6D5Ix2Wtn4u9025YRasAWy2esaZ9vwOS8+NnifaTs1UT/cT+Tp+FTtGo1Gn04nFYgfvvaeHZh9ouKi19vT8fFt1ZlloqlQgdEc+tN9njn3+4H46/Pz0yTcmcfmuliD0YE7a5wfP2UIjbtl4+OwDE1KdakSv1xsMBvt+9rmT47fsLWxq1drC3bnnVy5IUykddcT3R64W3HXv6G3f9pSCujv1u385PeWuZKcayVyYFpsxtKqo5+9D3razlReuBkb4s8iHQ+PHj1+7du0TTzzh4Pvi2rVrd99999atW8VicX/7DGa232h99k1Nnjy5vLzfuew8c4UDPx2Bp1ksjhZoamtr4/zylCAIuOplzXod34l4JYIgBAIBnD12bFUxOHsskCQJn1zWbF8Ztv/ynYv3sb3rCILgOxGvRH9soY+YBbjYc4XtvMHZY8f2mYWzxw5crrBG/9FjdfYkeux5Nfo9HUvx/zMKxyFssPTo9Xmx54Ol+4tGdVoLbaHGWt5sygsUZfGUo3MwhE3znfxz21ZbaKWsB9oPLwlc4PhV7NzO5YocCZeEp2y8lm8LO3Hjr/Wld4enuCMfWnZYeKyvX1V3T9/rvuqrz6RnhCgcLafsrAUZ8RuOF+vNPT1aP525cM+YESKhE5dtfX5s509N/HJzT0XBjFt3H7l492yW52rmkvSdP+RbrT2X4rs2n8uZNcLZRuY8PvXz5762bRNWYs+Xh5a/vJhdPhyaP3/+Bx988MILLzj4oZGXl/fKK6+89RaMBuuD7bzd/JVBUVRbW9stX+huUJwAnqZSqWwbarV65cqV9k+JxeInnngiKCiI2yNKJBKTycR5s4OErXcYzh47HR0dYrEYzh47JEnKZDIfHx++E/E+JElSFKVWqxUKBd+5eB8cxwUCgb+/P9yCzYLJZBKJRIGBgTByggWCIMxmc1BQEBQnWICLPVfY3nIBAQF8J+KtJBIJXK6wQxCEUqmkfx6C24fjuJ+fX0BAANtP7iKqcwsy98xcJET1Qcr9SPEQhxkOZP1d7GWonjtc/xgdXrN+NyJsnrcMnpgfMPdg9+EuS7ctPKU9szzuXrWI+w+XwWCQSCS3vFx5Sj3tx4ZiM9HTE/pjY8ljKVOEmHtP5hOZma8cPGDbtpLkrrq6NRNyuD3E4rHJ3x0vsm23aQ0lTV2z04ff/stlMplMJut1ubJicfb3O4r0xp4h77uPXH5s+WShMzUPWlBQ0Pjpicf2ldnCmiutLXWGpIxopxpZ+MSc71/f2tnc8146/E3eb954SCLjv3j5wAMPIISef/55B/fy/+c//8nKynriiSc8mJd36OjoEAqFfV4q79ixY8OGDb2KEF9//bVt2hvPjESBn46AN4GBgWvXruU7CwAAAAAAAAAAYBDB1C9R5pMI9fRGUbqPMNliJHDLREDeIlCWHiLPajGetoVd5kuN+mPhysn8ZnWbxALx7NAZP9b9YgvNpPlA86G7IxfxlU+gVDl/SMovNT39+Nf0nYcaL82KSHTrQZcmJr1/Mq/N0LP+9jclxU+PHafgtGv1gUmjvj9RTFI966V/c6zQqeJEnxRyydypyT/v7hm109ymOX62ckp2guNX9WfxA9l0cQIhtO27U84WJ8RS8dzHZ2x6s+e91N2qObr55MwHB8QHYfny5WKx+Ob54e09++yzqampWVneMexpIMjOzs7Ozu714ObNmz257ATcmQUAAAAAAAAAAAAwaIhGIvlSJiS7Kf3n/GUzUCQHPGUfnu/8AiGKr2ScNTN0ukLIDJve13zARHh0SdtenkjIEdgNlfj35RPuPqJUKFqRwiwC0W02bbl0kdtDRAf5TUocRoeFVxtKa5tcb3bZ/NH252rzLvbLYqeMjklIiqDDE/vPt7donG1k4erZQhGzRsi2z/awzodzTz755IsvvuhgB7PZvGTJkvr6eo+lBFwHxQkAAAAAAAAAAACAQQRT/w5hdtP+GDYgoqb/3QeFQFlaqJy54brLXN6gP8JjPk6RC+XTQ5gloHVWfW7rUR7ziVUHTQqNp8OSzvrCjmvuPugj6aOkQmaGmC8L8+lRDlxZNWmUffjtsULX24wK9x+XEUOHheevVVS3sm5twXLmPWy1Ers2n3W2heCowPGLMunw0ukr5WcrWOfDuX/9619z5sxxsENTU9OyZcs8eeM/cBEUJwAAAAAAAAAAAAAGE0EQprSbmZ2yUNr3+MtmoEi6cfDEhc51XjR4Ym7YbImAWUhjd9NeK8XngvOPxU+wD7+6kufuIwYqFAuGM/MsXe3szK2+yu0hsodHDw9nJu7fW3y5uVvnerPL5o22D10ZPDFtfpqPHzOGZscPZ3Cz02+DxU/PtQ9//Wwv63w4JxQKv/vuu9jYWAf7nDx50vHsT2BAgeIEAAAAAAAAAAAAwCCjfBwJmRlgkGk3ws/xl82AEChLC1WMp0PvGjzhK/aZFMQsAd2Bd55oO8VjPlnBMWn+kXR4sLG8Stvm7oP+ZnSm/brbXxWy7+Xvz8qJGfS2lSA3nyxxvc2sUcOGRjLr2+89eqGz28CuKYlUPHcpM+6hu1N/fH+Zg/37lDE9ZVgqs1jF4e9P0EtkDwQBAQG//PKLUql0sM/XX3/9xRdfeCwl4AooTgAAAAAAAAAAAAAMMpgMU71g/wClfcuLBgq4SbL/DTdcn+/4nEIkX8k4a374XCHGdPTtbNxN8foP+nA8s9AuSVEbKk+7+4gjgoKyh0TR4YlrtRda2U+R1KdFmUkBKmZowo95JWaLqyNUMAzdcxczYZTFQmw/wL7msWDFOKGQeRts2chmzMrCp5ipkyxmy54vD7LOxx3S09M3bNiAYZiDfZ5//vkjR7ymuDiYQXECAAAAAAAAAAAAYPCRL0FiZg1hZClBpp38ZTMgBMhSwxTMfETdeIUXDZ4IlgZlBYylw0ZT07kO7ocO3L65kclRSn863FJb1G7Wu/ugj48aYx/+t4jjMyARCe/JSqHDTr1xZ8El15udNy1FpZDS4c97iqwEy6pYSLhf9rSRdHjlQkN5aZ2zjcx8cLLSl6nBbF+7j7AS7PJxk6VLl/7hD39wsIPFYlm+fHldndP/78DDoDgBAAAAAAAAAAAAMAgJMPWf7GNK+w6ijHxlM0AkB/wWIeaObO8aPLEgfB5ml/y2hh08Dp4QYtiq2HF0aCasm6qcXp/ZWdNjY+P8mSmSfi2/1GrguCKyYmK6WCikw41HC1xfeFsuE8+fztQ82jp0R05dZt3a4vvH24fbvnN6gi+5Sjb7kal02Hqt/eSvA27at7feemvevHkOdmhubl68eLHRONj/pg1wUJwAAAAAAAAAAAAAGJQk45B0JhMSTciwkb9sBgR/aZL94AkNXtmgz+UvHedEKYak+zGjYWoMtRc0F3nM575hY/wkcjr8puqMkbC49YgYQg9nMFMk4QTxTUkxt4cI8VHNSk+gw4qm9jOV11xvdtn80QIBU1j6aVch66bSxg4bNjyMDo/uLe1sc3rh7iXP3IXZ5bPtsz2s83ETgUDwzTffxMfHO9inoKAAFsce4KA4AQAAAAAAAAAAADBIYT4vI0xMh5TuM0RyPE2/17lp8MQXXjR4YnHEQvtwe8MuvjJBCMmF4vtimHmWunDj1lqOSwU3uzcp2V8mo8NvSopNVleXhejl4Smj7cNvj7IvJNDCQ3zHj46lw5JL9Rcrmli3tnBlFr1ttRC7fnJ6zEpEfNiYWel0WHSo7GppLet83MTf33/79u0+Pj4O9tm4cePHH3/ssZSAs6A4AQAAAAAAAAAAADBYCaORfCUTUnpK9wl/2QwI/tLEmwZPHOYxH6fEq2KHq5n7+s9rLlboKnnM5+H4bKlQRIdfXckjXJ8FySG5SLQiJY0OO4zGbZc4Hj6SNCQ0PSacDnMvVNa0drre7LJ5N9Q8ft7NvuYxY0GGjx+zaMTOH89YLU4vGrH46Tn24Y61+1jn4z4jR478+uuvHS+O/bvf/e7wYa/5CA82UJwAAAAAAAAAAAAAGLww1fNI4MvEhh+Qlf1893eGmwZPrPWiwRMLw2+YiH9nI58T8gRKlfOHMKspXNN3Hmosd/dBH87IsF8WYl3BOc7rIasmMZNHURT6/gQHI0LGpg+NGxpEhweOX2rvYrlghlQmnr2EKXV0tGqP7z/vbCNZ88eEx4bS4f4NR/TdBnb5uNWSJUteffVVBztYrdZly5ZdvXrVYymB2wfFCQAAAAAAAAAAAIBBTOCLKX9rFxOU9p+8JTMw+EsTwxU5dKjBK+t1h3jMxykZfmlDFdF0mN9ZWG9s4DGfJxJyBHY3tv/78nF3HzFUqZqfMJwOqzo7j9VUc3uIWWkJYX5qOtxy5rzOZHa92aVzmJqHxUr8ur+EdVOLVmYLBEzHL4tlsTEBtmD1bDo06kz71ueyzset/v73v8+fP9/BDu3t7ffdd5/F4t4lTwALUJwAAAAAAAAAAAAAGNwUDyFhDBOac5HZ7T3IA1xSwFP2gycudK7zosET88Pn0tsUonY17eUxmVh10KRQZtXiks76wg4OVpB27PFRY+zDLwsLuG1fKBCsyGGWZNCb8S1nnB6acLO5U5N81cwS4lv2FlmsTk/HZBMS4TduClOhuVhce7ms3tlG5j0xQ6aU0uHWT3dTpHtn5WJHIBBs2rQpKSnJwT7nzp178803PZYSuE1QnAAAAAAAAAAAAAAY3DAxpv69/QOU9h2EWPaK3hn8pYnhiol06F2DJ7ICxobKQujwRNvJNnM7j/k8Gj/ePvzqSp67j5gSEjI2MpIOj9ZUX2rjeKX3ZeNT5RJmMflvjhWSLnfcy6Ti+dOZWbDaO/WH89jPsbb4/htO+/bvnR48ofJXTlvJfAoaKpry97t9SXN21Gr1L7/84uvr62Cf119/PT8/32MpgdsBxQkAAAAAAAAAAACAQU82F0kymdB6CRl/4S+bASHZawdPCDDBvDBmNWOCIvY087macXbwsDR/plRwsLG8Stvm7oP2GjyxvriI2/Z95LIFYxLpsKFDk3uhyvVm77lrlEDAvOu+33GOdVOjsuNiEphFI3J3l3a265xtZMkzc+3DbZ/xOQrHsREjRmzYsMF+MqterFbr448/juO4J7MCjkFxAgAAAAAAAAAAAAAgTP2yfV88pX0fUSzX470z+ElHhisn0aEGr6zXHeQxH6dMDp7oJ2buIj/cclRr1fKYz8Px2fQ2SVEbK0+7+4izYuOG+vrR4ZaLF9oMHK/n/NDk0XaraaBvjnIweVRYsM+kscwsWOWVzecvN7JubcHyLHrbglv3/Ox0qSM2PSZl4kg6PL0zv7GqmXU+7rZo0aLXXnvNwQ7FxcVvvPGGx/IBtwTFCQAAAAAAAAAAAACAkDgNyewWlSXbKP1/+MtmQEj2X+2lgydEmGhO2Cw6xEl8fzOf01LNjUyOUvrT4S+1Re1m95a+BBj2SAazvjROEN+Vsl9fuk8xIf7jhw+lw7OVdZfqOZg8atn80fbh5p3sZyKatXiUyodZxGLHD6etzi9isehpuyVMSGrHWj5H4dzSa6+9tnjxYgc7vPXWWwUFHK9BAliD4gQAAAAAAAAAAAAAQAghTP0SwpiuTKT/DyIa+EuHf37SkRHKyXSowavqdAd4zMcpM0KmKoQKOtzffNBEmPhKRohhq2LH0aGZsG6qOuvugy5LSvaRMus5bygpMhNWbg+xatIo+/Db44WutzkqOSo+JpgOD5+83NLOctSLVCaetZjJsL1Fe/LQRWcbmXRPdlBkAB3u+s9Bk97MLh8PwDDsP//5T2hoaH87WCyWVatWmUy8fRaAPShOAAAAAAAAAAAAAACEEELCMKR4iAkpE6X7kL9sBoSkGwdPXPSewRNyoXxm6DQ61Fn1h1uP8pjPfcPG+EmY0tc3VWeMhMWtR1RKJMuTU+mw3WDYXl7O7SEmjhw2LMSu477gUruWg8mjls1jBk9YCfLX/ezHfCxamY3ZLWKx7Vunl8UWiYV3PT6DDnWd+sObjrPOxwOCgoLWrVvnYIeLFy/+7//+r8fyAQ5AcQLwhiTJzhtptXzOfggAAAAAAAAAAABM9VskYO7aRsatyFLKXzr885OOiFBOoUMNfrVOt5/HfJwyJ3SmRCChw91N+6wUx0MHbp9cKL4vhlmkugs3bqstdvdBHxs1SmS3QvK/C/IpTtvHMLRyYgYd4lZi80kOJo+aMznJ35cZ9bJlbzFuYfkPFx4VMHbicDosK6i+csHp4VALVs8SSUR0uPXTPeyS8ZhFixbdf//9DnZ49913z5w547F8BiyNRtOre5aiuP2I3ILo1rsAwCn6LV5bWxsQEGD/FIZhL7zwwltvvcXtEU3XcdvsIGEymaxWK5w9dnAcpygKzh47tvMmkUhuuSfohSRJk8kkFosFArgFwWk4jtu+MkjSO+6GG1DoL1yRCK4wnWYymWxvP/jksgAXe66wnTc4e+zYvi/gcoUdk8kkFArhK4MFHMfpKxa3HUQolK4WGV+/HpJE97sW1b/ddjjPYX2xF698pEF/BKGeDo0LHeuCRJMwb7jlV4IkOQHjD7cdsYWdeGdu49GJARNYNEV/4bpyubJsSPp/K05ayJ5lD766krcoLFlgv6g01/xE4lnDYndXVtjCy+1tuZUV4yOHcHiIuamxH+06rjPhtvCHvOIHclLFQqH9PiwuV+ZOSdz0a89qE10aw57cstmTRjp+SX/uunf0maPMkJFt3+U9++cFTrWg8JdPWJx5dHPPqIuq4urCwyWJ44c7fhVX2PVNvffee7m5uQ0NfVdirFbrQw89dOrUKZlMxkWOAxeO40KhsM+z9+yzz3755ZeeT8keXAcAT+vq6urvKYqiNm7c+Kc//YnbI2q1WrPZLLWbZBDcPo1GY7VaxWIx34l4JY1GIxaLu7u7+U7EK2m1Wlt1h+9EvA9JklqtliRJi8W9Q6TvSDiOa7VagUAAPU0smEwmrVYrEomgp4kFrVar1Wq7u7uhOMECXOy5QqPRIISEN3aggNuk0WgkEglcrrCj1WoJgiAIp9dlBbbLFY1G4+ZP7qwA9I0IVdsCgfWUvuusFfNQR6T7uHCxFxIkGt9mzbMFWkt1bcdxP2E65xm6wwTpuKPYMYLqqcfkth5NFSazaMdgMOj1eolE4srligShmUHxu1t6Ospr9Z3H68rTfcJZN3g77o2No4sTCKHNZWVJKjW3h5iXFvfjmZ61HNq0hsMll7NiI+x30Ov1BoPBqX7w6dkxP+4sJIief7jdh8uy0lieqGGJgWFD/JrqenrkThy4sPKpCSKxc39Dpq4aTxcnEEL7NuZGJPW7rgO32PVNYRj2zjvvPPjgg/3tUF5e/pe//OXPf/6zywkOaLbvi5v7pmzdsA5eiOO4O/PqAT8dgaf5+/vbNgQCga+vr/1TYrH4pZdeCgwM5PaIYrHYZDJx3uwgIRQKrVYrnD122tvbxWIxnD12CIKQyWQ+Pj58J+J9SJIkSVKtVisUilvvDW6E47hAIPD394fiBAu2MROBgYFQnGDBdi9YYGAgFCdYgIs9V2AYhhDqNaAZ3CaKoiQSCVyusGO1WpVKpUql4jsR74PjuK+vb0BAgLs/uRj+R6R5mg79pDso9RtuPaIHuHKxl4o/dbgxjw67hEfjAqdzmp27BKLAscbMUx09M9jUmusIFRkiDXb8qpvJ5XKJROL65coT4sl0cQIhdEJ7bfqwFFcavKXJgYFpJUUlzc228HhjvdrPT8Jpee/h6eM2n71IV6tPVzfPG5tqv4NUKpVKpU5drgQGBuZkxh493VNWOV/RIhIrfH3kjl/VnwXLs//zXs9cTEY9XnO5a9xk58qN4+8KjEmJqi67ZgsL9pb97ovf2q9m4T6s+6ZWrFixd+/eb775pr8dPvvss3vvvTcnJ8e1BAe09vZ2oVDY59l79dVXP/744143CnR1ddluvPDMj2L46Qh4Ex0dffXqVQ8cSHSdB45157GdNzh77MB7zxVw9lgjSRLOHmtw9lwhssN3Lt6HPnVQnGAB3niugIs9V8B7zxVw9ljz3OWKaCZliEXWKlskwHdhgpeRwM+9B3UzV85eoCjZX5rYae65O75Bf2h08EtiAcc34LvJpOAcujhBIep019m7Ixc52whXlyvJAREJPiFXNC22cH/TpddGzRdi7r0EWjRiJF2c0JrNJ+rrZsXGcdh+dHBAalRYSW2TLTx8vupv92H2Mzuxe+PNzBlJFycIgswrqF44M9XxS/ozbV7al+/vpUf7nTx0acL0JGcbmXLvhOqyH2zbHY2dl89WJuewnGnKKa5crnzyySe5ubl1dXV9PkuS5OrVqwsLC+VyllWfgU8kEvU3j+Jrr7322muv9XowICCgs7PTI6khBAtiAwAAAAAAAAAAAICbYJhiFRNRJmTczF8yA0KMmunQJyhzne4Aj8k4JcUnyVfMzF1xov0khfickm7eEGZeqQ6z4VSr229dnZ8w3H5li11XLnN+iNnpzEAErdF86nKt621OGBMntVuGOvcU+7QDQ3xGpEbS4clDF6xWpyfWm7h0nH14fKsXLCjt6+v7xRdfONihvLz85g564DFQnAAAAAAAAAAAAAAAN5EvRRgzMoAyfIPQoF4mJEo9V4gx85xUa3/lMRmnCDBBduBYOmw2tVTpq/lLB80fkmo/GdCuuvPuPmKYSj06nFmwYX9Vpclq5fYQczKG2y/sva/kiuttymXirIwYOjxXUqPRObcotL2JM5makE5rKj1X7WwLMSnRUSOZCsexn095xcJL8+fPf+SRRxzs8P777x87dsxT6YAbQHECAAAAAAAAAAAAANwEUyL53UxINCDTIf6y4Z9E4BOunEKH7aYSDe6J2ao5MSEw2z7MazvV3xP2DUgAACAASURBVJ4eEK30T/Zn1ove33ARJ91e95qfMILe1uN4bjXH/3ZhfurkIcwC0QdLKywEB/9TU8czAzKsBHniXCXrpibOvmFtj+P72dSEJt7NDJ5orm6tKPSOj8AHH3wQFRXV37MkST7yyCM6nc6TKQEbKE4AAAAAAAAAAAAAgD5gygft+44oQ7/ryg4S9jM7IYRqtDv4ysRZscphETJm6MDJ9tMExec4mHmRzF38GovpeHOFu484f/hwoWdndjp95ZrrbU4aGy8RMzM7HT7JPu2wSP+4kcx7IO/gBZIknW0kZ8kNMzud8IaZnRBCvr6+X331FYb1u3x3VVXVX/7yF0+mBGygOAEAAAAAAAAAAAAA+iKMQdIJTIjnIWs5f9nwL1SRrRAxd8fXaLdTvHbxO2V8UBa9rbVqyzQXeEzmriEpNywCUe/2mZ2CFcoxEcyURAeqKg0WC7eHmJN+48xOxRzUPxRySWZaNB2eKa7WGcysW8uZySyC3dmuu1Dk9MIYwzPjQqKD6PD4L6dZJ+NhM2fOfOyxxxzs8NFHH8HkTp4HxQkAAAAAAAAAAAAA0DdM8aB9SBk28ZXJQIAhQbR6Ph2aiPZmI5/zIzllYuB4DDF95/zO7BQu98kIGEKHBxsuGQmOSwU3m5/AjGwwWq1HuJ7ZKSLAJ+mGmZ0quZnZKZtJ22Ih8vKrWDdlv+wEYjWzE4ZhOXYzO9VcqKu9WM86Hw97//33o6Oj+3uWJMnVq1dbuV6MBDgGxQkAAAAAAAAAAAAA0A/pVCS0m6vduAVRWv6y4V+MeiGy6+L3omWxg6RB8ao4OjzXWWAi2N+D77p5kcwSCEbCktvE/TxLvY+YcMPMTjvcMbNTWgK9rTGazlbUud7mlKwEsUhIh7mn2KcdHRcSHRtMh8f3n2exovWku7PsQy8aPOHj4+N4cqeLFy+uW7fOkykBKE4AAAAAAAAAAAAAgP4IMMUDTEQZkPEX/pLhn0ocHSRLp8MG/REz0cljPk6ZEMQsi42TeH5XAY/J3DUkWYgxPZO76tw+s1OQQjEukhmucfhqFfczO2VwP7OTSikdncIUCE8VXDWa2KedYzd4oq1Zc7nM6XEPKRMTA8L86PD4Vq8pTiCEZsyY8eSTTzrY4e9//7tGo/FYPgCKEwAAAAAAAAAAAACgf/JlCJPTEaXfiJDT6+jeSWJ8mGWxScpyTbeXx2Sckh0wToQxqyvzO7NToFQ5LmgoHR5tvqK1uH0kx7wbZ3Y6dJX9FEl9igzwHRkZQocHyyoI5xedvpn9zE5m3HqygLOZnU4ccHrpEUyAjV+USYdX8quarrawzsfz3nvvvbi4uP6ebWlpefvttz2ZzyAHxQkAAAAAAAAAAAAA0D+BD5Iz3fGIqEHm4/xlw78hylkigYIOr2q28JiMU1QiZaov0zddprnQbenmMZ+7hjAzO5kJ68HGS+4+4ryE4UIB0x260w0zO81JZwoJXXrTmYprrrc5JStBKGTSPnySfdpxieHhUQF0eGxfGYtGcpbcMLPTia1nWOfjeUqlcu3atQ4md/rggw9qa51eKhywA8UJAAAAAAAAAAAAAOAIpnjYfqEFyrCRx2R4JxIoIpXT6bAbr+gyl/OYj1PsZ3YiKfJkO5/dynMjk8QCZjWF3fVun9kpQC7PHmI/s9NVHY5zewj74gRCaF/xFdfb9PWRZyQxaeflV5nMLszsNCOJ3m6s67h6ucnZFkbNSFX5K+nw+BZvmtkJITRjxoxly5b196zRaHz11Vc9mc9gBsUJAAAAAAAAAAAAAOCQKAFJxjKh+QiyXuUvG/7FqBfZh160LPYYv1EKITNJV147nzM7+YhlOSGxdHiipbILN7r7oPPtZnYyE9aDXM/sNCTQd2Qks+j0wVLuZ3YymS2ni6pZN5UzM8k+PL7f6ZqQSCzMXjCGDs/nlXc0es3KKzZvv/22VCrt79lvv/327Nmznsxn0ILiBAAAAAAAAAAAAAC4BUzxoF1EUcZNvKUyAATLR6vEzJ3stbrdJMXxDfhuIhaIx/iPpsOr+uoGUyOP+dwVyczsZCXJfQ0X3X3EuXEJIvuZnS5zP+pltt3giU698VxlnettTs0eLhAwo5dyT7Gf2WlkWlRwmC8dHj/AZsDKRLuZnSiSytvmZV35w4YNe/bZZ/t7lqKoNWvWeDKfQUt0610AcI+GhobMzEz7R8Ri8e9+97t77rmH2wOR13Hb7CABZ88VcPZcAWePNdIO37l4Hzh7roCz5wo4da6As+cK23mDs8cOvPdcAWePNT6/cCUzMGE4Iq53ZBt/JhXPI0zh8DUDC7dnL1q14ELnF7ZtnOhu0B+NUEx3/JIBYkJg1rG2E3SY13pqaeTiW77KTW+86WHDZUKRibDawl3XSu+NzuD2EL34SqXjh0Qdq62xhUdqqruNRnX/N9GzMDM1/qNdzBneW3w5MXSci2fPz0eWOiKy+GJPneP42UqTGZeIWXbtZk8duf37nrmYaipaaiqbo4YFO35JL6Nnp8mUUpO+Zw3zY1tOz3tyJrtkbslN771XXnll/fr17e3tfT579OjRrVu3Llq0qM9nvQhJkhiG9Xn2Nm7c+NlnnxEEYf+gRqPxVGoIQXECeF5XV5dtA8fx/Pz8Xs8+99xzkydP5vaIWq3WbDY7WOgGONDd3W21WimK4jsRr9TR0SEWi1UqFd+JeKX29napVGo2m/lOxPuQJNne3m4ymRQKb/qhOEDgOG77uyeRSPjOxfuYTCatVkuSpEgEV5hOa29v7+zsbG1tFQhgZLPT4GLPFZ2dnQihXj9KwW1qb2+XSCRwucJOe3u70Wg0Gt0+f8udB8fxzs5OhULByydXSS1Qon/3BKRG1/qtEVvi+TRY4/ZiT01NwNA6CvV0+V1u+0ksT3W9WQ8IQoG+It9ua89S2Edbj0+UjMfQLb5JDQaDXq9HCHF+uZLlF32kvWdupTPtNRfrq4MkSscvcdGksHC6OIETxJaSortiYh2/xCkKhOJC/CtbemY62ld8+f5Rw0xGo4unbkxKOF2cMBjxg8dKM1OHOH5Jf1LGRm7/ngn3/3pu4f2Z/e/et7RpSWd2FNq2S3LPV1+pUfq55Ueo+/qmXnzxxb/85S/9PbtmzZrMzEyxWMz5cT2po6NDKBT6+Pj0epyiqN/+9rcOvohxrpdj6RP8dASeplarHTybk5OjVHL8DUQQhEgk4rzZQcJqtVqtVjh77CgUCrFYDGePHaPRKJFI4OyxQJKkyWRSKpVQnGBBLBbb/uhBcYIFoVBIkqRSqYTiBAsGg0EulyuVSihOsAAXe66w/eyEs8eOyWSCiz3W6L97fCfifcRise3U8XL2MGolMmxAVE9NTin4RaC4H92qU3vg4PZiT4mUgZbRbfg5W9hJFghlRpkwyPWWPWCc75j97Yds253WrhZBa6x8mOOX2O4DcMflyl2RyXRxgqSoU9r65dGjuD1EL/NHjPhn/lnL9QpfbkP9vckcF5ZmpMRVHup5b3QbzBXtuhHBPi5+bGfkjPzvT2fpLvqzpQ1Tskewa2pUdryvv6K702ALC05cXfGbKc42krNkHF2csFqIstzy6Q9MZJePY+7rm3rmmWfWr19fWVnZ57OVlZU//PDD6tWrOT+uJykUCqFQ2OfZmzhx4v79+/t7oWd+FMNPR+BpQqHQthEREfHrrzcsGCUWi1NSUjj/krP108Hd6+zYvgDg7LFjK07A2WPHYDDIZDI4eyyQJGk0GlUqFRQnWMBx3GKxqFQqKE6wIBKJCIJQqVRQnGBBr9crFAqVSgXFCRbgYs8VtuIEnD12TCaTRCKBs8eOXq9XKpVw9ljAcVyhUPB39lQUOQ8Zt9gCAVmlkpxHkmw+MmGD84u9OHR3W3NPBzRFEe1U7gjVI5y07G5TBJPo4gRCqFBfnBZ8i955gUBAUZQ7Llfukqe9fmGfztpT9DrYduXxpEncHqIXFVLlREXnVvcs6p5XX28VifxkMg4PsWhcyrrrxQmE0MmqplFDw1z82KpUqqSE8POXe6ZWO1lYLZXJxSIhu9YmzEja/VNPhlXlTdouPHxIgFMtTF2W8+mzX+Emiy3M31OyaPVcdsk45ta+qXfffdfBDPNvvvnmo48+GhDg3JkZUGzFiT7P3u7du0tLS3uNw5s+fbonZ3aCHz+ANxKJZMyN0tLS4Ac5AAAAAAAAAAAwYGGKh+1DyrCRr0wGggjldImAmSylWvMrQt4xK/JQRfQQeSQdnuo4Y6WsfCUjFYqmhTMrSBe2X6s3dLn7oPMTmCNaCOJAVd/3zrM2NNg/IZwZRpN78SpJcvDemJrNpK3TmwvKrrFuauLMZPvw5CGnlyJXqOUZ05ma1rm9RQat903Wt3Tp0kmT+i2GdXR0vPPOO57Mx5OEQmFGRkav7ln6tnLPgI5gAAAAAAAAAAAAAHB7xMlInM6EpoOIqOcvG54JMckQ1Ww61Fpq2k2lPObjlPGBWfS2zqov7T7PYzLzhqTQ2xRCe+ovuPuIs+PiJXadsLuuXOb+EGkJ9HaHzlha3+p6m9PGD7dfZiv3FPu007Ni1b5yOjy+n80bYOLdzLsIN1nO7SlinQ+P/vWvfzlYveyDDz7ob94n4DooTgAAAAAAAAAAAACA24UpHrKLCMqwibdUBoAYn0X2YbX21/72HGhygm5YBDuv7RSPyUwKifeVMB3lu+rK3H1EH6l0YvRQOjxWW9NlMnF7iLkZNywIcfRSjetthof4jogNo8Mjp68QBMmuKZFImDVlJB1eLL7W1uz0ZD45S8YK7eaVOr7lNLtk+DVu3LgVK1b09yyO4w4WzQYuguIEAAAAAAAAAAAAALhtsruQIJgJjT/SS2QPQgHSZF9JPB3W6fYRFMd93G4SKAkYrmZu7c/vKjQQvM3JIxIIZoYzHeXnuxqrde3uPuiC4cwUSVaS3FdZwW37MSH+8WGBdHjsch03MzuNZ/7VujXGwgt1rJvKmZlEb1MUxWJmJ59AdeqkRDo8tSOfXoLCu7z55puy/hcd+f777/Py8jyZz+ABxQkAAAAAAAAAAAAAcNswMVLcx4RkJzLt5C8b/g1VL6C3LaS+XnfIwc4DyoRAZjFzC2nJ7yzgMZl5Q25YAmFXndunmZodGy8Viuhwpztmdkpn6h8demNhdYPrbc6YMNI+zD3JPu0xExLkSikdHj/A5pznLBlHbxt1poIDJazz4VFMTMzzzz/f37MURa1Zs4aivGNFGe8CxQkAAAAAAAAAAAAA4ARM8QBCTK8uZfiax2R4N1Q9X4AxZ8OLZnbKChgrssv8BK8zO2UHxwZKlXS4o87tq3coJZLJQ5mZnU5cq+0wcjx2ZG7GcPtwXzEH9Y+IUN/4GGbo0pHTl1kPyJBIRWMnMhmWnqvu6tA728jEpVn2CzZ46cxOCKFXXnklKCiov2dPnjy5detWT+YzSEBxAgAAAAAAAAAAAAA4QxCMZHOY0HIBWbxmIWjOSYUBYYocOmwxnjNam3nM5/YpRYoMvzQ6vKi91G1xetUBrggxbE4kM8tQlbatUtvm7oPOS2C65gmSPFDF8brHw0IC4kKZmZ0OllZwcvP91Gy7ARldhrLL7AdkTJzFnHOSJM8cLXe2haDIgBHjmJnNTm0/R3Exe5Xn+fr6/vWvf3Www9/+9jcYPME5KE4AAAAAAAAAAAAAAOdgilX2IWXymuEC7jBUvdAuour1uXxl4qzxgVn0NkmRxV18zslzV+QNMzsdaeJ+nqVeZsXG2c/slFtTzfkhZqYxHffN3brKZg4qLlOzE+zDM0XVrJsaO2mERMqcgfw8NgtvTLSb2am7TXuloIp1PvxavXr1iBEj+nu2pKTkwIEDnsxnMIDiBAAAAAAAAAAAAABwkiQTiYYxoXE7QgR/2fAsXJEjEijosEF/mMdknJLulyoWiOmwsKuYx2RGB0b7SeR0eLSZ4xWqb6aUSMZGRtLh8doaK0lye4jJicPsw7zyGtfbHBYVFBrkQ4dniqtZNyVXSJIymLmtCk9VsBj3kDknwz4sOOCt46jEYvE777zjYId3333XY8kMEqJb7wKAe2i12nXr1tk/IhaLFy5c6GB+NwAAAAAAAAAAAAwUsgVI93HPNtmOzCeRdCKvCfFGgEnCFDl1uv22sNWYbya6pEI/frO6HVKBNFE9oqS7zBaWdp+3kBb7coUnCTEsJyRuZ11PMufaa7QWs1osdfwqF02NiTle21Mw0JrNRU2NmRGRjl/ilJSoMF+FrNtgsoUnymsemjLG9WbHpg/dcbCnBnCxokmjM/moZOyaGj0hruh0z3xWmk5DZXljfGKEUy3Epg8NCPPraOqyhfkHilf8aQm7ZHi3ePHiKVOmHDlypM9nDxw4UFBQMHr0aA9n5SZNTU07d+4kiBvqymaz2ZM5QHECeBr9Fm9vb1+9enWvZzMzM/fv38/tEbVardlslkgk3DY7SGg0GqvVKhLB3wo2NBqNWCzu6uriOxGvpNFozGYzyfVNK4MBSZIajYYkSRzH+c7F++A4rtFoMAyDbw0WzGazRqMRCoXwrcGCRqPR6XRdXV0CAYxsdhpc7LlCo9EghOCNx47tYg8uV9ix/dCwWq18J+J9cBzX6XQajWYgfHIF1DQ1+gShnvuszZqfjOIUflNyzK0Xe/5YVh3q6dCgEFnZtidCOpfzo7jDSOnwEtRTDzCT5nON+YnKkTfvZjQadTqdWCx263tvrE/kzuvJWEnyQHXptOB4xy9x0ZjAG+6R3XPpUrxC2d/O7IyOCT984apt+1xFXXNru1QsdLHN5PigHQd7tkmSOnrq4sTMYQ5f0a+ElFD78MShsqBwRX879ycxZ/iJn8/YtsuOX2puaJEqOPuUebhvas2aNf0VJxBCb7zxxpdffumZTDhh+43WZ9/U5MmTr1y50t8LPXOFAz8dgadZLBYHz7a3t3N+eUoQBFz1sma9ju9EvBJBEAKBAM4eO7YrDzh7LJAkCZ9c1mxfGbb/8p2L97G963rddwNuE/2xHQg9TV4HLvZcYTtvcPbYsX1m4eyxA5crrNF/9AbG2Qu3Yoki6oItEBMHddgaCrG8fdsD3Hqx54dlCpCYRD2dHs3mYyHCmZwfxR1GykZgCKOuF5lKdecTpH3UAzxzuTLWd4gQw4jryw4fb62a5B/jvsMhhIYolJEqVb1O13PEumtPpaVze4jMmDC6OIETRP7V+nGxzg1NuFnaiDCBACOvT8GUX3YtOyOKXVNDhgX4+Mk1XUZbWHLm6vzlTo8MSJ08ki5OWHHr+ROX0qYlOX7J7fPwH73s7OzMzMxz5871+ey2bdtefvnlmJgYzyTjOtsPtJvPHkVRnZ2dt3yhu0FxAniaSqWybajV6pUrV9o/JZFIfvOb33A+rZNEIjGZTDBbFDu23mE4e+x0dHSIxWI4e+yQJCmTyXx8fG69K7gRSZIURanVaoXC6btdAI7jAoHA398fbsFmwWQyiUSiwMBAGDnBAkEQZrM5KCgIihMswMWeK2xvuYCAAL4T8VYSiQQuV9ghCEKpVNI/D8Htw3Hcz88vICBgoHxyDfdQmp7iBIZMgaoiJFvAb0YOuPtiL8Q6rslwwrbdaS3wC1DYL0QxYAWhoCFtkdcMdbbwgvHSk0GP37ybwWCQSCTuvlwJQijFP7K4oyeZ093XAoMCMYS574gIoWmxcd+U9Cy2cbmzg5TLQ5RcDp6Ykyn7566TdFjW2DlvXJqLbQYFoRGxoRcrmmxhyaUmV66FRk9IyN3VsxZ6eWmDSukjkzv3GZmyNOeLFzbQ4ZUz1dOXTWadTy+e75v64x//eN999/X5FEEQGzZs+OijjzyWjIs6OjqEQmGfZ2/Xrl3r16/vVbf4+uuvbdPeiMWemN4NfjoC3gQGBq5du5bvLAAAAAAAAAAAAMCWbAHSvIVQT98WZdyGDeDihLtFKqfTxQmSwpsMeUNU3jF4YpRfOl2caMc7rhnqohRD+EpmSmgCXZxoM+kudjUl+YW794hDY+jiBIXQsdqaexI5u+sfIRTqq4oN8a9q6blL/UR5NUJTXG82KyOGLk40tWpqGzqiI1jWLEePj6eLE1YLUZpfPXbicKdaCIoMiE6MrL1Ybwvz9xWjf7LLZUBYunRpQkJCf1Meffnll6+99todcGfM2LFjx44d2+vBzZs3e3LZCbgzCwAAAAAAAAAAAACwIghA0hwmNB9DZBt/2fAsQjkVw5i1BOr1h3lMximj/DLsw8KuYr4yQQhNDUuwD3Ob+p0TnysToqIlQuYfLrf6KueHyIpn5lyqau5o7NS63ubY9Bj78ExRNeumxkyIxzBmeEphXgWbRmYx02FVl13raHQ0ZdAAJxQK/+d//qe/Zw0Gw6effurJfO5gUJwAAAAAAAAAAAAAACxhskV2EYFMe3hLhW9SoV+QjOnlbzQcJSicx3xuX5xqmK+YmaSO3+JEol9YiExNh0ea3V6cUIjFYyMi6fBYTY2V66WAs+Ii7cO8yzWut5k6IkJpN/nSmWL2bQaG+ETFBtNh/kk2xYnRM5m5qiiKKjxYyjqfgeDRRx8NCwvr79mPP/5Yr9d7Mp87FRQnBpe2trZvvvnm2WefXbFixf333//CCy989913bW2D96YGAAAAAAAAAAAAuEQ2C2HMygqU8Vcec+FdhHIavW0lDa3Gszwmc/swhKX5ptJhpa6q26LhMZlJocyK3KWd9e1mt/cCT4kZRm93m03FzU3ctp8REyYVM4Mz8i5Vu96mUCgYlcIMyMgvrbVY2K9gPGYCc85rKlramp1+A6RNSRLZ/T/mHyhhncxAIJPJnn766f6ebW9vX79+vQfTuWNBcWKwMBgMa9asGTp06IMPPvjpp5/+8MMPmzZt+uijjx544IGoqKgXX3yxu7ub7xwBAAAAAAAAAADgbTA5ks1iQkshsnI/K463GKKcjuxWb67XH+IxGaeM8mPm5KEQVdJdxmMyU+xmdiIp6kRLpbuPODUmxj7kfGYnqUiUNiSEDk9eqSW4GJwxzm5mJ5PZUna5gXVTo8fH24eFp5wePKFQyxOzmZUq8vcVUxTFOp+B4JlnnlGpVP09+9577/VaShqwAMWJQaGhoSEnJ+e9994zGAw3P2symT788MNx48aVl5d7PjcAAAAAAAAAAAB4tRtndkLItJOnRPgnF4X6S0fSYYM+l0IcTxDkJqm+KSJMRIeFXUU8JjMhJFYsYO7BP+L+ZScSAgIj1czEVkeqqzk/xJhhzLLeWqO5tJaDwRnjei07UVzNuqnUzBixhHkDFOSxKQjZz+zU0dRVc6GOdT4DQUBAwOOPP97fs1evXv355589mc8dCYoTdz69Xr9w4cKiop4vFZlMFh0d7ePj02u3y5cvz5o1q76+3uMJAgAAAAAAAAAAwJtJc5CAmbCeMm5FyLvvmHaF/cxOZqKr3chnL//tkwmliT4j6LC0u8xK8XZXuEokHRMYTYfHmisIyu01nil2gyfKWprb+rrB1xVj7YoTCKET5RwsOxEV4R8R6kuHZ4rYtymTS5IymHOef/IKRTr9KR4zK80+LNjv3TM7IYR+//vfi8Xi/p596623vH10CO9Et94FeLk33nijoKAAw7AVK1Y888wzWVlZIpEIIXTx4sVPP/107dq19BCka9euPfzwwwcOHPBMYt3d3e+88479I2KxePny5ZGRkf29BAAAAAAAAAAAAAOPEMnuQoYNPRFRgyylSJzm8CV3rEjl9PMdn9Fhvf5wkHw0j/ncvgy/9NLu87ZtE2G+pLmc4pvEVzJTQhNOtfbMraSxmIo66uzLFW454tCY70p7OtMphI7VVt89ksv//aGBvuH+6sZOrS3Mu1T9zJzxrjc7Lj1m676eBcwvVzV3aQx+PgrHL+nP6PFxxWeqbNuaTkNVeVNcYrjjl/QyYmy8OkCl7dDZwvwDJUtfnM8umQEiKirqvvvu+/bbb/t8tri4+NChQzNmzPBwVlyprq7+6aefCOKGpUpMJpMnc4DixB2utbX1gw8+8PHx2bRp07x58+yfSkxM/OSTTxYuXHjPPffQ68sfPHhw7969c+bMcV9KRqPRttHZ2fmnP/2p17Pr16/Pzc3l9ohardZsNttKMsBZGo3GarUKBDDKio3u7m6RSNTR0cF3Il6pq6tLKpXCBI4skCTZ1dVltVo9fElxZ7BYLF1dXQghB3fHgP6YzWaNRoNhGHznstDV1aXRaDo6OuA7lwW42HOF7Y8eYKerq0ssFsPlCjtdXV04juM4znci3sdisWg0mgH44RVR09RoAx0aO380iobwmE+fPHWx56sQRBnIa7bgmvZglOAR+4UoBqxYFGMfnmw6HUGE0aHRaNTpdEKh0DOXK+nyEPtwz9WSYVi/s/9zIlntIxEK8esdtfsuX54SEub4JbdPr9cbDIYxQ8N2XC9OlNU1X61r9FVIXWw5MS5w6/VtkqJy8y5MHhfLrqm45BvO+fGDJf6hTqeXOCHhzI5C23bR4bLmxmax1NWPG799U6tXr/7uu+/6GyHx5ptvjho1ysMpOaW7u1soFPbZNzV16tSamn5H2/QqWrgJXMHf4X744QeLxbJ9+/b+inhz5sz58ssvV6xYQT+yadMmtxYnHA93wnGc5GJFoF5HJEmS82YHCfI6vhPxSiRJ2t5+fCfileDssUba4TsX7wNnzxW28wafXHbgjecKuNhzhe28wdljB/7ouQL+7rE2YC9XcDSSwKKFVK0tlJD79ORzCAkdv8rDPHb2giU5NabvbdsmslljuaISxjt+yUDgJ/QNl4Q14j1rIZQZzt9NLqSf9fAbL1rmGynzqTdpbGFeR/XqmGy3HlEqEKQFBZ9r7vnfP9lQbyEIIcZNVcl26jJjI3YUXbn+CJV/tWFq4lAXW04dHiYUCgii59+l8Hz9xMwYdk0NjQtS+8q13T13FZeeq5m/YozT+UweSRcncCNefqYyKYjQuwAAIABJREFUKWe445fcEr9/9BITE6dOnXr48OE+nz106FBxcXFqaqqHs7p9JEliGNbn2XN8i4BnZqyC4sQdbvv27U899ZTj4UXLly///PPPjxw5YgvPnTvn1pQUip7BZb6+vk899ZT9UxKJ5MEHHwwKCuL2iBKJxGQycd7sICESiaxWK5w9djo6OsRiMZw9dkiSlMlkNy+QA27J1lGiVqvpv7fg9uE4LhAI/P39JRIJ37l4H5PJJBKJAgMD4QZ2FgiCMJvNQUFBMHKCBbjYc4XtLRcQEMB3It5KIpHA5Qo7BEEolUqVyr33Qd+RcBz38/MLCAgYiJ9c3d2U7kPbpgB1BqnLkXQyvxn14rGLPaF5Xk3d93SoFxfGBLi3Y50rmcbR2xt32bY7LJ1mJR4pj7CFBoNBIpF48nJlasTIb6vO2LYr9e0WhThc4ev4JS6alTCcLk50m80NhHVUmHPzGvVHJpPJZLLZMX7/u/UYcb2buKSh/d5JTvf+9xKEUGJ8WFl5gy0svtToykXR6PHxR/aU2rYvlzWoVb5SmXPjHibfnfPlHzfRYcXZmsmLJ7DOx4b3vqlXX321v+IEQmj9+vVff/21J/NxSkdHh1Ao7PPs7d+/f9OmTb3GgH744Ye2aRg887MOfjre4UpKSv773//ecrdHH32ULk60tra6Oake/v7+b7/9tmeOBQAAAAAAAAAAAPeSL0K6j+ilsCnTr9gAK054jL80SSEKM1h7urnr9YeSA37Lb0q3aZR/Ol2cQAgVdBXRxQnPmxKWQBcnEELHWirui3G1K9+xqTExbx0/Soe51Ve5Kk7YqOXSlOjQ4upGW3iivIaikOtjM8alx9DFidYOXXVde8yQQHZN2RcncLO1LL96TE6CUy1ExIWGx4Y2VjXbwoL9JY+9vpJdMgPHjBkzxowZk5+f3+ezmzdv/vDDD/38/DycleuSk5Nff/31Xg+uW7fOk3NEw51ZdzKSJA8cOBARcetvkexspoAPN50BAAAAAAAAAADAacJoJE5nQtM+RBn4y4ZfWIRyKh1o8CqtpZq3XJwRr4rzETMDwoo6i3lMJisoRiZkbts/0nTF3UccHhgUoVYzR6yp5vwQOSNi6O2Wbl1lc5vrbY5Nv2FuqNOF1ayb6lWKKDhZyaKR0TOZOY6uFFTR62N7tTVr1vT3lNFo/P777/t7FjgGxYk7mUAgSE5Ovp09g4OD6e3o6Gi3ZQQAAAAAAAAAAIA7FiZfxASUEZkO8JcLzyKV0+zDen0uT4k4B0NYmm8KHVboq7RW3nqWpUJRdnAMHea1VJkJa/+7c2PSUOaIpc3N7QaOC2w5I24oJJy41O9yxLcvZXiEWiWjwzMl1aybCgr1iRrGdBLm57EpCI2eyRQpSYIsPFTGOp+BY9myZcOGDevv2a+++sqTydxJoDgBEEJIo9HQ25MmTeIxEwAAAAAAAAAAAHgr2Xz7KcQp06885sKvIPloqdCfDht0h3hMximj/Ox6limypKuUx2QmhzI38hsJy7l2DrryHZtqV5wgKepYLcdHTIkK81UwhYQT5Ry0LxBgo1Oi6LDofJ3FQrBubfQEZvH2moqWjlat0y3MSBUImT7nggN8jr/hilAo/O1v+52c7ezZs2Vld0INxvOgOAEQQqi+vt62gWHY8uXL+U0GAAAAAAAAAAAAXkkQgKQTmdB8HJEczFrjjTAkCFcwS250mC8YrM085nP7Un2TRRhTYSroKuIxmWlhw+1DD8zsNDF6qMhuxW/OZ3YSCLDs4cycJQVV9Sacg+Eg49Ji6G2T2VJ8qZ51U6PHM8UJiqIKTlY424LKX5kwOpYOz+27E4oTCKGHHnpILO53efDbWfQX3AyKEwAhhI4e7VntZ/LkyXFxcZ45KI7j+TcqLi4mCPalXQAAAAAAAAAAAPALky+2iwhk2tXvrne6SJX9zE5Ug5fM7CQXykeomZJAafd5K+X2yZT6E67wjfdhZhk63HTZ3UdUSSRjwpnVW4/UVJMUxe0h7JedMFut56rqXG8za1SMfXi2uJp1U+njhokldtUpVstOjJmdRm83V7c2VDSxzmfgCA0NnTt3bn/Pfv3112az2ZP5uM5qtRYVFfXqnvVw36zo1ruAQWDHjh22jX/84x/uPpbV2vOV1tDQkJmZ2evZJUuWbNy4kdsj6nQ6HMd1ujth+R3P0+v1VqtVJpPdeldwE4PBIBaL4b3HjsFgsFqtAgEU0Z1GkqTBYMAwjCRJvnPxPjiO2z65EomE71y8j8lkMhgMUqlUJIIrTKcZDAaDwaDT6eDvHgtwsecKvV6PEII/euzo9Xocx+Fjy47BYKC47u8bJGyXK3q9fuB+cqksBVJgqGemfqtui4lcym9GNA9f7CmpZBGmsF5fFfya5kCYcL4Hjuu6JPnI85oLtm0jYSxqKRmpHM7X5cp4/6EVmlbb9jV958WWuiiFn1uPOCEi8nR9T8Gg02g8U12dYrdWKzs6nc5oNNouVzKGBGEYov8EHimryBgS5GL7aoUwIsSnoaVn2vZTBVUPLhnNurWE5IgLhbW27YK8K1qtFsMwp1pIyrlhyEvejrNzn5jW3863NHD6plauXLl9+/Y+n2pvb//5558XLVrU57M8MhgMQqGwz0vlxYsXHzrE84xz8NMRoJKSkpMnTyKEFi9ePHny5Fvu7yLHvxtPnjxp+4HEIYPBYDab5XI5t80OEgPnC8Ab2a56OX9LDxK2955QKOQ7Ee9DkqTtXQc/+FnAcVyv14tEIovFwncu3sdkMtk6SqA4wYJerzcajXq9Hno5WYCLPVdAccIVtj96cLnCjl6vpyjK2d4ugBDCcdz2lTGQP7lCbIqM2t2zTZaZdBcJLNrxSzzD8xd7fsIxbdZjtu0OvKhL1yjGfDxzaFfEi2Ltw8LOoigUaauKyWQyD1+uZKoj7G9iPVh/cVlEWr97c2FMYKB9eLCqYphC4WKbttKOQqFACCmEaGigb3Vbt+2pvMs1T0xKdbF9hFDayDC6OFFZ21bX0Obvy/LqKDGDKU50degvldZGxzlXPolKCZcppSZ9z0iC/APFk1aOY5cMGkh9U5MnTw4JCWlpaenz2fXr18+YMcPDKd2SrThxc98URVGnTp1y8EIcx92ZVw/46QjQ22+/TVGUj4/Pxx9/7IHD+fn11LclEklq6g1/fNVq9XPPPRfscjm6F6lUajKZOG92kBCLxVarNSjI1Rr+4NTZ2SkWi+G9xw5FUTKZzMfHCy7cBxrbgAm1Wq1w+QJ6EMJxXCQS+fv7D+Rf+wOWyWSSSCSBgYFQnGCBJEkcx4ODg6E4wQJc7LnC1rEeEBDAdyJeCcMwiUQClyvskCSpVCpVKhXfiXgfHMdbW1uDgoIG8icXw5ehrt10GKDMQ8oxPOZD8/zFnlk/t62lpzhBIdKiuBihWuCZQ7siGAVHdkTUGxts4SXzlceDgw0Gg0wm8/zlyrTAQJ/yfRqLyRbm6xufDnZv/29QcHDY8aNN12+uzW9re9nlywy5XK7X6+nLlUlJcdVHC2zbte0aq0gW7q928RBTshP3HO2Z9oqiUHWjfng8y6LgpJnpP/+X6bauLu8Yk53obCNpU5LO7Cq0bV/KqwgMCLRfJdspA6pvatWqVe+//36fTx0+fNhisURERPT5LF86OzuFQmGfl8pr16799NNPexVri4qKbDM7eebvJPx0HOwKCgp+/PFHhND//d//RUVFefLQERER586d88CBBNd54Fh3Hjh7roCz5wo4e66As8eawA7fuXgfOHuugLPnCjh1rrCdNzh77MB7zxVw9ljzjq8M2QRKEIzInql4MPNOTP0CvxnZeP7shSsnCTAJSfXcgNxoODLMZ8DN+tKnDL90ujjRYm5pxlt8BT68vPckAkFOSNzu+vO2ML+91kwRcmG/6xJzYsrQmB/Ol9m2S5qbNDju59pt+71O3cSRMRuvFycQQqcrri3NSnGlfYTQmNShIqHASvTM7nuupHbulGR2TY1IGeLjp9B09cxIVnS6atmjk5zOZ2Y6XZzQdekrCqtHjot3/JL+DKg/eo899lh/xQmr1frtt9++9NJLHk7JMQdnb9WqVatWrer1YEBAQGdnp0dSQwgWxB7kCIJ48sknCYJYuXLlY489xnc6AAAAAAAAAAAAuAMIkewuJrJeRZbz/CXDJ7FAGSIfS4fNhlMEZeIxn9uX4XfDXBfFXaV8ZYIQmhgaR2/jJHGmtdrdR5w0NIbeJigq71ott+2PiYuUiplbxk9d4aB9pUKSlBBOh+dKalg3hQmw9HHD6LAsv9qCO70o+uiZN7yFig6Vsc5nQElOTs7Kyurv2a+++gomWHYKFCcGtX/961/5+fmjRo3697//zXcuAAAAAAAAAAAAuENg8hsmL6JMO/jKhHcRyin0NkGZWgxneEzm9iWoEhRCZp7Ykm5eixMh8fYL1BxvqXT7EaOjhXaL4hyrZd/R3yepSDRqGDP5z6nLtSQXPdqZaUPp7dYOXU19B+umMrKYgpDZZLlUWudsC0OTowLCmKXLiw7z+Rbi1qOPPtrfU5cvX87Ly/NkMt4OihODV25u7p///OeIiIht27YplUq+0wEAAAAAAAAAAMCdQpyBhJFMaNqJ0CC9mzhcMRkhppu7wXCEx2RunxATpPgm0eFFTbmJMPOVTKhcHe8TQofHmivcfURfqSw5JJQ5Yg3HxQn0/+zdZ2AU17k38DPbV703VJFoAoQACSR6MWBsMGBccMWOHSe+ie1cO3HuvX5vHL9+nZsbJ3Fixz2xTQiuGLCNselNICGKKk1CqPeyKltny7wfVswMsiR2Z8vsov/v0z5bzjwMu6vZeeY8h5D8CdyCEBqdoaqly/Uxc7KuW2TClckT/OIEIaS0yOmCEEVRM5ZwfaUqjl+kjV5aiN7T7rvvvlGWePzwww+9mYy/Q3FijGppadm0aVNQUNB3333n5aUmWDRNn71eeXm5fR1XAAAAAAAAAPBnFFHdzkXWVkKfG/nJNzO1LDpCyZ3lb9EdY4h/nPrICuXa8lgYS5W+WsRkFsZyyxXUabsbdR7vib8ohZuF0DzQf9XdXfjzJl5XSCisckP9Y9rEhEA1t4ixK8WJcSmRsQnhbFh66qqAQbKXcgtp0EbzxaIqwfn4lJCQkI0bN4706GeffTYwMODNfASzWq2lpaVDTs/aV8P2GiyIPRYNDAysXbt2YGDg+++/z8rK8vLW2bd4S0tLTk7OkEfvvPPOLVu2uHeLWq2WpmmtVuveYccInU5nsVhUrq37NGbp9Xq5XI73njB6vd5isfjIglf+xWaz6fV6iqJQ7hWApmn7J1ehUNz42XA9o9Go1+uVSqVMhiNMp+n1er1er9Vq8b0nAA72XKHT6Qgh+NITRqfT0TSNj60wer0eXbmFsR+u6HQ63//kSmzL1OQ9NqQHvqKVk0TMh4h3sBcln9djGlx1w2TtadYUh8ldXf3YCzLk4ylCMdemvJT0lMWqosU6XJkdnPABLzzUeGFj4gzPbjE6hh8eqL58f6bw/zWtVmswGPiHK4mhAWGBql7d4BokJy7V3p07WfD4rKkT44rLBlewOFvR0NfXL5UK/P/KnJnY3jJYkrlU3tjZ3qMOdO6DMyn/uukXxXvPpeekjPTkUfjgualNmzZt3bp12Ie0Wu22bdt+uNC0WPR6vVQqHfZQecOGDQcOHPB+Snz46ehxFRUVAwMD8+bNc8toer3ePmBsbGxaWlpQUJCzI5jN5rvvvruysvLrr79euHChW7JyyujFwxMnTth/ILmRXq83mUxqtdq9w44RPvgHwI/Yj3rd/pYeI+zvPalUKnYi/sdms9nfdfjBLwBN0zqdTiaTmc03yYxjbzIajfYTJShOCKDT6QwGg06nw1lOAXCw5woUJ1xh/9LD4YowOp2OYRiKom78VLgeTdP2Pxn+8MlNlJNUGamzB1Lz9zrLTwkR8yMj1sFesG0WP2waOCxXpo30ZN8hI9IERXwz3WIPz+suLLTmq1QqUQ5XJisj1FK5wTr4H1fQXnNreMboL3HRhMCgQLlcd+2tcryhfl2K8P81+5UoQ3oBzUiKOXppsJBQUtuq6etXyFz9gEzNiGGLEzoDXXGpcUJqlLChJmbFH/52cKEIq9VWcqp6xtxUp0YIig6ISoroahxc+qL08Pk7frFSQCY+eG5q1qxZqampdXV1wz760UcfbdiwwbsZjchenPjhuSmGYU6cODHKC2ma9mReg/DT0YPKyspeeeWV7du3r1u3bufOnS6OduLEiVdfffX77783mQZ7/Ekkkttuu+3nP//5qlWrHByEYZjHHnvs0KFDO3bscPxV7hUWNrgYjkKhmD59Ov8hhULx7LPPRkdHu3eLSqXSaDS6fdgxQi6XWyyWqCiBf8nGOI1GI5fL8d4ThmEYlUoVEhIidiL+xz5hIjg4eJQmmDASmqZlMll4eLg//Nr3OUajUaFQREZGojghgM1mo2k6OjoaxQkBcLDnCvuJ9YiICLET8UsURSkUChyuCGOz2QIDAwVcbwc0TXd2dkZFRfnHJ1e3huj+Zr8pIZqYsFpGni9iOuId7EVfbkrWmgdPGfeS4ujoX3s3AYFm0dnNrYPFiT5bvyXEKuLhypyolKPXVps4198cHhkp83AmcxMTD9XW2m+XdHa6skW1Wq3T6YYcriyeNoEtTtBWa7PeMic9zpWECSGL86kPvzzDhlca++flThE21KIV6vd+v5+96K32Ytcta3KdHWT2LTP2fnjYfrvmXF2gMiggxOkLSnzz3NQjjzzy29/+dtiHTp061d3dPXmyG6bCuE6j0Uil0mEPld9555233nrLYrHw7ywtLbW3vfHO9yR+OnrEyZMn/+d//ufbb791y1Wrer3+6aef/uCDDxiGkUqlS5cuTU1NbWhoKCws3L179+7du++///633377hsfEDMM89dRT27Zt+9e//rVmzRrXE3NRQkLCmTNnbvw8l0mu8cK2bj7Ye67A3nMF9p4rsPcEk/CInYv/wd5zBfaeK7DrXGHfb9h7wuC95wrsPcH87E+G+g7mWnGCEEKMeyTK+eJlI+beSwhcVNX7L/ttrblBZ20Mlgvpb+Nl2WFZ37TuYcPLpuosyXSx3nsLYyewxQmdhS7rbc6N8uw+XJSSyhYndDRd2t42Z1yisKGGfePNn5zKD4uqGvImXLcQhQAZqTGR4YHdmsHL5M9WND5yl8CKYGR0SNL46IaaDntYWlwr4L9+5rLpbHHCarFeOHl5zm2zRn/JD/nml96PfvSj//t//+9I7ZQ/++yzl156ycspDWuUvffwww8//PDDQ+6MiIjQuHuFlVH41n/qTaCgoGDt2rXz58/fvXu3WyoTLS0tixcv/sc//sEwzLRp08rKyg4dOvTBBx8cOHCgqqrqjjvuIIR8/PHHubm5ra2to4xjr0y89dZb77333n333Tf6Rtva2t566y3XkwcAAAAAAACAsUuWRuS8q7ZNewkzRptnJgQs5octuiMiJeKcjKD0IFkgG142iLmg8YLY6xYwOH6tUOE5C5NTr9tigxvWrOZLCA9Jjgpjw6LqBtfHpCgyezpX4ai41GwwCf/Qzczj9nlddbum2+klvmbdksXv4FdyuFJwMr4mKSnplltuGenRXbt2eTMZ/4XihNsUFBQsX7584cKFu3fvdteYvb29K1eutE8vSE5OPnz48NSpU9lHx40bt3379kWLFhFCqqqqbr311t7e3mHHYRjmF7/4xZtvvvnaa6899thjo29Up9Nt2rSps7PTXf8KAAAAAAAAABibKBWvc4Otj9AF4uUipkh1tlLKnYZu0R0VMRnHSSjJtBDuTNRVY53RahQrmdSgyKTAcDYs6Kjx9BbHh4cnhYSyoduLE4SQvIlcIeFiU4dGZ3B9zJzp3IQSs8VafrFZ8FAz53LFCYZhyk/XOjtCeGxo8pRxbFh66OYpThBCfvSjH430UHl5+dWrV72ZjJ9CccI9XnzxxQcffDAnJ+df//rX888/75Yl0RiGuffee8+fP28Pt2zZ8sPeanK5/IMPPpDL5YSQ8vLyu+6664eTiWw2289//vPXX3/95ZdffuaZZ4bdlk6na29vr6qq+sc//jF79uxjx455YU15i8Vy9XqNjY2e3igAAAAAAAAAeI9qDSHcddOM0W0XdPoXikjiAhawYY+xwmjtFjEfx2WFccuFWon1wsAlEZNZEMOdK7/Y29ppdPpCfmfNT+bNQmhv1xjcUDzg4/dxsjHM6StuODM2JzuVH54pF15TmTEnTSrlzh6XnhJSEMpeNo29XVNW19c1IDgfX7Nu3bpRFk/yi8kT9fX1Q07PjtSoykOw5oR7PPfccy+++KK9e9cDDzxgNBpff/11F8d899139+3bZ7+9YsWKJUuWDPu09PT0Bx544KOPPiKEHDx48LXXXnvuuefYR61W649//OMPP/yQEPLf//3f//3f/+3IpufPn5+enn7j5wnCvsWbmpp+uJXNmze7vaOUXq83mUx6vd69w44Rer3eYrFg7wljNBqtViv2njAGg8Fms2FZXQFsNpvBYHBLmXwMomnaYDAolcoha4KBI4xGo8Fg0Ov1+OQKYDAYjEajXq/3tV66fgEHe66w7zeVSiV2In7JfqiMLz1hDAYDRVH40hOApmn7nwz/+eSGKaVZEmvZYGTcr5d1E8rpFXHdQtyDvUhZfj0ZrM0wxNbQeyhRfbv303DWJGUGRSiGDLYuP9tdkqkSbZnf3LCkT8jg8qUMIUeaLt2ekOnRLc6Jjfu0ssJ+28Ywh2uu3DpeyBkzvV5vP1Qecv+MxGiJhLLZBnfv8QtXF0wQuKwFK1AlSYwPa2odbK9SXFr76F1OL2Q9iCLpU+KqKgcXRT9zolrAEVfmvIlf/e17+23GxhTvPTd/g3P5+PK5qRUrVuzcuXPYh3bs2PHTn/7Uy/n8kNFolEqlw+69Bx98cKTkvQZHUe4xZDHqVatWuVic6Ojo+PWvf82GTz/99ChPfvzxx+3FCULIb3/72/vuuy8hIYEQQtP0/fff/+WXXzq79YceesjZlziur69vlEf37NkzMODmCqpWqzWZTP5z3OZbtFqtxWJRKpViJ+KXtFqtXC53+1t6jNBqtWazmd+bEhxks9m0Wi3DMFarVexc/A9N01qtViqVKhQKsXPxP0aj0f69h/N0Ami1Wp1ONzAwgPN0AuBgzxVarZYQYp+KDc7SarUKhQKHK8JotVqbzeaWlRrHGpqmdTqd/W+u2Lk4ykqWBpFrxQnGYNbuN5KlomQi7sGemmRKiNJGTPawWXsk1LLI+2kIME6R0EQPtgaq6K/sD+mniDhffVMUETJKYmEGL3s91la1KDjJo1ucHhYmpSjrtS+ro3W186NjBIyj0+n0er1aPUxZbmJsxKXWwWk0hdUNbjmHMG1CDFucqGnoam7tDAkSeKQ0KSuBLU50tvZdrW6OjgsZ/SVDpM5KlEglNuvg/9q5g2VZtzhX3/Llc1O33HLLSOf3CwsLa2pqYmKEvGHcyP6l98P3FcMwe/bsGfYldjRNezKvQfjp6BGJia4WOf/yl7/09/fbbwcFBa1YsWKUJ8+bNy8hIaGlpYUQotVqX3755bfffpsQsmbNmv379zu7aaVSec899wjK2iHh4YP9AWUyWVLSdX9CFArF888/HxkZ6d4tyuVyo9Ho9mHHCKlUarFYsPeE6e7ulsvl2HvCWK1WlUo1pPQLjrDZbDabLTg4OCAgQOxc/A9N0xKJJDw8HMUJAYxGo0wmi4yMRHFCAIvFYj9cQXFCABzsucJ+Yj0iIkLsRPwSwzAKhQKHK8JYLJbAwMBRumHASGiaDg0NjYiI8KdPru1O0vMGIYOXzgQrjgcG3yVKIqIf7MVYc9sMg6tu9FpLQsMDZBJxJpE4ZZYpu6ltsDjRZ+03BpgS1eNGf4mHRBKSHZF4pntw4egzfc3hERESTxaJIwmZFhNb1t5mD4vb24UdciiVSqVSOexrF0wZzxYn2vt0Rko+LsLVvyzzcyZ+f2xw9XKGIbXN2mXzBP6X5S2e+s3HZ9iwoUozeWqaUyNERkamZ6dWnx1cgOHiiWpn96Evn5u69957//3f/33Y8/g2m62wsHCUdSm8o7u7WyqVDrv3Xn311TfeeGPITLL6+np72xvvfE/ip6NHuHiI0N/fz29ttGzZstFrgxRFLVmy5OOPP7aHW7Zsefnll6OionJzc2fNmuXs1tPS0tj6gUclJiZ6Z2UY2TVe2NbNx77fsPeEwXvPFdh7gtnbYWHvCYO95woZj9i5+B9216E4IQDeeK7AwZ4r8N5zBfaeYP55uBLPKOYQutAeUPRRmdRAqGDv5yH63hsXtIQtTlgZU4/5bELgElEyccrMiBlft33LhpXaC6nBKaM836MWxU1gixMaWl+t65oaFu/ZLaakssWJNu1A/UB/erjT5/1GeePNm5z690On2bC4punumCzB2drNyU7jd4squdC8ctHU0V8ykqycNIVSTpvM9rDsdN1td89xdpBZy6ezxYnm6jZNW190ohOVBl8+XImMjFy8ePFIV4d/8803TzzxhJdTGkImk0ml0mH33lNPPfXUU08NuTMiIkKj0XglNUJQnPAQFydXbt++nd/7aPbs2Td8yeLFi9nihMFg2LZt2zPPPPPKK6+4kgYAAAAAAAAAgOso1W3MteIEYUzEeICoN4iakTjiAxdTnb9jyGB/mxbdUb8oTqQHjQ+Rh/SbBzt8lPVWrIlfLVYyC2Iy/nz+IBseb7/i6eLEwuSUN4qLuC3W1wsoTowiOzVerZAb6MGz/0VVDXfnu1qcCApUTk6Pu1Ddag+LS+sEDyVXyKbOTC4pGlwKu+xUDcMwzrY0zF467bM/fMWGpYcqVzy8WHBKvmb9+vUjFSf2798/MDAQHCxCLdZf4Mosj3CxOMGWGeyys7Nv+JJ/UbRGAAAgAElEQVTp06fzw88//9yVBAAAAAAAAAAA3Ea1mlDcqRLGOFqj85uYShoRruIuYG/RH2ULFb6MItS0kClsWK2t1ltFW5p4SlhstIrrCFfQfsXTW5wZHx/M62hyvKHevePLpdLZ47meS0XVjeyMB1fkZCWzt9s6+1vaR1sCdnTZedwa4L09urrqdmdHmL5wilzJfQOUHq4UnIwPWr9+/UjVGpPJtHfvXi/n418wc8IjXClOaDSaI0eO8O9JT08f4bmczMxMflhUVNTb2xsWFiY4DS9oaWlxZFKIRCJ5/PHHH3vsMcEbslwjeISxDHvPFRaLhaIo7D1h8N4TzGazYe8Jxu46tNYRAG88V+C95wq891xh32/Ye8LYP7PYe8LgkyuYhUfsXJwSKJHPo+ijg5HpuIXuIBJvL5vhC39w49SLeowV9tu0ta9DVxKpnCFWMo6bGpx5svuU/baVsZX3VOaEO91I3F3yo9O+bhzchyU9TRqDLlju2aWS5yaMO1A72JWoqKlRbzIppFKnRhj9YzsnPbHgUp39dr/BWNHQOjXR1VWUZ2Ym/vPLU2x4qrR27fJpwobKyknlh2dPXkkaH+XUCFKFdNKcjMrjF+3huQPlTn2D+fiXXkxMTE5OzunTp4d9dOfOnevXr/dySnwWi4VhmD//+c8ff/wxw9y47sWuguwdKE54hLOTm/iKioqsViv/niGrRg8rNDQ0Ojq6s7PTHtpstoKCgjVr1ghOw3PYtmU0TZ87d86Rl5SWlubm5go+dNDpdCaTqaOjQ9jLxzitVmuxWHy80OWzGhoapFKpTqcTOxG/1NPTo1QqAwMDxU7E/zAMo9FoAgICVCqV2Ln4H4vF0t/fHxIS4pv9TH0cTdNarTY0NFTq5E81IIT09PR0dXVJpVJXDiPHLBzsucL++xNLOgvT29srl8txuCJMT0+PWq1Wq/1gKWBfY7FYrl69qtfr/e6TG6HOSgq9Vpwg1tbaLd2GFV7OwRcO9mhJPOF9bVQ0fBll8oNjJzmRUYRiyOCZzaP1x1XN4iwqTghJNnKbtjK2L84dmxPo2c5OaVLuDaM3m3cUnpwW5txyrQaDwWAwsCfuhoiSXLec8tcFp5lprq7qIbHaFHIpbR48x3iooCItVuBQDMMEBCn02sEkCw6WZWQHjf6SH0rIjGaLE13NPYe/PRad4mh50vfPTeXl5Y1UnPj6669LSkpc7LLjioaGBqPR+Ktf/cq+zLXjhl3l2+3ww9vnnDhxgh+GhoY6eMARGxvL/447d+6cbxYnBBw/5efnjxs37sbPG8HAwIDJZIqKcq6oC3Z9fX0WiyUy0ol1ioCl1+vlcnl8vGcPkm5WcrlcqVSiM6MANpvNfqIkICBA7Fz8D03TKpUqNDRUoRDtt5b/MhqNAQEB4eHhKO0IIJPJGIaJi4vDzAkBcLDnCnslOzzcuTMsYKdQKBQKBQ5XhJHJZAEBASjtCEDTdF9fX0xMjN99cimylmHeo4jJHsaEnlGEPezlHHzjYC++S5+otzXZA5OqIj7iGfGSccK4loQmc7P9dgPVGBcfRxFxLqpYaQl/q+uc7do14Fck2nUe/t29Mijw/StVbFhjNq9wcos6nU6v10dHRw/7aFwciThU0aMz2MPqbp1bziRkZsSWXmwZHLO+NzYuTiL0Opgp2UlnCwaXnair6o6OjpHJnCuqzbl11r53j7Fh5+WerDxH1+j2/XNT99xzzxtvvDHsQ1qttra2dvFi0dbY0Ov1FEVlZWWVlpY69ULvfE/ip6PPqay8ru1aYmKigy+MjY3lv/bChQvuTMt92KspExISvv766xs+PygoKCMjw5VrMNVqtdFojIlxdULc2KRUKi0WC37tC9PX1yeXy2NjhV6cMLZRFKVSqfzucjBfYLPZJBJJcHAwihMC0DStUCjCw8NRnBDAaDSqVKrIyEgUJ4SxWCyxsbEoTgiAgz1X2K/ji4jwdmeVm4NUKlUoFDhcESwwMDAoyOlrb4Gm6e7u7piYGH/85DK9S4hxsP26gpTGRhEi9erPJR852EvsXlrVu9V+22BrUYfrQxRpIubjoJmGGU0dg8WJfuuAKZhOCUge/SUeEktIZnV8pWbwtPvpviZP/+6OjY1NDg1t6BtctuFsd6ezW9RqtTqdbpRX5U1K2XPukv12ZXNXSHiEWuHqtfbzcjLY4sSAztSvpyaNF7ij8hZlssUJo57u7TBPnZng1AiRqyPVQSqD1mgPa8423P+8o8n4/rmp2NjYyZMnX7p0adhHjx49es8993g5JVZfX59UKi0uLj5//vyQbj3DWrZsmTc7O+Gno8+pq6vjh44XJ4ZMbmpsbHRXSh6iUCgcWXMCAAAAAAAAAG4ClGoNY2TXhrUR0/ckYLOYCYkkIXAJW5wghLToj/pFcWJacOY3HdxK5mW9FWIVJwghC2LS2eJEq6H/6kDX+GDPnrlekJzycUW5/fb5jo4egyHCrY3p5k1MZosTZqv1XG3L/EmudnbKybpuhDPl9YKLE9l54/lh6amrU2c6l55MIZu2YPLp7wcv3i89VMnYGEpy83Q0Xb9+/e9///thH9q1a9ff/vY3cdu3yuXy7OxsR57p5Sa9uDLL5wwpTjjeT21Ib/He3l53pQQAAAAAAAAA4CrlUkJx02UYw7ci5iKiSFWWSspNfGnRHREvFyekqJODpdx/X1lfhYjJLIjN4IfH2694fIvJ3Ll4G8OcaGxw7/j5E687119UVe/6mBPSYkJDuArKmXLhOSelRUfFcjMFS4tqBAySvXQ6e7u/e+BquRv+jb5j3bp1Iz3U0tIy0ooUgOKEb7H3juTf43hTjiFzElGcAAAAAAAAAAAfQimJajkXmkuJtUm8bERDEUlcwAI21BjPG61dIubjIIpQk9QT2fCKtkZr0YmVzMyIxGC5kg0LOoScK3fK/KRkKa/9ZkGDm0+sx4QGpcVwJauiajcUPyQUNXsaN7ul9EKTibYIHm3GHG7yxMXyRqPB6dWSZy6bxg9LDlWO9Ex/NHfu3FH63+zatcubyfgRFCd8i8FgGHKP2uE5YkOWfR9S5AAAAAAAAAAAEBelWsOLGGLcM+JTb2oJgdzquAyxteqOi5iM4yaruOKEjbFV9p8XKxMpJcmL5s6Vn+6qM1qFn3Z3RIhSOYO3YsSxevdf9Z8/kSskXG7p7NHqXR9z9nRuTNpsqbzcInio7Lnp7G2L2Xr+nNN7IGNmWmhUMBuWHhZz8o3bURS1Zs2akR5FcWIkKE74FleKE2azmR/qdDpHFjkBAAAAAAAAAPASxXwiCWUjxrCdEEbEdMQSG5AnpbgL/xu1+0RMxnET1RMkFHcu8aymRMRkFvI6OxmtlqLOqx7fYnIqe7tNO3Chs9O94+fxihMMQ45frHV9zDkzUvlhUYnwMWflp/PD0wVVzo5ASajpizLZsOzIeZPz0y982fr160d66OLFi76/PLAoUJzwLTabbcg9gosTUqnUywuYAAAAAAAAAACMhpIT1WoutNQSuli8bEQjpVSxAfls2Gk4Y7B0iJiPgwIk6olBE9iwtLeMtol2cnlRbAZ/feF9LRc9vcUlqan8cG9NtXvHn5ORpJBxp/IOVbqhV1VCbGhSfDgbHj8tfHGOyJiQlIwYNiw6fEnAILNvyWJvG3Wm0purs9PSpUtDQ0NHevT4cf+YIOVlKE74lqCgoCH3MIyjVxDQ9HV/DxxfrAIAAAAAAAAAwDuogAf4IaP/VKxMxJUcxBVpGGJr0H4vYjKOmxORw942Wk2lveViZRKnDskKH8eGB1ouWX5wya97zYiLjwviuhLtrXHzKtyBSsWcjCQ2PHG53kCbR3m+gxbkcjMeGls09c09gofKWzyZvd3WrKmrbnd6hLU5FMUVlYq+PSs4GR+kUChWrlw50qPHjh3zZjL+AsUJ3xIUFMT/iJLhGj2NBMUJAAAAAAAAAPB1sslEPp0LTXuJrVu8bEQTH7hILuHOdNcP7BYxGcfNCZ8t5XV2OtVzWsRkVo7jegT1m43FXXUe3RxFyMp07kT/5a6uWo3GvZtYOpUb32S2FFa5YVnsBbkZ/PB4sfCaytwlk/lh4WGnZ6tEjYtIz07lRvj6tOOXZfuFRYsWjfQQihPDQnHCt0gkksDAQP49RqPRwdf29vbyw7i4OLelBQAAAAAAAADgJlTAJi5gzMSwQ7xcRCOlFIlBy9mwn67po93cJsgTgmXBk4MnsWFJb5nB6uhltW63ilecIF7p7LQy/boT/fuvuqHzEt/y6RkS3lXLbunslDV5XGgI1zS+wIXOTlOyksKjuKYvp44K6eyUt3Y2e7u7RXPFhWUwfNAoxYlLly51dPhB9zYvQ3HC56SkpPBDwcWJIeMAAAAAAAAAAPgE1VoiCWEjRv8JIZ5tyOObkoNu44cNA3vEysQpcyNy2dtmm1nEzk6JAWGTQ2PZcH/LRauHL8OfOy4xnLc6rNuXnYgMDpiWzF1tfPRCjdXlXlUSCTVv1ng2PF/V2t2rEzYUJaHmLORKU5crmzVdWmcHyV+Tww+LvrmpOjtNnz49MjJy2IcYhsGyEz+E4oTPmTp1Kj9sb3e0fZvm+qlkKE4AAAAAAAAAgC+i1ES1lgutjYQuEi8b0USrZwXKuVUTGrTfMf5QpMmJmC2luHWbi8Tt7JTATZ7oNulKeho9ujmZRLIsNY0NS1pb27QD7t3EsmlcZ6denbGktsX1MfnLTtgYpvDsVcFD8Ts7MTZGwOSJCbPHR42LYMPC3WcEJ+ODKIpasGDBSI+is9MPoTjhc4YUJ5qbmx15FcMwnZ2d/Huys7PdmRYAAAAAAAAAgJtc19lpcPLEGEQlBa1iA4Ols9PgBydqg2VBmSFT2LC8t0IvXmenleOm8MP9nu/stCpjAnubIWT/VeEn+od1S9YEfuiWzk5zs9MUchkbHnehs9PseRlKlZwNi5wvTlAUNee2WWx45VxtZ9NNterMwoULR3oIxYkfQnHC58ycOZMfOlic6Ozs1Ov1/Hvy8/PdmRYAAAAAAAAAgLvIJhM57wSIcT+xjcVu7H7a2SmP19nJwljOaUrEyiQjOHp8cBQb7m2+wBDPdnZamJwSIOfOzru9s1NKVFhaDDex4GCl8EICS62Sz56ezIany+qNJrOwoZQqefZcrknUuZM1JqPTQ+Wv4ZadYBimeI9o7x9PWLx48UgPlZeX9/T0eDMZ34fihM9ZtmyZmte9rqura8hiEsOqrb1u9ZioqKjJkyeP9GQAAAAAAAAAAHFdP3nCSgxfipaKeEIUaeFK7tr/Jt1Bi020WQiOy4mYJaO4K/FPidrZaUUCtwPbDP2VmlaPbk4lky1OSWXDU01NvQ6vF+sgfmenlp7+yy2dozzZQfzOTibacqa8QfBQ/M5OtMlcUuj03I6Zt2QpA5RsWHRzdXaaOXNmSEjIsA/ZbLYTJ054OR8fh+KEzwkMDFy+fDkbMgxTUnLj+mFNzXVfBOvXr6coyv3JAQAAAAAAAAC4heo2IgllI0b/KSFWEdMRS3IwN3nCYtO36o+KmIyDAqQB00O5tuQVfee1FoFrLLtuVcJ1nZ32tVzw9BZXpmewty0226FaN3d24hcniJs6Oy3ISeefKXSls1Pe4sn8s44COjsp1YqZy6axYcnBCpPeJDgfXyOVSufNmzfSo1gTewgUJ3zRnXfeyQ/Pnr3xsvVDnnPvvfe6OScAAAAAAAAAADeiVES1ngutLcRUIF42okkOupXirS9d7yedneZGcp2drIz1rHidnTLD4pMCw9lwb7PHl51YnjZeLuX+y/bWuKHzEt/05PjY0CA2POyO4kRURNCUjHg2PHGmxmYT2P8qIjp44jRuIfeiwxcZ54fKW5PD3jYZ6JKDFcKS8U2LFi0a6aGjR/2g+uhNKE74ovvuuy8uLo4NHZnvU1xczN6eMGHC0qVLPZIZAAAAAAAAAICbUAH3E8Jdgs3oPxUxGbEopRGx6rls2G4oMlr9oCv97LCZComCDU/1FI/yZE+7JYFrNNSg66nq9+z6JcFK5bzEJDY8Vl+nNwtcwmFYFEUWZXLrOlxs7mju6XN9WH5nJ02f/ny18P5XeYu5Hd7bo7tc2eT0CGtm86dfFO6+8ZXZfmSU4sS5c+cGBga8mYyPQ3HCIxiGGSW8IZVK9cwzz7Dhvn37hix2PYROp+PPnHj++eelvPotAAAAAAAAAIAvko0nCm5pXGI6TKwt4mUjGn5nJ4axNmn3iZiMg1RSFb+z04X+i/3mfrGSWTmks1Ozxzs7rcrgOjsZLZaj9XXuHX9IZ6fD593QOWpBTgY/LHCls9PS61a6LTridGenyITwCbO5AkzR7rPOnj71Zbm5uQEBAcM+ZLFYCgsLvZyPL0NxwiNMpusapVksFmdHePLJJ6Oiouy39Xr93r17R3nynj17DIbB5ZImTpz48MMPO7s5AAAAAAAAAADvo9T38SIrMyaXxR4XuFQm4U5l+ktnp7yIOextK2M7I15np+yIxDg1twTx3haPd3ZaMT5Dyrvwf5+7OzvNyUgKUnETU9zS2Sk9JSoxLowNjxcLzzltYlzcOK6VVtFhp4sThJB8XmennlZN1Rk3/Bt9hEKhmDt37kiPHjt2zJvJ+DgUJzxiSHGCpmlnRwgNDf3f//1fNnz33XdHefKbb75pv0FR1FtvvaVQKEZ5MgAAAAAAAACAr1DdSiQRXGj4fAwuiy2lVOMCl7GhxnS+n/aDE7WzwrOVEiUbnuo5LVYmFKGWx09iw+r+jlptt0e3GBUQMDM+gQ0P1l41W935vlXIpAsmp7HhmatNGp3B9WHn53ATMuqbexpbNIKHmruY2+F1V9pbGpze4XlrZ/PDojHT2QnFCT4UJzyir++6TnAajZCP+qOPPrp27Vr77b179xYVFQ37tN27d7NLqTz77LPLly8XsC0AAAAAAAAAABFQCqLewIXWNmIaiwvG8js7EUIa/aGzk0KimBE2nQ0v9l/S0L1iJbMyIZMf7vf85IlV6VyXpAGTqbCp0b3jL+V1drLZmOMXa10fk7/sBCHkuAudneYuua6z06mjl50dIT07NToxkg0LvzkjOBkfNEpxori4mG2BAyhOeERlZSU/rK6uHjKXwhEURW3ZsmXKlMGueQ899FB399Ai5MWLFx977DH77fXr1/MnWwAAAAAAAAAA+L4fLIv9iYjJiCVGnauWxbBh/cC3hPhBC35+ZyeGMGc158TKJCcqJVIZyIb7PF+cuDVjAsUL97q7s9OiKaly3pqybunslJ2ZFBqsZsOC08LHzMpNCwpWseGpo053dqIoau4abvJETWlde32n4Hx8TX5+/ki9bUwm0+nTok0z8jUoTrhfaWnpf/7nf/Lv6evr+/GPf9zT0+PsUOHh4QcOHJg6dSoh5MqVK8uWLTt16pT9IbPZ/Oc//3nOnDkdHR2EkJ/85CdffPEF1sEGAAAAAAAAAD8jTSaKPC40HSPWZvGyEQdFJElBK9lQb2ntMpaKmI+DssOy1FLuZHeReJ2dpBS1jNfZqVLT0qT37DSOxJCQzGiunrSv5orVrUs6B6mUczIS2bDgcp2RdnpR2yEkEipvJtctquJyc2+/XthQMpl09vwJ3FBn6rT9Ts8GyF9zXWen4j2iLVvidmq1Ojc3d6RHS0punn+pi1CccA+apm+77bb8/PzExMSZM2devXp1yBO2bt0aHR09derUxYsXv/32246PnJCQUFhYuHnzZoqiysvL8/LykpOT58+fHxcX99xzz2m12tTU1F27dr3zzjsymcyt/yYAAAAAAAAAAG+gAjbxIhtj+Fy0VMSTHHRdZ6cGf1gWWy6RZ4dlsWHVQLWGFr6MgYtWJEzhhwdahKzS7JRVGVxnpy69vqS11b3j8zs7GWlLYXW962PyOzvZbMzJs0PPYTqO39nJarWdKah2doSZy6erg7jpF0W7b6rOTvPnzx/poSFNd8YynM52D4lEsn79egefnJmZeeMn8QQHB3/00UdPP/30O++8c+DAgdra2sbGxtDQ0Ntvv33Tpk333nuvXC53PmUAAAAAAAAAAN+gXEEkUcTWNRjqvyBBT42101Zhykmhiow+erA7UKN234yoX0op5eivEt3ciNzC7sE+HwxhTvWcuTVuhSiZzIseHyJX9ZuN9nB/y8VHMvJGf4mLVqVn/LnwJBvuq6nOSUgY5fnOWjot/ZUdh9j5GIcra5ZOTR/1FTeWP2u8XC41mweX7y44XXPb0mnChpqzaJJMJrVYBocqOnppyW1Zo79kCLlSPnP59JNfDU64KTlUqR8wBPAaT/m1rKwR9waKE6yx9S3vOTKZ7IknnvDoJmbNmvXee+8RQiwWi8lkCgwMvOFLAAAAAAAAAAD8ACUn6juJ7r3B0NZJjIeIauWor7kJJQevruh+w37bbNO26QvGBS4XN6UbmhE2PUCq1lsHW/qc6ikWqzghk0iWxE38urHcHpb0NHYYB2JUwZ7b4sTIqPHh4Vc1g5NFvrtS/V8LF7tx/JiQoOlJceUNbfbw8Pkaq80mlbjUCEetks+amnSqtM4eniqtM5rMKqWQ656DglVTZ6WUFQ/OvTh9rMpitsrkzvWcz1uTwxYnzCZzycGK+evnjP4SfzF9+vSRHqqsrGQYhqKokZ4wdqCtk/+RyWSoTAAAAAAAAADAzYQK2MQ/T8UYxuKy2MlBt1G8nVDvD52dZJRsVvhMNqzR1naZukZ5vketHMd1drIxzMHWy57e4orxXGenpv7+C51uXtKZ39mpV2csrXND56iFc7icjSbz2YoGwUPNXcx1dtJpjZXn6pwdIX/tbErCnaMv2n1WcDK+ZvLkySN1u9FqtXV1dd5Nx0ehOAEAAAAAAAAAAGKTJhHlPC40nSBWN3TY9y9qWUy0mlsiuE1/grb2iZiPg/IiuIV/GcIU94h2fnlBTIZayp0O3td8wdNb5C87QQjZW+P0ugujWzbtuvEPVda4PubC3Az+JfsFZ4SPmb9sMj8sOuL0Oh9hMaGTcrgCTNHus4zNneuKi0ihUEyYMGGkRysqKryZjM9CcQIAAAAAAAAAAMRHqe/jRQyj/0K0VMSTHMwti21jzE26/SIm46BpoVODZEFsWNRTLFYmKqlsURx3Ori4q67HpPfoFrPj4uOCuM5Re2uuuHf88bERqTHhbHigwg3Fj6iIoInjY9mw4PQVGyOwHhCfGJGSEcOGJw9dFDBI3poc9nZvR9+lYjcXeEQ0SmcnFCfsUJwAAAAAAAAAAAAfoFpOJNyJTmLYThizeNmIY1zgcv4i2H7R2UlKSWfzOjvV6uo6TB1iJbMygevsZGWYw22e7exEEbIynbvw/3JXV31vr3s3sYy3CHZLT391qxu6Zi3M5SZk9PTqL11pEzxU3hJuh3e09NZVtzs7Qv4dOfyw8Cbq7ITixA2hOAEAAAAAAAAAAL5ASgLu4iJbN9G9L14y4pBLAhMCl7Bht7G8y1giXjqOmsvr7EQI2dt2UKxMlsRNVEplbPhZ7VmGeLZN0Mr06zovfVLp5pPO/GUnCCE7i8+7Pia/OEEI+fZwpeCh8pZM4of7v3L67To+KyUmOYoND39SYLVYBefjU1CcuCEUJwAAAAAAAAAAwCdQ6nsJkbIho3uTWNzcJ8f3pQTfzouY0q5XGWITLRvHZIZMCZGHsOGhjiNiTZ4IlCnmx3Bn88s1zQdaPDt5Yu64xHC1mg23lpd26d3ZSyorJT4mhOua9XlhedeAzsUxM1Kj42NC2fDbQ5Ud3QPChpo8PSk8iktvzxfF/Rqn//nz1nHFrbbajsOfnBCWjK8ZpThRVVVlMpm8mYxvQnECAAAAAAAAAAB8gzSBBPBWnmBopu8/CblJLqN2UGxAfrgykw17TZdr+3eJmI8jpJTk1rgVbGhhLF807hQrmccmzOOHf714yCp0TQVHyCSSzTOy2VBvNr979rQbx5dQ1H0LZrChyWz58LAbGh/dfdss9rbZbP34K4E5UxJq7aa5bGjQ0zu3nXR2kDueXEVJuEW6P/n9jptjWezU1NSQkJBhH7JYLJcuOb1++M0HxQkAAAAAAAAAAPAVVPDzRJrExeZSovuneOmIgCKS7KhfEcKdq63sfoO29omYkiNujV0RqYhgw1M9p69oa0TJZHZk8oJYbvLElf7O3Y2ebaHz2MzZYSoVG24tK2vTat04/gMLZ4YHcZMzPjtR1tHv6vgbbp0RGR7Ihl/tK+/qETjmugfyg4K5f/5X2wq1A0anRkiaPG7hnVyFo+Fi84ldoi2r7kYURWVmZo70KDo7ERQnAAAAAAAAAADAh1BqKvQV/ql5RvsasdaLmJH3RaqykoNXsyFt67+o+buI+ThCLpHfOW4dGzKE+axxu1jJ/HLqCgnFvYVev3jYbPPg/JsgheLxWbPZ0GS1vHPGnZMn1Ar5w4u4iQ4mi2XLkXMujqmQy+5dw+VMmy2ffnNG2FCBQaq19+exoV5r+ubjImcHeeCFjRTvv+xf/28748n5Ll6DZSdGh+IEAAAAAAAAAAD4EkU+UW/gQsbA9P0X8fCyxr4mK/IXcgl3YfuV/s/6aXEmIjhuYfT8lIBkNrw0UFXaWy5KJpNDY1cmTGHDZn3vF3Wuns0f3aPZsyIDAtjw48rypv5+N47vickTd66eGRbC5bxzb5mmT+BqGRsenKcOVLLhjq0nDDrnFlQYPyM1d/VMNqwprTuzt0xYMj4FxYnRoTgBAAAAAAAAAAC+hQr5P0Qay8V0MdF/Jl46IlBJIyeFPcKGDGMt7fqjeOk4hCLU3Ykb+Pd80vi5lRFnNe9fZC6TUtyZz7cvHzNazZ7bXIBc/sSsHDY0W63vnHFnYyJPTJ5QK+X3rOHGNJrMgidPhIQF3H43t6j1QJ/h28+d/uc/+H828sN/vfyFsGR8CooTo0NxAkRD0/TZ65WVlVmtY2uRKwAAAAAAAAAYBhVMhSpms20AACAASURBVLzMv4MZ+F9ibRUrHVFMDHsoSM5NROgwFLfojoqYjyNmhGVNDeGmLLQYWgu6nF4e2S1SgyLXJ3PrSHcatVtrPLuMwcMzsmMDg9jws/OVDX3uXCnEE5Mn7lo9KySIWy5i+56S3n6Bkyc2PrJAoZSz4ZdbTpiMzlWDpuRNnLFkKhteKKyqOHZBWDK+Iysra6SHmpqaenp6vJnMEBaLpbS0dMjpWS+fm5V5c2MAhBCLxWK/0dLSkpOTM+TR9evXb9261b1b1Gq1NE1r3boS0dih0+ksFouKt6wTOE6v18vlcrz3hNHr9RaLRSJBEd1pNptNr9dTFGWziXOBkl+jadr+yVUoFGLn4n+MRqNer1cqlTIZjjCdptfr9Xq9VqvF954AONhzhU6nI4TgS08YnU5H0zQ+tsLo9fqbo5m499kPV3Q63dj45OYqZStlln2DEaO1aP7LqHpD8HD+eLA3MfAn53pfYMOSzlcDbdOllAj5O364si5qzYX+S8y1Nlzbm3ZMV2YqJCLk/GhSzjeN5fS11Sbeu3x8TczkYJly9Fe5YvO06X84VWi/bbHZ/nqy4KWFiwkhWq3WYDC4friyKW/a2wcGV7MwWSx/33/q6VVzR3/JDa1bMW3rzsEJE0aTedvOos0b5wgYR64kt9yRteeLs/ZQ06396uMTt90z9NTf6Db8++qyI+fZ8J8vf/Hizuf8+tyUQqGIi4tra2sb9tGzZ8/m5+d7NAG9Xi+VSod9761bt+7QoUMe3foN4acjeNvoX8SFhYX2H0hupNfrTSaTWq2+8VPhB/z6D4Do7Ee9bn9LjxH2955UKhU7Ef9js9ns7zr84BeApmmdTieTycxmD874vlkZjUb7iRIUJwTQ6XQGg0Gn0+EspwA42HMFihOusH/p4XBFGJ1OxzAMf+1TcBBN0/Y/GWPkk2sgz0SQ0xKisYdSS4FV+6WRulXYaP54sBdIZobLZmssgyd8DdbW6r6Pk+R3ez8Te1VMpVLd8HAlgoTPCJxeqhtcbaLX3Le3bf+y0CUeT/EHgon0jtjM7a2DzXMGLKYPqk8+nizkzLuD1qSkfFhe1mkYnHzwVXXVpgmTkoOD7aWdAN6iFMLcPj3t45PlffrB5Ry+PHV+Xfb4qCCXhl25IH3H3nKdnraHu/ZVrF40ITBAyDfMyo0z9u0qtZgHq0E7txbOXzlRJnfiD2XGnNSJueOrTl+1h6UHK0uPVsZMiPDrc1NTpkwZqThRVlY2ytQKt7AXJ354bophmKKi0dYtp2nak3kNwk9H8LawsDD7DYVCMaTtWnBw8FNPPRUdHe3eLSqVSqPR6PZhxwi5XG6xWKKiosROxC9pNBq5XI73njAMw6hUqpCQELET8T/2CRPBwcGuH/iOQTRNy2Sy8PDwMfJr372MRqNCoYiMjERxQgCbzUbTdHR0NIoTAuBgzxX2E+sRERFiJ+KXKIpSKBQ4XBHGZrMFBgYGBQXd+KlwPZqmOzs7o6KixswnN5oyvkD6f8nGIZI3giNWE4mQX6l+erA3m/71oZb7bcxgI4om82dTYu5Wy7z9h0+v16tUKgcPVx4Mua+y8oLlWs6HBo6tTlkVIhfhC/MXISu/67ysswyeZt3eWvHEtCWRysDRX+WKn82Z+9ujh+23rQzz8ZXqP61cpVardTqdWw5XNi+e/fp3g52yaKt1z/mG59YsdGXAaEI23jrznztO2UO90Xy4uOHRu4Vczh8dHb3ijpnffTk4D0PTpSstbFq90bnJEw/8110vbvgDG+57/+gvPvixX5+bys7OPnz48LAPdXV1efogVqPRSKXSYbfy7rvvvvnmm0OKtaWlpfbOTt75nsRPRxBNQkLCmTMCl9lxiuQaL2zr5oO954ri4uLg4OD09HSxE/FLeO+5AntPMAmP2Ln4H+w9V9TV1RUXF2dmZvrvFWEiwhvPFfb9hr0nDN57rsDeE0yv1x85cmTVqlX+e57OaQHrGHovMe4fDG19lPZlKkxIcyc/PVwJU6WPD7nrSt+n9tBi01/ofSs35iUvp+HU3otVxyyPXbK37YA9NFqNu9u/ezD5Pg/nOIwoddDD6XlvXz5mDw1W83vVJ17IEjj5xhH3T8/6R8m5xv7B1Sa+qbr0szlz4xQKd73xHlg4a+vxEo3WYA8/O1G+ecnsmBCXar2b7sjZ/l2J3jBYwvl897l71+QEBQrpf3XP44v27TpntQ42Gf7s/WOrNsyWyZyYPJF/R07GzLQrJbX2sOibs02X1iRMjPWvjy3fKOeFGhoaPP3vOnPmjFqtnjBhwg8fevDBBx988MEhd0ZERGg0Go+mxOev/6kAAD7uo48+2rx588aNG48e9fX1ygAAQFydnZ0rVqz4xS9+8eyzz4qdCwAA+LrNmzc/99xzt9xyi3cabvgIKuS3RBLKxcbviXGveOmIIDPiJ0ppGBvWD3zbZSwVMR9HbEhYFyjjJnMfbD/SbuwQJZMfTZgXpuDaP35ae6ZJ3+u5zcml0idzc9nQyjCvX1uFwi0ClPKHFs1iQ5PF8s+j51wcMzRYfeet2Wyo1Zt2fF8ibKj4xIilt3PrkHe09h7+ttypESiKuudX69iQYZgdr+0RloyPSE1NHemh2tpaj25627ZtDz300N13333gwAGPbkgwFCcAADyitLSUEMIwTFlZmdi5AACAT7ty5Yq9CSz+ZAAAwA3Zf2i0tbW1t7eLnYsXSWKooF/x72D6f0NsPWKl430KScjUiCd5dzBlXX9kiE20hBwQKAu4PY6boGBhLNubd4qSSbBc+diE+WxotlnfuuTZiwjvzpyWHMqV076trqrq6Xbj+A8smBkexCu3FJR19Lu61Pb9d+SqVXJuzG/OshMpnB7qJ0v4swE+ee+Ivfmw4xbfnZ84MZ4NC3edaa0Rp7LlFqMUJ+rq6jy6ad8/N4XiBACAZ2FRYgAAGB3+UgAAANxYwD1EwZ1fJrYeZuD34mUjgrSQO8OVU9hQY7pYP/CtiPk44ta4lZEKbnGUU92nr2ivipLJQ+lz49TcihdfNZRdGej03OZkEslTc/LY0MYw75S4OrmBzyOTJ0LU61ZwMx76Bgy79gk8nZ2QHLlw5VQ2bGnoPra30qkRJFLJvc+vZ0Ob1fbN3/x4slRqaipFUcM+1N7ertfrvZCDz/7iQHECAAAAAAAAAAB8HEWFvkIork0QMewkpoPi5eNtFJFkR/2KEO4UZ2X362abq9fLe5RcIt8wjtefhzCfNW4XJROVVPbExAVsaGWYNy4e8egWN0zJHB8ezoYH6mqr3NrH3yOTJ9bnKhXc+sSffH3aaDKP8vzRhvrJUkrCvVc/fvcIY3Pu5PgtDy2OTeXWcD7++an2eg/WkzwqMDBwpFWvGYZpaGjwcj4+BcUJAAAAAAAAAADwedJxVPB16zMx/S8SW79Y6XhfpGpGYtByNjRaey5pPhAxH0csip6fEpDMhpcGLpf1OrcCgbvckzo7OZCrFuxrvlCmafbc5qQUxZ88wRDyfqU7/+GemDwRGRa49pYsNuzp1X+1X2DOKRkx+Usms2FDTUfh4YtOjSCTS+957g42tJit2//8jbBkfIGIy074OBQnAAAAAAAAAADAHwQ8RBQ5XGhtZ7R/Ei8bEWRFPiuTcNfLV/d9PGCuFzGfG6IIdVfiBv49Hzd+bmVEWC1DJpH8bPISNmQIeePiYY9u8Y5JkydFRbHh8eam0rZWN47/w8kTnf06F8d8+M65Cjk3eWLbzmITbRGY3k+X8XsZbXv3sLOdhW59bHlkAldP2vP+gZ5Wd84+8aa0tLSRHvL0shM+DsUJuPk1NzefO+fO1n5jSk1NzYULF8TOAsaic+fOtbS0iJ2FX7JYLEVFRT09Y2h5QDcyGo2FhYVarU/PjvdZfX19hYWFNC1w3TwAwRoaGnx2iT/fV1VVdfnyZbGz8Ffl5eX19T59TtBnMQxz+vTptrY2sRMBfyShQn5HKCV3h/4TQp908MU6na6wsNBgMHgkNa8IkMVODH2IDW2MubzrNe9sWqPRFBUVWSxOn6rODsuaGsKtltFiaD3R5eh/mXutTZo+OTSWDQvaa0511nluc5LrJ08QQv56qsiN4w83eeKsi2NGhgfetoxbLqK7V7f7YIWwodKnxM+en8GGNRdbz5yodmoEhUp+5zNr2JA2mne8vkdYMqITcU1sH4fiBNzkGhsbc3NzV69e/cc//lHsXPxPcXFxXl7ekiVLtm8XpykkjFmvvvrq6tWrc3JympqaxM7F/zz99NPr16/Py8vz6x9dYtm4ceOGDRtWrlwpdiL+x2azLVq0aMOGDZs3bxY7FxhbLl++nJubu3Llyvfee0/sXPzPwYMH58+fv2DBgn379omdi//54IMPli9fnpubi0t5BPjNb36zdu3aOXPmdHV1iZ0L+CFZGhX0M17MMH0vEMahQ9/Vq1dv2LBh/fr1N36qD5sU/kigLIENW/XH2/QnPL1Ro9GYn5+/fv36f/u3fxPw8nuSNlK81TK2N++ibSJc0SKhqKemLOXf86fzBxjiwYWCb5swcUoUt9jAkbra083u7CU1dPLEybLuAVdXV374zrlymZQN/7Wr2Gy2ChvqwSeX8cNtbzs9VeWOf1sVGMb9A79+8/v+7gFhyYgLxYmRoDgBN7nS0lKdTkcIKSgoEDsX/2O/JoJhmBMnPH6gA8Bn/8DqdLrS0lKxc/E/9g9sc3PzGO9cKczJkycJIWfPnjUajWLn4mc6OzurqqrItXcggNecOXPG/oHFwZ4AJ0+etNlsNpvN/u0HTrG/5Uwm0+nTp8XOxf/Y955Go0FpBwQKfILIp3GhtYnR/vWGL7JYLKdOnSLXDvn8l5RSTo98mn9PaderNsaz5/obGhoaGxuJ0IO98YFpcyNy2VBDa/a2H3Bbcs5YHj8pOyKRDcs1zUfbnLuc3ykUIc/k5fPv+WtxoRvHD1DKH1w4kw2NtOWjI2dcHDM2KmTV4kw27Oga+PZwpbChJmclzZgzng0vlTeWnrrq1AiqQGXyvDg2NGiNX7+5V1gy4sKaEyNBcQJucmw/O2cb2wHB3gPx4L3nCuw9V2DvCYZdB2LBe88V2HuuwN5zBfYeuExKhf4PIVxnfKL7kNA3aGhzM73xEoNWRKtns6HW3Hil73OPbtH1vXdP0kYZxf2X7W7ZM2ARp5nqc1Nv4Yd/Pn/Q5sm3xMr0jBQVd+3/iYaGoqZGN47/4MJZbp88sXljnlTKnTT+55enzBaBkyfue2IJP/zkvSPOjpC+NNFCzGy44/Vv9QP+1yQAa06MBMUJAAAAAAAAAADwK7LJJOgJXmxj+v+LMCbR8vG6GZHPUbzTehc17xmt3SLmc0PRyqhlMUvYUG81fN2yW5RMcqNS5sVwl/NX9Xd813zec5ujCLk9Mop/z58K3TnV2BOTJxJiQ1cu5JYJae/q33tM4ES37Lnjp85KYcOy4qvnzzm3XJNcLWsm3HyLgR7tt+/uF5aMiFJSUvjLg/N1dnYODPhlryq3QHECAAAAAAAAAAD8DBX4MyKbwMWWq4zubfHS8bYw5aS0kA1saLbpzve8JWI+jlg/bm2AlLvG/0D74Q5ThyiZPJu5nH+e+K8XDltsNs9tblpgkKmOOyN/pqXlREODG8f3xOSJR+7OHzJ5wmoVuIs2/XgxP/z0/aPOjlDPVNsIN3Xjiz99bTKIsGaJK1QqVVxc3EiP1tc7V7C5maA4AQAAAAAAAAAA/oZSUKH/Qwi3ci/RvkPMHrwE3tdMi/y5QhrKhnX9X2tMPv3PD5YF3R6/mg0tjGV70y5RMpkWnnBLwmQ2bND17Ggo8egWe7+/bqWEPxf5+uSJxLiw5fMmsWFzW+/+gkvChspdMHHitHFseLqgqqrSuVXBaWJsJtzCDJr2vr0fHBKWjIiwJvawZDd+CoBn0DR99uwNOkK6rqamxn6jt7fXC5u7ydhXuyKEdHR0YO85q6Nj8AKQxsZG7D1n9fX12W9cuXIFe89ZBsNg/80LFy5gVWdn2a5dMFVSUqJUKsVNxr90dw+2ETCbzfjYOuvy5cv2G1qtFnvPWewSgj09Pdh7zmppabHfaG1txd5zFvu9V1dXh73nLLZ/RVVVVVBQkLjJ+B2zebD3ekVFBfujYywbF7oqNmjPtciqa3vmcufvGEb6w2daLBb7DYZhbpqPbbBydbf6U/tththO1L8UP/A8IcN3j3EFe2W30Wh0Ze/FkqhgEjRABlebKOouTtUkxVIxbkjRSSuYuIPkEjsX4C8VB5K6bArKI5dxX7lyxXDpsrHmqip9sJ3UudbWvx/YPzM8wl2bmBpEBavkA8bB74ePC0pmRShCVHJXxsyZEnyggGIX5Hj3X0eiAg0jtCa6gdylifyCxDuv7nrg6TwHX9vQ0EAIqWeqkqQZ5Np/2D//3+dxsyOk8mE+6T4rNDR0pIeOHTsWHx/viY22t7fbbzQ1NTn4ybVaBa4vIgx1E6wCBP6lpqYmIyND7CwAAAAAAAAAwO8FqKmyQ8npqdxJ2Eeebv/nF2OlgbtUSv3x2ymJGSr2nlcevVJ6vF/ElG4o446JeS8sYMOGw3XH/kOcq+Djn94QsmQGG7a/s7t3n6sTDkahmpAR97Mn2dBYfaXtTXc2Iouee0vs/NvYsKNwb0fh3lGe74hJcx+KHJfFhpcKP+xpFbj4xLyMHweruCrU8aq39LTGqREyqdkJhFtWuoIpaidNwpIBR/T09ISHh3t6KyhOgLdVV1dPnDhR7CwAAAAAAAAA4GaQliznFyfqGs1Xas0i5uNlMYmKuBRuym9Lramrxafb8VMSKi6Hu0jcYrB0VogzB0gaEqBM5ZYBsHT10S2eXVRclZFOSQYv9mcsFuPVq6M/3ykSuSIgPpUNLfoBY1eri2PKVcEBIdwuMmq7THrnKgqsAEW4WhHGhv2GNrPV4NQICqIMItzkAwPRGYhOWDLgiL6+vpCQEE9vBcUJEMGdd9554MCB+Pj44OBgL2yusbHRaDQmJSWpVKobPxt4bDZbQ0OD1WpNTk6Wy12aDDgGmc3mhoYGqVSanJwskWCBH+cYjcbGxkaVSpWUlCR2Lv5Hq9W2tLSEhISMstwWjESj0XR0dERFRUVGRoqdi//p7Ozs6emJi4sbZcIyjKSlpUWr1SYmJgYEBIidi59hGKaxsZGm6aSkJHRjc5bVarW36UhOTpbJ0PLXOTRNNzQ0yOXy5ORkSliTizFMr9c3NTUFBgaOGzfuxs+G6/X397e2toaHh8fEiNAJx9/19PR0dnbGxMR44XLgm097e3tvb29CQoJ3TubcZJqamgwGQ2JiolqtvvGzgQfnplxhsVjq6+slEklycrJU6lAXrL6+vvb29g0bNmzZssXT6REUJwAAAAAAAAAAAAAAwMtwMS8AAAAAAAAAAAAAAHgVihMAAAAAAAAAAAAAAOBVKE4AAAAAAAAAAAAAAIBXoTgBAAAAAAAAAAAAAABeheIEAAAAAAAAAAAAAAB4FYoTAAAAAAAAAAAAAADgVShOAAAAAAAAAAAAAACAV6E4AQAAAAAAAAAAAAAAXoXiBAAAAAAAAAAAAAAAeBWKEwAAAAAAAAAAAAAA4FUoTgAAAAAAAAAAAAAAgFehOAEAAAAAAAAAAAAAAF6F4gQAAAAAAAAAAAAAAHgVihMAAAAAAAAAAAAAAOBVKE4AAAAAAAAAAAAAAIBXoTgBAAAAAAAAAAAAAABeheIEAAAAAAAAAAAAAAB4FYoTAAAAAAAAAAAAAADgVShOAAAAAAAAAAAAAACAV6E4AQAAAAAAAAAAAAAAXoXiBAAAAAAAAAAAAAAAeBWKEwAAAAAAAAAAAAAA4FUoTgAAAAAAAAAAAAAAgFfJxE4AAEA0JSUlNpvthk+jKGrWrFkOjmm1Wr/++utPPvmkqKiou7s7KioqLS3tjjvuePTRR8PDw13J9sKFC++///6hQ4dqa2vlcnlaWtqcOXN++tOfZmVluTIsAMBY1t/f//bbb//hD3944YUXnn32WRdH6+rq+sc//rF79+7Lly/rdLrU1NSpU6c++uijq1atkkiEXxJktVp37dr16aefnjp1yv6XZfz48evWrXvkkUfCwsJcSfj8+fP2vyx1dXX2vyxz58598sknp02b5sqwAAA3JZvN9u2337700ksymayoqMj1Aevq6rq7ux15Znp6uuNf+BUVFe+///7hw4fr6+sVCkVaWlpeXt6TTz6ZmZnpQrKkt7f3gw8++Oabby5cuKDVapOTkydPnrx58+a1a9dKpVJXRgYAuJloNJrPP/983759lZWV7e3tZrM5Ojo6NTV12bJld9xxR3Z2tiuDMwxz8ODBrVu3Hj9+vL29PSwsLC0tbdWqVY8//nh8fLwrI9fV1b3//vv79++vrq622WxpaWnZ2dk/+clP8vPzXRnWaDRu27Zt586dZ8+e7e/vj4+Pz8jI2LRp06ZNm1QqFfevAgAYgw4fPuzgl+maNWscHLOwsJB/QicsLIyiKPvtgICAv/zlLzabTUCq3d3djzzyCDuUWq3mvsQJ2bBhQ1dXl4BhAQDGss7OzhdffJE91/OnP/3JldEsFsurr74aGBhoH00ulwcFBbFf1JmZmSUlJcJGLigo4J9O4v9lCQwMfOONN4T9Zenq6nr44Yf5f6SUSiW7lY0bN3Z3dwtLGADg5mO1Wj///PMpU6bYvyTnzp3r+phGo3HcuHGO/BgJCAjo7Ox0ZMyOjo4HHniA/0L+d/s999yj0WgEpGqz2d58883Q0FD7ODKZLDg4mB02PT29sLBQwLAAADcZmqZ/+9vfst+Ww7r99tsrKiqEjX/+/Pn58+ezQ4WEhLC1Yblc/sILL5jNZgHD6nS65557TiYbnMCgUqnUajW7lcWLF9fX1wtLeMeOHQkJCfZxKIriV9mjo6N37txpfxqKEwAwRi1dutSRHwOEkKNHjzoy4Ntvv23/NpdKpb/85S9bWloYhtHr9bt27Zo8ebJ9qLVr1+p0OqfyPH/+/Pjx4+0vnzdv3smTJxmGsVqtlZWVmzZtst+fmJhYXFwsYCcAAIxB7e3tL774YkhICP+r3pXiRF9f32233WYfZ9y4cZ9++qnJZGIYprW19Te/+Y29nKxSqf7+9787O/Ibb7zB/mV5/vnnW1tbGYbR6/U7duyYOHGifYvr16/X6/VODVtRUZGWlmZ/+YIFC4qKihiGsVqtFRUVd999t/3+pKSks2fPOpswAMBNhqbpLVu2TJo0if8nwy3Fib/97W8O/hh5+umnHRmwtLQ0OTnZ/pLFixfbfx1YLJby8vI777zTfn9KSkppaalTeep0urvuusv+8ujo6I8++shgMDAM09HR8bvf/c5eiZfJZK+99pqAnQAAcNNobW1dsGCBI9/qAQEB27Ztc3b8L7/8kr0Q6kc/+tHVq1cZhjGZTAcPHszNzbXfP3/+fAeL2azGxsaZM2faXz516tR9+/ZZrVaGYWpqap588kn75O/w8PDvv//eqWGtVusvf/lL9t/7xz/+sbe3l2GYvr6+999/PzY21v7QM888Y7PZUJwAgLHoxIkTDv4YyM3NdWTAV155hX3Jli1bhjyq0WjYGRWrV6+madrBPMvKytiq+5o1a+xnu/j+4z/+w/5oZGTk+fPnHRwWAGBsamtr+/Wvf82/FIgluDjR39/Ptv5LSUlpaGgY8oTvvvvOfk2TRCLZunWr4yO/9NJL9mEpivrhD5ju7m52RsXatWsdv06qpKSELcysW7fuh3+S2B8SUVFRFy9edDxhAICbiclk2rJlS0ZGxg//ZLhenKD/f3v3GRDF9f0N/C69FwugiKCoILaIUhTFikaJWDD2EmNUYkdBI8bEbqKx92gUDRq7qFgSe8GKqIiCioJKERCkl11293kx/2d+N7O7s7MIaOD7ebUze+bs3QXuZebs3CsW29vbCzkZ0dbWTkhIUJvw3r177B17/v7+ioPCjBkzmGetra2fP38usJ3FxcXstTYbGxvFA69fv87enLF582aBaQEAqpm8vDxN52vatm2b8PyhoaHsJLHLli3jPFtcXNy1a1fm2fbt2+fl5QlM++bNG/YePg8Pj9zcXE7A5s2bmWcNDQ2vXbsmMK1MJhs1ahR74PXr1zkBL168qFu3LhMwY8YMFCcAoCby8fEROGAcOXJEbbZ9+/axM2NMmjRJacyjR4/Yu+RGjx4tpJEpKSl2dnbMIQ0aNMjOzlaMKSsrc3d3Z2NSUlKEZAYAqIFmzZplaGjo5ub29ddf29jYcHr78hUnysrK2HsmtLW1b9y4oTRszpw5TIyuru7ff/8tJPPevXvZkWXKlClKY6Kjo9lbuceNGyckbXJyMnsG0rBhQ6Xze0gkknbt2rExzO0aAAA1SkREhK2tbaNGjQYOHMh2iayPL05s3bpV4MnI8OHD1WZ7/fo1O641atRI8eqSXC4Xi8Vt2rRhYhwcHNLT09WmlclkQ4YMYQ4RiURnzpxRGrZ8+XImRktLS8ipEwBA9cPeYUYIsbCwGDx48NKlS7ds2bJ48eIhQ4bQU+GxdHR0BJ4XXLp0SU9Pjzmqb9++Sud0TU5OZr9+1LNnz7KyMrVp8/LyWrVqxRxiZmaWmJioNGzAgAFMjLm5eWxsrJAG//jjj+zbXL9+vdKYw4cP/++zEJIUAKA6uXnzJvMf9qBBg77mNW7cOLV9+uvXr9mRxtTUlGci1zFjxrB9b2hoqNp2+vn5CYn/559/2DAfH5/yTT4OAFDtnT17lp0vNSMjg1OfKF9xYvXq1WyGMWPGqArLyclhp1itW7eu2sv9SUlJ7BdgzczMmJuglRoxYgTbgLCwMLUN7t27t5D4M2fOsGG9evXCyAIANU1cXBz9FVF6IQfy0cUJ9rYJT09P/pORr7/++tGjR/zZZDJZz5492bYdPHhQVWR4eDgb1qdPH7V9+86dO9l4Pz8/9xcWUQAAIABJREFUVWHFxcXsKqzm5uZJSUn8aQEAqplLly6x/7evXbu2oKCAE5CTkxMUFMTe+sBq3LgxM1Eej9zc3AYNGjDx2traL168UBU5f/58NvOSJUvUNnvixIlC4p8+fcq2vEWLFmobfPPmTTbeycmJmSRKKXY2KhQnAKDG+fLLLwkh/fv3r5Bs7HdmCSEzZ87kibx79y4baWFhwT8V4L59+9jg+vXrK07oRGPXtCCE7N69u3xvBACgRpkyZQp9blCO4sSrV6/YiV8JIfzXjyZPnsxGqr1/rlevXmxwUFAQTyRTbmfUqlWLfxXrvXv3ssF2dnY8cwzKZDJ6JhONZqMCAKh+rl27Rg8ZH1mc+P333wkhJiYmms4MrhRdQmjUqBHPN6ukUik9l9SBAwd40qalpVlaWrLB/IvwhYSEsJH9+vUr/5sBAPgPYqa/c3Z2ZtaBUOXIkSPsDRCsjRs38iefNGkSG+zv788TmZycTK+P/ezZM57gq1evsndpGxkZ8Z9E0CXwxYsX80SWlJTQqzTt2LGDJzg0NJQJ4xZtAACqt/v37//999+EELqqXG7Xr1+nv17KrlCtlJubW9OmTZnHOTk5ixcvVhVZVla2YMECdnPQoEGKYxht+PDh7OP58+cXFxerbTkAQA3n4ODwkRmWLl1aWFjIPG7evHnr1q15gjm3ONy/f19V5OXLl+lb4vhHFk9PT3Zp6+zs7KVLl6qKlEgkP/30E7vp7++vq6urKlgkEtEjS0hISElJCU8zAACqt48fMlgSieSXX34hhEybNq1OnTofmU0sFi9cuJDdHDx4MHtlSpGWlhY9pvzwww9isVhV8MqVKz98+MA8trW17dy5M08z6DHu1KlTly9fFtB2AIDq4PXr15GRkfXq1bt48SL7b7lS/v7+a9eu5ew8dOgQzyEJCQl0BZr/vMDW1tbb25t5LJFI5s6dyxMcEhIil8uZxz4+PrVq1eIJpjv5lStXpqenq4oMDQ199uwZ81hXV9ff358n7aBBg5hVi1CcAICa5eeff5bL5X379v3fHWQfgZ1ilRBibW2tNiddcN65c+f79++Vhh08ePDVq1fsZr9+/fjT0ktopKam/vnnn/zxAACguOyERt6+fRsWFsZuqu2oPTw82DkA5XL5ypUrVUXSI4utrS272rZSIpGIHll+//139loSx/79+5OSkoQ3mB5Z3r59u3//fv54AIBqzNrauqJShYWFMTfezZw58+Oz7d27Nzk5md3UqG9PSko6ePCg0rD3798zt3cwfH192S/YKtWiRYv69euzm0z1BQCgJmAm09u7dy/dDaoyefJkLy8vek9kZCR/nVgqlTKP9fT06AlalaI7+RMnTsTHxysNu3btWmRkJLupduygTzcKCgo2bdqkNKysrIw+x/Hy8qLvwFNkamrq6elJUJwAgBrlwYMHzI0O9K3H5ZaQkMDchMHw8PBQnEOQo1u3buzj4uLiXbt2KQ3bvHkz+1gkEnl4ePCnbd++PTs7OedwAABQiv+ONLV+//13+kSiQ4cO/PE6Ojr0106PHTuWlpamGPbs2bMLFy6wmx4eHvzXg8i/R5bCwsLdu3crDaOHBi0tLXd3d/607u7uRkZGSg8HAKhp9PT01PbGQkilUubC/ffff29lZfXxCenOWUdHp3379vzxHTt2ZL6mqng4LTQ0lL01kAgY4wghXbt2ZR+fP3/++fPnag8BAKgG7ty54+vrS1++58e5oUEmkyk9KSCE5Obm0l88bdGihdKFtWl0VyyXy7ds2aI0jNP5q+3k7ezs6Blft2/fLpFIFMPOnj1Lf8tWyNjBnMigOAEANciiRYvkcnmXLl04xery2b9/P3sfHCGkbdu2ag/hfAFW6ZeVXr16dfv2bXbT0dHR3NycP62urm6rVq3YzZiYmCdPnqhtDABATcYzqZEQnA5c0yGgrKzsyJEjijH0gkPlSKvYMEZCQsK9e/fYzWbNmtElbaX09fVbtGjBbkZHR8fFxaltDABAdfWRowZj//79z58/19PTCwwM/PhscXFxDx8+ZDebN29uaGjIf4ihoWHz5s3ZzTt37rx8+VJpO+lNTQcjuVyu6p4MAIBqJjo6mrOUHb8ePXrQRWJCSH5+vtLIY8eO0ROr8t9OzWjbti09ud+hQ4fYGy/olzt16hS7aWhoSK8SoQr96pmZmewa4LRyn8igOAEANcXDhw9PnjxJCLl69aqdnd3gwYNXrVr16NGjcifkTA5I/6OvSqNGjehzhujo6Ldv3yqmpWse9GLXPFxcXOhN5p0CAIAqH3PnxL179168eMFuGhkZNWzYUO1RnI76xIkTijHlGFkcHR3pM5x79+6lpqZyYg4cOEBvlm9kiYiIEHIUAEC19JH32xFCpFLpsmXLCCFisdjZ2bl79+7z5s07c+aM0u+fClEhfTt9iYrx4sWLBw8esJsikUjIdSshYxwAQPWTmJjYp08f4fFGRkbsWqQMCwsLpZGc8wIhnbyBgQG97kV6evqdO3c4MSdPnqSXKW3WrBnPYkUstZ18cXExZ0AR0mAmLYoTAFBTLFmyhL3on5ycfPTo0Tlz5nzxxRdffPHFunXrVC3/oEpmZubTp0/pPQ0aNFB7lJaWVrNmzeg9V69e5cRw9ghJSxT6fcW0AABAUzsRHw/FjlrIdB+cizu3bt3izDCblpbGriDHZlabVkdHh77PWi6XX7t2TW2D1aYlGFkAACgfM2owDh48yHby+fn5ly9f/uWXX3x9fRs0aBAYGBgTE6NpwitXrtCb5evb1Q4ZdevWNTAwUJuWM8Y9fPgwNzdXSHsAAGoaelo/ExMTpYtVlJWV3bhxg95TSZ28wLScTl7xvODevXtFRUX0Hjs7O7VpHRwc9PX1UZwAgBrhyZMn4eHhSp969OhRYGCgg4PDwoULS0tLBSa8desWfX8DEdyn16tXj97k1LFlMhk9pxMR1qGrTQsAABXo5s2b9Gb5+v+ioiLOpahbt25xDqmQkUUqlXL2lG9k4QxPAAAgnEwmW7FihdKnMjIy1q1b16ZNm379+r1+/VpgQolEQs/XRyqub6+QMU4qlXKaBwAADPoivpubm9Lid0xMTEFBAb2nfL2x2k5e4NjBqaDExcVxKtCcUoqpqamqO0Jo2traVlZWKE4AQI2wePFimUzGE1BYWLho0aJWrVpFRkYKSRgVFUVvamlpKS13K7K2tqY3OYtDJCQk5OTk0HsEjkCcJfVycnKSk5OFHAgAAJriDAECO+q6detyzj04QwAnrY6Ojo2NjZDM/CPLs2fPOFPZlm9kycrKevfunZADAQCA4/Dhw7GxsfwxERERLVq0WL16NecrUEo9ffqUnpeDlLdvT0tLy87OpveUb4wzNDQ0MzOj92ANPAAApVJSUtjHX331ldKY+/fvc/YIrCLwnxcUFRVxlpEr39ghl8s5U4lER0fTm7a2tkLSEkKsra1RnACA6i8hIUHgtKcvXrzo0aNHWFiY2sjExER608bGRuAqeXXq1OG0jSctETxUcNIqZgYAgAohFovpMwoi+FRBR0eH8wUizjKknCGgfv36QmaAJRhZAAA+b3K5fM2aNUIiCwsLg4KCvvnmG7X3c7969Yqzp6L6ds6oIXCMU8ysdKltAIAarqCgIC0tjXmsp6c3cuRIpWGcrlj412E5XXFiYiK9JnZSUhLna7sCO/lKHTt0BIYCAPx3NWnSpKSkpKCgICMj49WrVy9evLhz586NGzeU/sdcWlo6ZsyYN2/ehISE8ORMSkqiNzllZB6cOVs/fPhAbypeQuLUvVWh19lWmhkAACrEmzdvOP/TCx8COH01p6PGyAIAUC2JRKI7d+6IxeLs7OzExMSXL19GR0ffvn377t279DUj1t69e5OSks6cOWNsbKwqJ2fIIBXUt2dmZnImEqmoMQ4AAAgh58+fLysrYx6PGjVKVdfN6eQtLS0Ffh2Wc14glUrz8vIsLS2ZTcXzAoGdvNrzgo85kcGdEwBQU5iYmDRu3Lhnz57ff/99aGhoQkJCdHT0999/r6+vz4mUy+U//vjj/v37ebJxvjZrZGQksBmclyssLGRHJkJIamoqJ15xDBCSlhCCNegAACqDYkdd7iGAM49fRY0seXl5dPkEIwsAwOdAT0/PxsamQ4cOo0aNWrNmzc2bN5OTk9esWaP0jodr16598803PPM7VVLfXnljHAAAEEJOnz7NPNDX1//pp59UhVXUeQH5d29cSWNHcXExZ4ZA4Q1GcQIAarS2bdtu2bLl5cuXo0aN4jwll8u/++47zlKlNHoJIyK4QycKfbpcLqf7dE5aIrhP19PT4+zB+QAAQGUoLCzk7BE+BHD6ak5HXVEji0wmoxeZwMgCAPB5srGxCQwMTEhIWLt2rYmJCefZI0eO/Prrr6qOraS+vfLGOAAAyMnJOXz4MPN4ypQp9vb2qiIr6ryA/LuKUO6xQ0dHh7N4Ht3JK6bVaOxAcQIAajpbW9s///zz5MmTnDXciouLZ8+ereooTucrvCyseO92hfTpimnx/VYAgMrAWYCUaPLPN6ev5nTUGFkAAGogfX39mTNnPn78uH379pynli5dyk5NzlFJfXvljXEAALBly5a8vDxCSMOGDRcuXMgT+bmdF8jlcs7Etvxjh0YNRnECAIAQQvr163fjxo169erROy9cuHDhwgWl8WKxmN4U/l8750AOxbXvBGaWSCQCGwAAAB9DsaMW/s83f19dNSOLSCTCyAIA8LlxcHC4cuVKnz596J2FhYWLFy9WGs/p23V0dBRviVCKv2+vvDEOAKCGKyws3LBhA/N427ZtpqamPMFVdsVJYCev6dghvMESiQTFCQCA/9OqVauIiAjOLdW7d+9WGszpwXV0dAS+imKfTqdSXPVOYGbFtMIHAwAAEE6xo9bW1hZ4LKev5gwlVTOyiEQizk3ZwtNiZAEAqDzGxsZHjx719PSkd4aFhSle9CEKfXu5RyLy77693CcjipmFVzUAAGqCn3/+OT09nRAybdo0TilaUZVdcRI4fPCnVezwNWowihMAAP/j6uq6ceNGes+5c+foBatZnCp3SUmJwJdQrGPT/bhi8Vzp2Ygi/qECAAAqSrk7aqLQV3Ou9VfNyCKTyfi/UcXCyAIAUMUMDQ0PHz5MTzZbUFBw7do1xUhO3y4Wi3lWz+ZEcvbwn4wIH4z4xzgAgJosJiaGuW3Czc1t1apVauM//ytOdCf/MWOHWCxGcQIA4F/Gjh3brVs3djM7OzsuLk4xrNxDRUFBAb2pq6tL36uh2KcrTt6nFL32KaNWrVoCmwQAAMJ9zD/fnL6a01FX1MhiYGBQIVeaMLIAAFS9Bg0aLFu2jN4TGRmpGMbp2+VyeYX07ZU3xgEA1Fhisfjbb7+VSCR169Y9dOiQ4prVisp9XlBJnTx/WmNjY86d2cK/vJWfn4/iBADAv4hEoh9//JHeo3QZOisrK3pT+FDx4cMHerNBgwb0bXSctMIzc9ISQuzt7QU2CQAAhKtbty5nj8COuqSkhFNv5nTUFTWy2NnZiUQiVWmFZ8bIAgDwSUyYMMHGxobdfPfunWJMJfXt5R7jFDNjyAAAYAQGBt6/f9/AwCA8PNzBwUHIIeU+L6CXvyaE6Onp0QOK4tgh8Ouw/GOHSCTiDB8C0xJCcnJyUJwAAODq3r27o6Mju8lMC8jh4uJCbyr21KpkZ2fTm5z/2jlphWdWDBM45gEAgEYaNmzI+c4Rp2NXRe21fowsAABACNHX1x89ejS7KeRkhHxE306PGhYWFvXr16efFTjGFRcXc66dYcgAACCEhIWFbdmyRSQS7dmzp2PHjgKPqqjzAjs7O/qehso7L/iYBqM4AQCgRPfu3dnHSlfyadGiBb2ZkpIiMDOnj27evDm96eLiQn/dVXhmzghkbm5er149gU0CAADhRCIR55/v8nXUhBBnZ2d6kzOyJCcnC2wS/8jCSUvK2+BatWopftkKAAAqg6YnI6S8fbuVlRVn/qXyneaoHeMAAGqghw8fTpo0iRCybt26IUOGCD+Q0xVnZWWV7/Y4znmBra2thYUFvad8nbxIJHJycuJpsEYnMihOAAAoQV94UnotplWrVvRmZmamwDn13rx5Q296enrSm2ZmZg0bNqT3COzTOWnd3d05U/4BAEBFadmyJb0p8H96TkdtYGDQtm1beg9nZMnIyCgrKytHZs7IYmlpaWtrS+8p38ji4eHBKZ8DAEAloa/yKE61RAixsrLinKQI7Nvfvn1Lb3bo0IETwBmMyjfGaWlpeXh4CDkQAKC6Sk5O9vPzKyoq+vnnn6dPn67RsZyuWC6Xl6835pwXkAo6kXFycrK0tKT3lG/syMrKKiwsxKUrAAAl6tSpwz5WvPGNEOLu7m5ubs5uyuVyzj/6ShUVFWVkZNB7FM8HfHx86E3OGKBKYmIif1oAAKgonI769evXQo5KSkqiN9u1a6enp0fv6dChg4mJCbsplUqFXGnKy8vLysri5OFvMEYWAIDPHH0yoniTBKNXr170ZkX17eUb4zhpmzdvTp8rAQDUNNnZ2b169Xr79u3kyZMXLlyo6eH29vbNmjWj95Svk1ecSKpCOnm1Y0dycrJUKlWbljk/QnECAECJvLw85kHz5s2Vzo+kp6f35Zdf0nsePnyoNm1iYqJcLmc3nZycmjZtyonp37+/pmmJwlDh6+sr5CgAACiHL7/8kq4rxMTEyGQytUep7aj19fV79+5N7xEyBHBqHi4uLo0aNeLEYGQBAPhvYU9GyL+neKL5+fnRmxXVt3fr1o1eWunZs2dC5hLBkAEAwCouLu7fv39cXNzIkSM3btxYviTl6OQ5X1qysLBQLE5U0nlBo0aN6JsniouLnz17JjAtihMAAEqwRWmeaQE5Q8X9+/fVpo2JiaE3lSbv0aOHsbGxRmnFYnFcXBy72ahRIzc3N7VHAQBA+Zibm3ft2pXdzMvLe/HihdqjHj16RG8qHQLKMbJw0g4dOlQxxsfHx9DQUKO0JSUl9BlF06ZNXV1d1R4FAAAVgj0ZadmyJWfGcFbv3r319fXZzejoaLVpi4qKEhIS2E0XFxfO/B6EEH19ffo7WBKJhDPQKCVkMAIAqAnEYvGQIUNu3LjRr1+/0NDQck+4/fHnBQMGDKCHCUabNm3s7e3ZzdjYWCFTlNOZTU1N+/btW4ENRnECAECJ8+fPE0KMjIwmTpyoKmbgwIH0TK/37t1Tm/bu3bvsYy0trVGjRinGGBoajhkzht1MTk5OTU3lTxsTE0N/oWn06NGYFhwAoFJxRge1Q4BcLqdjvLy8HB0dFcP8/f3pqTw0HVm0tbVHjhypGGNsbEyPOElJSZw5BhU9fPhQLBazm6NHj1bbEgAAqCj//PMP82DmzJmqYszMzIYPH85uJiQkcNZBVXT//n16NSP6pIOm6RhH/j0YtWjRAvVsAKiZJBLJ0KFDIyIiOnbseODAAR0dnXKn6tSpEz2tn5CumBMjpJMXi8Vqb55IT0+nZ38aPHgw/bUn1vjx4+n3K3zsQHECAIDr3r17Dx48IITMnTu3fv36qsIMDQ1nzJjBbl6/fj03N5c/861bt9jHAwYM4MwhyAoKCqL79IiICOFpjYyMpk6dyh8PAAAfaeDAgc7OzuzmqVOn+OPj4+Ppa0Zz585VGmZsbDxt2jR28+rVq/n5+fyZ6SHA399fac2DEBIcHKytrc1uqh1Zbt++zT42MTGZPHkyfzwAAFQUiUQSGhpKCGnbtu0333zDEzlnzhz2O7kymez06dP8mekhw9zcPCAgQGlYz5496fuw1Y5xqamp9HUrVWMcAED1xlQmwsPDPTw8zp49a2RkJOQouVz+3XffHTx4kLNfJBLR3enz58+fP3/On4ru5N3d3bt166Y0bMqUKWZmZuymRlectLS0goODlYY1atRo2LBhwtOWlZWhOAEAoIRUKp09e7ZcLndwcFDV57ImT57MLvUmFov5O9/U1FS2dKylpRUSEqIqsnHjxvR0H8ePH+dvBn3CEBAQULduXf54AACQSCT0ppAV22haWlpz5sxhN8+ePcs/JffJkyfZx23btv3qq69URU6dOpWd7LukpOTMmTM8ad++fcvO46Gtrc0zsjRt2tTf35/dVDuy0A2ePHly7dq1+eMBAKo3+mYyTYcMTW3cuDEhIUFLS2v9+vV0XVlR8+bN6dnDNerbp02bxrNm9Q8//MA+vnz5ck5OjsC0TZo0oe/nAACoIcrKykaMGHH8+HE3N7dz587RV//5LVu2bPfu3V5eXopPDRs2zMHBgd08duwYT56SkpK///6b3fzxxx9VRZqbm3///ffspkZjx+DBg1VNNkj+XTJPTExkvvWryvXr1/9vcJEDAFR3T58+3bhx49GjR4uKitQGz5o1ixBibGwcHR0tJPnatWvZvvXLL7/kiVy+fDkbGRAQwJ82KSmJXXlCT08vJSVFVWRiYiJ7m4WtrW1ubq6QZgMA1HCcbyctXbpU0wxlZWXt2rVjMxw4cEBVpEwmY2+z0NLSunXrFn/mVatWsWm/+uornsjFixezkVOnTuVP++rVK/YLXPr6+mlpaaoiExIS2MthdnZ2+fn5/JkBAKo9etLwVq1aaXRsbm7uH3/8sWvXrqSkJLXBly9f1tXVJYQsX75cSPLnz58bGBgwDTMyMsrMzFQVGRcXx74LBweHwsJCnrQymYxeXWnbtm08we7u7mzk33//LaTZAADVSWlpKfM1oHbt2mVnZws8KjY2lrnVoEePHqpijhw5wnawLVu2lMlkqiL//PNPNrJfv378L52Tk1OvXj02nufyV25uLlvJNjU1ffPmDX/mCRMmsGlnzZrFE/m/WWf5MwIA/NddunSJ+f+eENKoUaOIiAhVkRKJhJm2QltbOzw8XGB+iUTi6enJdr5RUVFKw3JycmxsbNhmfPjwQW3m9evXs2lnzpypKozt+rW0tE6dOiWw2QAANRwzYwYrJCSkHEnu37/PrjLXunVrVWcLBw4cEPg/OkMikbDzaYhEogcPHigNy87OZpc+cnR0FFKcXr16NduSoKAgVWHjxo1jR5YzZ86oTQsAUL0VFxfTQ4ajo6PwY3Nzc5s2bcocaGBgsGjRopKSElXBR48eZb6fNG7cOOEvsWLFCrZt8+bNUxXGLkqkra19/vx5tWnj4+NNTEyYQxo3biyRSJSGnT17ln31b7/9VnizAQCqh8LCwt69ezPdYI8ePb5WZ9CgQV5eXra2tmznGRoaypN/0KBBbOTx48eVxojFYnaBitq1a79+/Vpts+n7MPz9/VWF0d+F4i9UM7Kysuzs7Jh4Y2NjVSXz+Ph49kodihMAUM1999135N8GDBjw6NEjOqasrOz06dOtW7cmhFhYWJw7d06jl3j9+jU7k5Knp2dxcTEnQCqVslPvmZubx8bGCkkrk8kGDx7Mnsncu3dPMebEiRPs2tcrVqzQqNkAADXZggUL6KFhxIgR5cuzdetWNsm6desUAxITE62trZmA3r17q7q4o3gUO5OSl5eX4pUsqVT69ddfMwEWFhZxcXFC0spksoEDBzJHGRkZKf2S1LFjx9iRZdWqVULSAgBUb7GxsfSQoaenV1ZWJvBYxdn5mjZteuTIEU6GZ8+eDR8+nOl+586dK5VKhTdPKpWyswWamJhwznQY9P2CSkcrpfbv38+OCIsWLVIMSE1Ntbe35xmtAACqt/z8/O7du5OPYGRklJeXx/MSHz58aNKkCTuCKL0zIygoiB2hrly5IrDxgYGBzFFaWlqnT59WDLh9+zb7TazJkycLTBsZGckeNXLkSMXvbxUWFnp4eDABjRs3RnECAKo5+luitJYtW44ZM+a7777r168fW1pwc3OLj48vx6tER0dbWloySQYNGkSPFikpKexUsDY2Nnfv3hWetri42MfHhzm2fv36dH1CIpGsXr2auYlbJBIJvO8bAADkcnl6enrjxo3pQcHExOTJkyfly7Zw4UImiba29q5du+j/v8+ePduwYUPmWT8/v4KCAuFp7927Z2FhwRz79ddf07fcvX37tl+/fuzocP/+feFpi4qK2DOoBg0a0Df8SSSSlStXMucSWlpav/76q/C0AADVlVQqpSepYAiv3b58+ZKeEoplbW09aNCgiRMnDhkyxMXFhdlZp06d/fv3l6ORhYWFnTt3ZpLY29vTt9yJxeIVK1bo6ekxffuaNWs0yrx27VqmPiESiTZs2EBXTa5cucJeL+vZs6eQW8MBAKqTrKws9iJ7uY0cOVLtCyUmJrK3I3h7e9PzfmdnZ48fP555yszMTKPv2kqlUnZuJTMzs3/++Yd9SiaT7d69mz0ZmTZtmvCqvFwuDw8PZ8YdQsisWbPo0vXjx4/ZD61ly5ZJSUkiuVz+kR8iAMDnrKSkpHv37rdu3eIPq1+//uLFi8eNG6f05EGI58+f+/v7M9+rsrKyGjBggKOj48uXLw8cOJCXl0cI8fX13bp1KzuiCCQWi2fMmLF9+3a5XK6lpeXn5+fq6ioWi48dO/b06VNCSMOGDbds2eLr61u+ZgMA1BDJycknTpzIycmJj48/d+7c+/fvOQFGRkY+Pj6urq6WlpZ9+vRhL7gI8ccff0yfPr2oqIgQ4uHh0bVrV3Nz8ytXrvzzzz9M5gULFgQHB/Ova6ooPj7e39+f6e1tbGz8/PwcHR0TEhIOHDiQn59PCOnXr9/WrVvpu8KFKC0tnTZt2o4dOwgh2trafn5+bdu2LS0tPXbsWFxcHCHE3t5+69atffr00SgtAEB1smfPnvT09JSUlEuXLnHunGB4eHh4e3tbW1u3bNmSndBDqaVLl3Ju11Okr68/YcKExYsXs1940lRJScnkyZN3795NCNHW1u7fv3/btm2Li4uPHj367NkzQkijRo22bdvWq1cvTTMfPHhw4sSJzBlN27Zte/bsWatWrcjISOaudp4UAAAgAElEQVRrtvr6+nPmzFmwYMH/JugAAKgBiouL27Vrx/zz/DHOnj375Zdfqg1LS0sbMmTIjRs3CCFmZmb+/v7NmjVLS0s7cOBARkYGIaRjx447d+7kWa1aKZlMtmjRomXLlkmlUkJI79693d3dtbW1z5w5c/fuXUJInTp1Vq9ePWbMGE3f1/Xr14cOHZqWlkYIadKkSZ8+fRo0aPDo0aPDhw9LJBItLa3x48f/9ttvZmZmKE4AQPVXWFi4bNmynTt3ZmZmcp4yMzPz8fEZOnTogAEDPv7/aYlEsnnz5o0bN7569Yrdqa2t3a1bt6CgIP6TFn7Xrl1btmwZMzksu7Nx48aTJ08OCAhgl84GAABVYmJili5dKjB4+vTpnTp10ih/UlLS0qVL//rrL6ZEwbCwsBgzZszs2bPZ+yc0JRaLN23atGnTpsTERHantrZ29+7dg4OD2bvryuHy5cvLly+/ePEiPbI4OjpOmTJl0qRJ7NLZAAA107hx4woLC4VEtm/ffs6cOfwxhw4dWrZsWUxMDGe/tra2p6fngAEDxo4dy97M/TEuXry4fPnyy5cv031706ZNp0yZMnHiRENDw/KlTU1NXbp0aVhYGFMaZ5iamo4YMSIoKEijcj4AQPWQm5ureF+dpvT19Xfv3q2joyMkWCaT7dmzZ82aNXTJXCQSeXh4zJo1a/DgwexEfJp6+PDhkiVLTp48WVZWxu6sV6/exIkTp02bxk42q6m8vLyVK1fu2LGDKZ8w9PX1+/fvP2fOnHbt2v3fW0BxAgBqCKlU+uzZsxcvXjCnGebm5k2bNnV0dNT0e6xCPHv2LD4+vqCgoG7duu3bt69Vq1aFpM3Ozo6KisrMzDQxMXFycnJ2dq6QtAAAUFFKSkqio6PfvHmjpaXl4ODg6uoq8GRDrfj4+Pj4+MLCwrp167q5uZX7q7UcWVlZ9+/fz8zMNDU1dXJycnJyqpC0AACgKCUl5enTpzk5OUVFRWZmZnZ2di4uLpVRDH7//v39+/ffv39vamrq7OzcrFmzCkkrFosfPHiQlJQkl8vt7e3bt2+PuyUAAKre69evY2Ji8vLyLC0tXV1dbWxsKiRtfn5+VFRUamqqkZFR48aNW7duXe5qB00qlcbGxr58+bK4uLhBgwZubm6cgQ/FCQAAAAAAAAAAAAAAqFLlnFodAAAAAAAAAAAAAACgfFCcAAAAAAAAAAAAAACAKoXiBAAAAAAAAAAAAAAAVCkUJwAAAAAAAAAAAAAAoEqhOAEAAAAAAAAAAAAAAFUKxQkAAAAAAAAAAAAAAKhSKE4AAAAAAAAAAAAAAECVQnECAAAAAAAAAAAAAACqFIoTAAAAAAAAAAAAAABQpVCcAAAAAAAAAAAAAACAKoXiBAAAAAAAAAAAAAAAVCkUJwAAAAAAAAAAAAAAoEqhOAEAAAAAAAAAAAAAAFUKxQkAAAAAAAAAAAAAAKhSKE4AAAAAAAAAAAAAAECVQnECAAAAAAAAAAAAAACqFIoTAAAAAAAAAAAAAABQpVCcAAAAAAAAAAAAAACAKoXiBAAAAAAAAAAAAAAAVCkUJwAAAAAAAAAAAAAAoEqhOAEAAAAAAAAAAAAAAFUKxQkAAAAAAAAAAAAAAKhSKE4AAAAAAAAAAAAAAECVQnECAAAAAAAAAAAAAACqFIoTAAAAAAAAAAAAAABQpVCcAAAAAAAAAAAAAACAKoXiBAAAAAAAAAAAAAAAVCkUJwAAAAAAAAAAAAAAoEqhOAEAAAAAAAAAAAAAAFVK51M3AAAAAADgEyssLExPT6+8/LVr1zY3N6+8/AA1RFRUlJubm9qwzZs3T548mRDy4cOHDx8+aPQS9vb22tra9J6kpCSZTCbkWGtra2NjY85OGxsbtd1L3759T58+rVE7AQAAAKoBFCcAAAAAoKaLiIgYNmxY5eX/9ddf58yZU3n5AUCpnTt3rlixQmB9Qk9Pz9jY+Pnz53Xq1KH3d+7cOTU1VUh9Ijw8vH///uVsKwAAAEDNg+IEAAAAANR0+fn5lZq/sLCwUvMD1EwHDx6sVauW4n5nZ2fmQXBwcHBwcElJyf3799evX3/48GHFYFNT0x9++GH48OEODg4ikUgx4O3btxKJ5NatWyNGjEhJSeE8a2VlFRAQMGjQIBcXF11dXcXDDx8+XFpaqrh//fr1ERERat8jAAAAQDWG4gQAAAAA1HQFBQXsYwMDg/79+7u6ulpYWFhYWNAXK+/evfvbb7/RB65cudLBwYHek5WV9e7du4sXL0ZGRsrlcmZnZRc/AGqmzp0716tXT22YgYGBl5eXl5dXUFDQ6tWr6ae0tLTOnTvXsWNH/gy6urre3t4BAQELFiygjw0MDPzpp5/MzMz4G6l0/5EjR9S2HAAAAKB6Q3ECAAAAAGo6tnjQuXPnvXv3cuoNLM5M9IQQHx+fL774QjFy4cKFT58+HTFixKNHj8i/ix8ArNzcXLlcbmFh8akbUlOMHTuWU5xwcXFRW5lgxcXFsY/t7OzCwsK8vb0rsn0AAAAANYzWp24AAAAAAMAnxhQnWrduferUKVWVCU25uLjcvHmzVatWBMUJUGH48OHbtm371K2oQZycnDh7mjdvLvDY2NjYQ4cOMY9dXV1v376NygQAAADAR0JxAgAAAABqOqZ4sHPnTnNz8wpMa2RktG/fPi0tLRQnQFFsbOy5c+c+dStqFj09PT09PXqPsbGxkANzcnL8/f3LysoIIT4+PlevXq1fv36lNBEAAACgJkFxAgAAAABquvz8fFdXVzc3twrP3KpVq06dOqE4AYpWrVrFrkoCVcbQ0JBnU6nS0tKvv/76+fPnhJAePXqcOHHCxMSkstoHAAAAUJOgOAEAAAAANV1eXp6np2clJe/WrVthYWElJYf/qLdv3x44cOBTt6Im4qwco7iQDIdUKh09evSFCxcIIZ07dw4PDxdSzwAAAAAAIVCcAAAAAICarqCgoGXLlpWUvE2bNrhzAmhyuXzKlClisfhTNwTUkEqlY8eOPXz4MCGka9eu586dwz0TAAAAABVI51M3AAAAAADgE7t48WLlJR84cODAgQMrLz/856xfv/7UqVOfuhWghlgsHjVqFFOZ8PLyOnXqlJGR0aduFAAAAEC1guIEAAAAAABAFTl+/HhwcPCnbgWoUVpaOmzYsPDwcEJIx44dz549i3smAAAAACocihMAAAAAAJ+MXC5PTU199+7dhw8fTExMbG1t7ezsNE0SGxublZXVpUsXxacyMzNfvnxZVlZmb28vJHNaWlpiYqKJiYmjo6OxsbFGzSgtLU1JSbG3t+fM419WVvb06dOsrCwrKysHBwdN03K8e/fu3bt379+/NzY2trGxadSokaYZnjx5kpWV5e3tTe9MT09//vy5ra2tg4ODlhbf5Ldyufzt27eZmZk5OTn6+vqWlpZNmjTR19cX8tKHDh0aPXp0WVmZpm2uVOnp6Y8fP3Z3dzczM2N3FhcXP3z40MjIyNnZWci7k8vlaWlpaWlpH/Ob/JkoKCjw8/O7fPkyIaRTp05nzpwxNTX91I0CAAAAqIZQnAAAAAAA+ATu3bu3e/fukydPpqSk0PsbNWrUv3//4ODg+vXr82coKio6ePDg9u3b79y5U6dOnczMTPapsrKyffv2bd68OSoqSi6XMztbtGgxf/784cOHK6Z6+/bt9u3bd+/enZqayuzR0tIaOHDgggUL2rRpo/a9PH/+/Pfffw8NDc3KysrIyKhbty6zPzk5efHixQcOHMjPz2f26Ovr9+rVKzAwsFu3bmrT0p48efLHH3+cOHHi1atX9P769et/9dVXc+bMcXR05M9Af1w2NjZpaWnM/nfv3k2fPv3o0aMymYwQ4unp+eeffzZp0oRzeFlZ2YkTJ0JDQ2/cuJGTk0M/paWl1a5du0GDBk2YMKF27dpKX724uPinn35avXo1++NgXL16VSQS0XvatGkjk8keP36sNI+rq6uPjw9n5759+5KTk5XGf/vtt+yPg0Mul1++fHn79u3h4eFisTgqKqpdu3bMO12xYsWqVauYn5qNjc327dv9/PyUJiGEREVFMb/JnDY4ODgwv8m2traqjv0M5eTk+Pr63rx5kxDi5eWFygQAAABAJZIDAAAAAIAAR48e5fwv/eDBg3LkSU1NHTVqFHNJunbt2h06dGjVqpWBgQGd2cjIiLmQrdSTJ0+mT59uYWHBxtepU4d9Ni4u7osvvlD1///48eOlUimdbcOGDaom09fT09u3b5+qZpSWlh48eLB79+705fWMjAzm2QMHDqiaCUckEo0bN660tFTIx5WdnT158mQdHR1CiJmZmYeHR9u2bTm3X+jq6oaEhHDeF8/HZWNjwzyVmJjYoEEDTvOaN29eUlJCZ3j8+LGrqyvzrImJyeDBg0NCQubMmdOjRw/6NotatWqdPn1asQE3btxQfBVVJkyYEBoa+t1333Xp0kVPT4/z7JQpUxTzr1ixwtfXV+lNJI8ePVKMz8zM/O2335o1a0ZHMnUssVj81VdfcZLo6+s/fPhQMU9aWtqYMWOYn36tWrU6dOjQunVrzm+yoaHhqlWr1P2Qhbp37x6dPDU1VdMMtWrVojNMnTqVfjYrK8vNzY15ysvLKy8vr6JarmjSpElsM/r27Vt5LwQAAADw2UJxAgAAAABAkAopTsTGxjLXqZs1a3bixImysjJmf25u7rJlyzgXdidMmCCTydhjS0tL9+3bx5mPiMEWJ65fv672i94rVqxggqVS6YQJE/iD9fT0FN/my5cvf/jhB2tra8V4pjixc+dOzg0Binx9fTk1AEWvX79u3rw5IaRBgwb79u1j6xlFRUUbNmyg6w2EkAEDBojFYvrjCgsL69y5s+JLM8WJ9PT0pk2bKm3bzZs32Tw3btwwNzdn9ru4uKSkpNAtvHv3br169eiP6+7du5x3cfPmzbn/37Bhw+gX6tKly9x/O3r0KHtgXFwc5wYapcUJ1o4dOzhvhFOcuH79+siRI5VO0xQVFSWTyUaNGqX0A5k/fz7ntZ48ecJM3NS0adPw8HD6N3nFihWGhob04ePHj6d/k8utUosTaWlpLVu2ZPZ36tSpUisTchQnAAAAAFCcAAAAAAAQ6OOLEw8ePLC0tCSEdO3aNScnRzEgMjKSc8F9+fLl7LP5+fmtWrUaO3bsxIkT6eUByP8vTly+fNnY2Lh27dpBQUFXr15NSkp69OjRwoULOVeKjY2N379/L5PJAgICCCEWFhbff//98ePH7969e/HixdmzZ3MuXnfv3p1upEQiadasWb9+/fr168fJTAjJyMi4efMmu+yEvr4+53IwLSgoiOfjSkxMZGYE+uKLL969e6cYEBsby7l2P23aNPbZd+/etWjRYsKECePGjePcGsIUJ3r16qWjozNw4EDF1RHYAkNaWpqVlRW7PzY2VrEZFy9epI/t3Lkzz5u6cOECHcwWilRZu3YtHc9fnJDL5ZybZjjFib59+w4fPnzq1KkODg6ctxwVFbVu3TpCSMeOHT08PDjP/vzzz3SeR48eMT9Wb29vpb/Jt27dYn7VWUuWLOFvuRCVV5x49eoVO5dXFVQm5ChOAAAAAKA4AQAAAAAg0EcWJ/Lz85mJdBo3bvzhwwdVYZwvv2tra8fExCiGHT58mA6rU6fOP//8Y2xsPH78+OzsbE7wrVu3OFWETZs2zZ49WyQSffPNN1lZWZz4GzducOoTz58/V9raO3fucJaPTkxMZG5HGDdu3P3795nvy2dlZf3222+Kt3RoaWldvXpVaWaxWNyhQwfmrSUnJ6v6uCIiIjg5z58/rxh25MgROsbGxmbPnj1aWlrHjh2Ty+WFhYVTp05l30i3bt3YGaICAwPZoxo2bKiqGS1atKDfFM+lbU2LE8yyzCy1xQnOnRlKp3WSy+Xp6emcH8fRo0dNTEwmTZrE/Mh27drFVhcsLS3fvHnDHltQUODs7EwIcXBwUPxlY/3xxx+cn3X5pkGjVVJx4smTJ+zCGJ07d87Pz//IdgqB4gQAAADAv04kAAAAAACgksyePfv58+eEkGXLlnFuj6CNHz++YcOG7KZUKl26dKliWJ8+fejNvLy8YcOGHT58eOfOnZxvrBNCPD09Z8yYQe9ZsGDBpk2b9u3bt3v3bsU7G7y8vL777jt6T2RkpNLWuru7M9MusYKDg5OTkw8fPrxr1y5XV1d2QYLZs2dHRUVx1kaWyWQhISFKMy9fvvzWrVuEkJCQEJ4VlX19fd3d3ek9ixcvVgzz8/OjiyiFhYWzZ89evnz5wIEDCSFGRkYbN268d+/ezz//vHHjxjNnzrDBdPFD6WxIjK5du9Jv6tGjR6oiNcXzq6KUjY2NkDArKysvLy96T1BQkLu7+6ZNm5gf2bhx4+Lj41evXr1w4cIHDx7QN5cEBwfHx8cTQpYtW6b4y8YaN24cfX+GTCZT+pv8yd28ebNTp07suvRDhw5VtVYKAAAAAFQsFCcAAAAAACpdSkrK7t27CSG1atXy9/fniRSJRN26daP3HDt2LC8vjxNmbGzMmdnp+PHjnIoFbciQIfSmRCK5cOHC8OHDVcVzVkW+f/++qkhO5SAiIiI8PHzw4MGKkcwyG8zS1qzIyMioqChOZEFBATPFkK6u7jfffKPqpRndu3enN69fv/7y5UtOjK6uLl2Dyc/Pt7OzCwoKomNcXV0XLlw4depUeuWPDx8+8L86g50RSKOjhGAnyKrweM6SIampqdu2baN/OlZWVrNmzfr555/t7e3ZnWlpacwtERYWFkp/yizF3+Tw8PCcnByBzasat27d6tWrF/3zmj59OueeDwAAAACoJChOAAAAAABUus2bN0skEkJI165ddXV1+YMbN25Mb5aVlV2/fl0xrHbt2uxjMzMzpQtlszgrPzs4OHTq1IknnrMmAc/Vds79BAcPHuzVq5eq4Hbt2s2cOZOzc8+ePZw9oaGhzFXs9u3b83w3n8H5uAghnKmQGPTX4UUi0fr164Vcx2/Tpg37uG3btqrCOPc3FBUVqc38yXHuDwgODla1PDhty5YtYrGYENK1a1c9PT3+YM6PRiqVXrt2TfOWViKJRML8YbJkMtnEiRMVlxYHAAAAgAqnoz4EAAAAAAA+Drvmga6uLmfVAUXZ2dmcPTExMb6+vpydaoscNBMTE2Nj48LCQmazuLiYP54z15PirRuqmsEsFMFj7ty5GzduLC0tZfcozhnFrqhhbGys9uN69+4dZ4/SWZXoewKsra07d+7Mn5axZs2aQYMGvXz5smXLlitWrFAVxlnS4z9RnODcwjJgwAAhR7E/mnL/Jvv5+QluY6Xz9vb+9ddfBw4cWFJSwu6UyWSTJk0Si8VTpkz5hG0DAAAAqPZQnAAAAAAAqFwZGRkvXrxgHh88ePDgwYOaZnj//r3iTo2KE4SQOnXqsMUJtTi3AvAcyCxRoFEz/Pz86AW9Y2Ji8vPz2fWZJRIJO9HThQsX1F4BV6T04+JcixeodevWCQkJeXl5nEm0aDExMZz1yaVSaTleq4qV4wN5//49s24KIeTw4cOcdy0wg6aHVLYvv/wyPDx8wIABdH1CLpdPmzaNEIL6BAAAAEDlQXECAAAAAKBy3bx5k33s5+eneA+EWs7Ozoo7Nb24rNHqBZxgmUym0Wvx4xQnpFJpcnIyu7B2dHQ0e+dBly5dRowYoWl+evVmVvmKEwyllYn8/Pzjx4//+eef5SiffA7K8YHcvHlTLpczj7/66qt+/fppmsHJyUnTQ6pA7969T5w4MWDAAPqOIqY+IZfLp06d+gnbBgAAAFCNoTgBAAAAAFC5Xr9+zT52dnaeOHFihaTV0vqvLiDn6urK2UPP/0N/XA0bNqyoj0vTOzx4PHz4cOPGjYcOHSooKDA1NQ0ICLCyslq8eHFF5a8a5fhA6B+Nk5NTRf1oPge9evU6e/asr68vfZOQXC6fPn06excFAAAAAFSs/+r5DAAAAADAfwWztjMjNzf3E7bkM+Hk5GRgYEDvoRfc/pw/rqioqP79+7u6uu7atatevXqbN29OSUnZunWri4vLp25aVficfzQfr0uXLmfOnOGsEy6Xy2fMmLFhw4ZP1SoAAACAagzFCQAAAACAykVf0n3z5s0nbMlnQltbm7PgNn1F+PP8uOLj4319fd3c3E6ePGlvb//XX3/FxcVNnjyZXSqjJvg8fzQVyNvbW2l9YubMmevXr/9UrQIAAACorlCcAAAAAACoXPT8OXfu3GFn7a/JzM3N6c3atWsrDXv8+LHwRbwrz44dO9q3b3/mzBlCSEBAQExMzLBhwzRaw6N6oH+T7969W7ErkXwmOnfufPbsWU7NSS6XBwYGoj4BAAAAULFQnAAAAAAAqFyWlpbs4+zs7GfPnn3CxnwmjIyM6E26OEHfVCGVSu/evVt1zVIglUpHjx49ceJEpkayZMmSrVu31qi7JWj0b3JOTk5cXNwnbEzl6dSpk9L6xMyZM3/55ZdP1SoAAACA6gfFCQAAAACAysWZwmj37t0aHZ6SklJcXFyhLfr08vLy2Me1atWysbGhN+lITT+uzMzMClwOYcaMGWFhYcxjf3//H3/8saIy/xfVnN9kLy+vc+fOmZmZcfbPmzdvxYoVn6RJAAAAANUPihMAAAAAAJWLs1ryrl27ioqKhB8+d+7cpUuXVnSjKovASavo4oS3t7eW1v9OTDgf16FDh9LT04U3YOXKlYGBgcLjedy5c2fLli3s5oIFCyokrUY+cvIoqVRaUS0hCj+a3bt3azTp1rx58xYtWlSB7alUHTt2VFqfCAkJWb58+SdpEgAAAEA1g+IEAAAAAEDl8vDw0NPTYzffv38/d+5cgccmJCQcOnSoXbt2ldO0iieRSNTG5ObmZmRksJtdu3aln3VycrKysmI3S0tLp0yZIvDV379/v2PHjor6uDZv3szWWoyNjVu3bi3wQLFYXCENYF6X3hTy8dLKysoqqiWEEHd3d319fXYzOzt7zpw5Ao999erVwYMH/0O/yYSQDh06XLp0iXO/CCFk/vz5qE8AAAAAfDwUJwAAAAAAKpeRkZGnpye9Z/PmzadOnVJ7ILMMr66ubo8ePSqtdRVMyHX56Oho9qK/vr7+kCFD6GdFIlG3bt3oPUePHt25c6eQV58/f35+fr6vr6/g9vKJiopiH9epU4deDppfSUmJwEi1a0qbmJjQm/n5+QIzMyr2zglDQ8MOHTrQe7Zu3Xry5Ekhx86aNUtbW7tnz54V2J4q0K5du7Nnz1pYWHD2z58/H/M7AQAAAHwkFCcAAAAAAARRvOJcWloq8NjJkyfTm3K5/Ouvv46IiOA/atWqVREREUOGDDE3Nxfezk8rJydHbcz58+fZx2PGjKlXrx4ngPNxEUICAgJCQ0P50/7555+///67j4+Pg4MDf6TAuafS0tLYx+/evRO+XgJPcUJXV5fezM7O5k9lampKz3n16tUrnuDCwsI7d+7Qe3gmEON8CAI/E85dLHK5fMiQIWrrE6tXrz5x4sTgwYPpJbU/Cc4HIqSW5u7ufv78ecX6REhISGBgoNryEgAAAACoguIEAAAAAIAgisssf/jwQeCx/v7+nCvmpaWlAwcO/OGHH5Re8i4tLQ0JCZk7d66ent68efOU5qSvgAspk9AvpHZ2IE5C4WWYly9f8gdIpdK9e/cyj/X19YOCghRjvL293dzcOEd9++23AQEBShe7lkqlq1evHjdunEgk+umnn5S+Lv32Ba6YTU+pVFpaevz4caVhKSkpmzdvpvfQP5q7d+/ST3HqTIrLafzxxx8vXrxgN/X09Jo1a8ZuPnz4UNVvXXZ2ds+ePW/cuEHvfP/+vdJgolBBoVcB4TFw4MDGjRvTe0pLS/39/efMmaP0N1ksFv/444/BwcF6enrz588X8hKVp7S0lPOuBa7+0r59+7Nnz3LuYiGErFu3bvTo0RU4ixcAAABAjYLiBAAAAACAIIr3BAgvTujo6Gzfvp3+CjwhpKys7Ndff3V0dJw9e/bff//99OnTly9fXr16dcmSJc7OzsykMYGBgfS1aVpBQQH7WMg1Vjpe7U0AnIT0sfyOHTvGH/D777+npKQwj1esWKHq3W3bto1e3oAQIpfLt2/f7ujoOGXKlIiIiNjY2FevXkVGRv72228tW7YMCgqSSqWjR4/u2LGj0oT0hEglJSVC6hOc9Z+Dg4PZlrNN2rdv3xdffHH9+nV6/7t375gHe/fuHTZsGP0UZwGDS5cu0ZfLw8PDAwMDra2t6RhXV1f2cWlp6bJlyxSbeu3aNXd396ysLM7L3bt3T9W748wQxbaZn7a2ttLf5FWrVjk6Os6aNevcuXPsb/LSpUudnJyWLVsml8tnzJjh5OQk5CUqj+IfrNo7V1ienp6cEhRj//79vr6+mZmZH9s4AAAAgBpIDgAAAAAAAgwePJjzv/S8efM0yiB8HWxGhw4dSktLlabKy8vT1tamg5OSknheuri4mL6grK2tXVRUxBP/7NkzOrmJiUlZWZnSSH9/fzpSS0vr1KlTqtImJiay0+P07t1bJpPxtGHdunUafVzOzs55eXlKU4nFYgMDAzr4yJEjPC/N2LhxI+cl7Ozs/vrrr5ycnJSUlLCwMA8PD0JI69atOU01NTVds2bN9OnTRSLRqlWrOGltbW3p4K5du165ciU6Ovqnn37S09NbvHgxJ17xjo0RI0Y8ePBAJpMVFhZeunRp2LBhIpGoadOmycnJs2fPpiONjIxCQ0MjIyPXrl17+/ZtOm3//v3pyHHjxqn9QFghISEa/Wg8PT1V/SZrhFNrSU1N1ejw06dPcxpWv359qVQq8HCJRMKZlYtla2t7+vRpjRozadIk9vC+fftqdCwAAABA9YDiBAAAAACAehcvXtTT0+NckbS2tk5MTBSeRCqVTps2TeD1XCcnp+TkZFWpNmzYwIlfsnmUpikAAAWASURBVGQJz0srLt67bds2nnjFVR8OHDigNJJTnCCEGBoaKr1Q++TJE3ZGoK5du+bm5vI0gLF06VKBy1Db2trGx8eryqP4cbVo0SIzM5P/1QsLCxs1asT/uhMnTiwqKoqNjVX67IQJExTTzpw5U1U2d3f3kpISTrxMJmvVqpVisI6ODvvhMJUJuVzOKU6wPDw8rly5wuZ8+vQp58YUfX39GzduqP2JMKRSKc+74GjWrBnPb7JGPqY4kZOT4+7urti8kJAQ/iIZKyYmhv+d9urV68SJExKJREg2FCcAAAAARHJh654BAAAAANQ0t2/fzs7OTk9Pv3Tp0l9//SWVShVjzMzMxo4d6+npWatWLVtbW6UXkTnWrl37448/8k/E5OXlFR4eXqdOHc7+W7duJSUlXbt2bceOHZz2iESib775plu3bpaWll26dDE1NS0uLj5//nxmZua5c+eOHj3K+c9fJBINHTrUx8enbt26PXv2NDQ0/PDhw61bt5KTkw8dOnTx4kXOS+vo6Hz77bddunRxcnJq164du3/w4MFHjx5lN0eOHLlv3z6RSNS3b98hQ4a4uLgYGBgkJSWdOnVqz549paWlIpFozJgx27Zt49zKoMrevXtnzpzJP4NWy5YtIyIi7O3tOfvPnDmTnJx8+vTpiIgIxYWLbWxsxo4d26ZNGw8PD846CqwHDx706tVL6coNderU2bRp09ChQwkhZWVlDRs2pBfQJoQEBgb+9ttvnBmQCCG5ubmenp7x8fGc/e7u7hEREXXr1lV8rYSEhM6dO6uaealjx47Hjh1jJoMKCgpavXo1+5SBgUG/fv1mzpzJzHb14MGDx48f3717NywsTHFiK11d3eHDh3fv3r1JkyZeXl5KX4u2YcOGkJCQwsJCnpgOHTqcOHFC6Zsqh6ioKHoxktTUVMXV1GmJiYkvX758//59bGzsrl27OD8gVvPmzUeNGuXk5GRubu7t7c0pQ0okksOHDz979mzbtm0ZGRlqG1m/fv3u3bu3atVq0KBBTZo0URUWEBCwfft25nHfvn0V7+oAAAAAqPZQnAAAAAAAUG7YsGEJCQnC4318fBRvUFDqzZs3CxYsOHbsmOJaDg4ODvPnz//2228VL2oTQsaMGfP06VO1+cPCwpydnZOTkwcMGCCkPeHh4Q0aNIiKigoICFAb3KlTJ3oWI05xIiMj49q1a3PnzlVcGVtbW9vb23vRokWdO3cW0ipWZmbmwoUL//rrL8UShY2NTVBQ0PTp05XOt+Pt7S1kNY5JkyZNmDBB1bOJiYnBwcEnTpwoKytj9lhaWg4ZMmTJkiX0NfcLFy4MHTqUWcOgadOmy5cvV5wHjJWTkzN37tywsDCmeQ0aNJg+ffrMmTNVzRpECImNjR0zZsyDBw/ondbW1jNmzAgKCmIPZIsTzs7OAQEBY8eOZefRIoTMmzfv/PnzvB8GIYS0aNFiz549asMIIcnJyQsWLDh69ChnBQtCiL29/fz588ePH6/0N7l8NC1O7Ny5c9u2bRq9xPnz5y0tLek9eXl53bt31ygJIygoiLMECA3FCQAAAAAUJwAAAAAAPo3i4uLLly+/ePEiLS1NT0/PxsbG09OTXv34P0GxOFG3bl2ZTPbo0aPIyMiMjIzi4mJra2tbW9sePXpYWVmV+4UkEsm1a9eePn367t07kUhkbW3drl07T0/PCrz2zePDhw+xsbGFhYW2trZOTk6Kc3wRQgoKCh4/fly7du0mTZoIaVVpaWliYqK+vr7ayaMYcrn8+vXr169fz8nJsbGxcXFx6dmzJ6eeceTIkatXrw4cOLBbt24CZ8T6eCUlJZcuXUpISEhNTdXT07O2tvb09KRvr6komhYnPmcoTgAAAAD8PwCiWMKcV7XOAAAAAElFTkSuQmCC", + "image/svg+xml": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "\"/Users/nichollsh/Projects/AGNI/out/profiles.pdf\"" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arr_P = atmos.pl .* 1.0e-5 # Convert Pa to bar\n", + "ylims = (arr_P[1], arr_P[end])\n", + "yticks = 10.0 .^ round.(Int,range( log10(ylims[1]), stop=log10(ylims[2]), step=1))\n", + "\n", + "plt = plot(framestyle=:box, size=(700,400), dpi=300, \n", + " leg=:topright, legcolumn=-1,\n", + " tickfontsize=fs, tickfontfamily=ff,\n", + " guidefontsize=fs, guidefontfamily=ff,\n", + " legendfontfamily=ff, legendfontsize=fs, \n", + " legendtitlefontfamily=ff, legendtitlefontsize=fs,\n", + " leg_title=L\"S$_{\\odot}$, $\\alpha_b$\")\n", + " \n", + "\n", + "p = Plots.palette(:viridis, length(ins_arr))\n", + "for (i,this_atm) in enumerate(atm_arr)\n", + " plot!(plt, this_atm.tmpl, this_atm.pl* 1.0e-5, lc=p[i], linewidth=lw, label=@sprintf(\"%d, %.2f\",this_atm.instellation/F_sun, this_atm.flux_u_sw[1]/this_atm.flux_d_sw[1]))\n", + "\n", + " if (i < length(ins_arr))\n", + " if (ins_arr[i] < sel_s0 < ins_arr[i+1]) || (ins_arr[i+1] < sel_s0 < ins_arr[i])\n", + " plot!(plt, sel_t, sel_p, lc=\"black\", label=\"Selsis\", linewidth=lw*2.0)\n", + " end \n", + " end \n", + "end \n", + "\n", + "xlabel!(plt, \"Temperature [K]\")\n", + "xaxis!(plt, minorgrid=true)\n", + "ylabel!(plt, \"Pressure [bar]\")\n", + "yflip!(plt)\n", + "yaxis!(plt, yscale=:log10, ylims=ylims, yticks=yticks)\n", + "display(plt)\n", + "savefig(plt,joinpath(output_dir,\"profiles.pdf\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "for (i, atm) in enumerate(atm_arr)\n", + " dump.write_ncdf(atm, joinpath(atm.OUT_DIR, \"$i.nc\"))\n", + "end" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Julia 1.9.1", + "language": "julia", + "name": "julia-1.9" + }, + "language_info": { + "file_extension": ".jl", + "mimetype": "application/julia", + "name": "julia", + "version": "1.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/res/config/55cnce_chem.toml b/res/config/55cnce_chem.toml index 392c9417..9b77ee54 100644 --- a/res/config/55cnce_chem.toml +++ b/res/config/55cnce_chem.toml @@ -6,8 +6,8 @@ title = "Roughly 55 Cancri e @ fO2=IW" instellation = 3.3231e6 albedo_b = 0.0 s0_fact = 0.6652 - zenith_angle = 60.0 - albedo_s = 0.0 + zenith_angle = 60.0 + surface_material= "res/surface_albedo/c9mb29.tab" radius = 1.1959e7 gravity = 22.304 tmp_int = 0.0 diff --git a/res/config/condense.toml b/res/config/condense.toml index a71f3bc3..6bcb9ede 100644 --- a/res/config/condense.toml +++ b/res/config/condense.toml @@ -6,7 +6,8 @@ title = "Condensation test" instellation = 2500.0 albedo_b = 0.0 s0_fact = 0.375 - zenith_angle = 48.19 + zenith_angle = 48.19 + surface_material= "blackbody" albedo_s = 0.2 radius = 6.37e6 gravity = 9.81 diff --git a/res/config/default.toml b/res/config/default.toml index 340c8945..69edf644 100644 --- a/res/config/default.toml +++ b/res/config/default.toml @@ -5,13 +5,14 @@ title = "Default" # Name for this configuration file [planet] - tmp_surf = 2000.0 # Surface temperature [kelvin] - instellation = 44000.0 # Stellar flux at planet's orbital distance [W m-2] - albedo_b = 0.18 # Pseudo bond-albedo which downscales the stellar flux by 1-this_value - s0_fact = 0.6652 # Stellar flux scale factor which accounts for planetary rotation (c.f. Cronin+13) - zenith_angle = 60.0 # Characteristic zenith angle for incoming stellar radiation [degrees] - albedo_s = 0.0 # Surface albedo - radius = 6.37e6 # Planet radius at the surface [m] + tmp_surf = 2000.0 # Surface temperature [kelvin]. + instellation = 44000.0 # Stellar flux at planet's orbital distance [W m-2]. + albedo_b = 0.18 # Pseudo bond-albedo which downscales the stellar flux by 1-this_value. + s0_fact = 0.6652 # Stellar flux scale factor which accounts for planetary rotation (c.f. Cronin+13). + zenith_angle = 60.0 # Characteristic zenith angle for incoming stellar radiation [degrees]. + surface_material= "blackbody" # Surface material (can be "blackbody" or path to spectral albedo file). + albedo_s = 0.12 # Grey surface albedo when material=blackbody. + radius = 6.37e6 # Planet radius at the surface [m]. gravity = 9.81 # Gravitational acceleration at the surface [m s-2] skin_d = 0.01 # Conductive skin thickness [m]. Used when sol_type=2. skin_k = 2.0 # Conductive skin conductivity [W m-1 K-1]. Used when sol_type=2. @@ -26,16 +27,16 @@ title = "Default" # Name for this configuration file output_dir = "out/" # Path to output directory. [composition] - p_surf = 270.0 # Total surface pressure [bar] - p_top = 1e-5 # Total top-of-atmosphere pressure [bar] - vmr_dict = { H2O = 1.0} # Volatile volume mixing ratios (=mole fractions) + p_surf = 270.0 # Total surface pressure [bar]. + p_top = 1e-5 # Total top-of-atmosphere pressure [bar]. + vmr_dict = { H2O=1.0 } # Volatile volume mixing ratios (=mole fractions). vmr_path = "" # Path to input volume mixing ratios. Not required if planet.vmr is passed. - include_all = false # Track extra gases, even when their mixing ratio is zero - chemistry = 0 # Chemistry type (see wiki) + include_all = false # Track extra gases, even when their mixing ratio is zero. + chemistry = 0 # Chemistry type (see wiki). condensates = [] # List of volatiles which are allowed to condense. [execution] - clean_output = true # Clean the output folder at model startup + clean_output = true # Clean the output folder at model startup. verbosity = 1 # Log level (0: none, 1: normal, 2: debug) max_steps = 20000 # Maximum number of solver steps. max_runtime = 400 # Maximum wall-clock solver runtime [s]. diff --git a/res/config/hotdry.toml b/res/config/hotdry.toml index 3236d2c0..38e3cc01 100644 --- a/res/config/hotdry.toml +++ b/res/config/hotdry.toml @@ -6,7 +6,8 @@ title = "Hot and dry" instellation = 44000.0 albedo_b = 0.18 s0_fact = 0.6652 - zenith_angle = 60.0 + zenith_angle = 60.0 + surface_material= "blackbody" albedo_s = 0.0 radius = 6.37e6 gravity = 9.81 diff --git a/res/config/selsis.toml b/res/config/selsis.toml deleted file mode 100644 index 117329f9..00000000 --- a/res/config/selsis.toml +++ /dev/null @@ -1,68 +0,0 @@ -# AGNI configuration file -title = "Comparison with Selsis+23" - -[planet] - tmp_surf = 2000.0 - instellation = 40000 - albedo_b = 0.0 - s0_fact = 0.375 - zenith_angle = 48.19 - albedo_s = 0.0 - radius = 6.37e6 - gravity = 9.81 - tmp_int = 0.0 - turb_coeff = 1.0e-4 - wind_speed = 10.0 - -[files] - clean_output = true - input_sf = "res/spectral_files/Frostflow/256/Frostflow.sf" - input_star = "res/stellar_spectra/sun.txt" - output_dir = "out/" - - -[composition] - p_surf = 270.0 - p_top = 1e-5 - vmr_dict = { H2O = 1.0} - vmr_path = "" - include_all = false - chemistry = 0 - condensates = ["H2O"] - -[execution] - clean_output = true - verbosity = 1 - max_steps = 200 - max_runtime = 400 - num_levels = 40 - continua = true - rayleigh = true - cloud = false - aerosol = false - overlap_method = 4 - thermo_funct = false - sensible_heat = true - latent_heat = true - convection_type = "mlt" - condensates = [] - chemistry = 0 - solution_type = 3 - solvers = ["newton"] - dx_max = 400.0 - initial_state = ["ncdf","nogit_debug/selsis_ff/40/atm.nc"] - linesearch = false - converge_atol = 1.0e-2 - converge_rtol = 1.0e-4 - - -[plots] - at_runtime = true - temperature = true - fluxes = true - contribution = true - emission = true - albedo = true - mixing_ratios = true - animate = true - diff --git a/res/spectral_files/Oak/Oak.sf b/res/spectral_files/Oak/318/Oak.sf similarity index 100% rename from res/spectral_files/Oak/Oak.sf rename to res/spectral_files/Oak/318/Oak.sf diff --git a/res/spectral_files/Oak/Oak.sf_k b/res/spectral_files/Oak/318/Oak.sf_k similarity index 100% rename from res/spectral_files/Oak/Oak.sf_k rename to res/spectral_files/Oak/318/Oak.sf_k diff --git a/res/stellar_spectra/_readme.txt b/res/stellar_spectra/_readme.txt new file mode 100644 index 00000000..d5b1ba48 --- /dev/null +++ b/res/stellar_spectra/_readme.txt @@ -0,0 +1,8 @@ +All spectra scaled to 1 AU. + +Solar spectrum from Gueymard + https://www.nrel.gov/grid/solar-resource/spectra.html + +All other spectra from MUSCLES + https://archive.stsci.edu/prepds/muscles/#dataaccess + diff --git a/res/surface_albedo/_readme.txt b/res/surface_albedo/_readme.txt new file mode 100644 index 00000000..08432e71 --- /dev/null +++ b/res/surface_albedo/_readme.txt @@ -0,0 +1,17 @@ +Surface reflectance (albedo) lookup data. These are passed to SOCRATES `rho_alb` +variable, assuming no angular dependence of the reflectivity. + +All data must be in columns of: + wavelength [nm] + reflectance [dimensionless] + +In order of ascending wavelength. + +c9mb29.tab + Lunar Meteorite, Igneous, Gabbroic + https://pds-speclib.rsl.wustl.edu/measurement.aspx?lid=urn:nasa:pds:relab:data_reflectance:c9mb29 + +c1bf01.tab + Terrestrial Sample, Igneous, Basaltic + https://pds-speclib.rsl.wustl.edu/measurement.aspx?lid=urn:nasa:pds:relab:data_reflectance:c1bf01 + diff --git a/res/surface_albedo/c1bf01.tab b/res/surface_albedo/c1bf01.tab new file mode 100644 index 00000000..c2b12c1b --- /dev/null +++ b/res/surface_albedo/c1bf01.tab @@ -0,0 +1,224 @@ +320.0 0.08862 +330.0 0.09686 +340.0 0.10489 +350.0 0.11280 +360.0 0.12213 +370.0 0.13168 +380.0 0.14229 +390.0 0.15271 +400.0 0.16095 +410.0 0.17317 +420.0 0.18406 +430.0 0.19114 +440.0 0.19876 +450.0 0.20470 +460.0 0.21025 +470.0 0.21547 +480.0 0.22070 +490.0 0.22502 +500.0 0.22957 +510.0 0.23540 +520.0 0.24067 +530.0 0.24566 +540.0 0.25007 +550.0 0.25311 +560.0 0.25573 +570.0 0.25789 +580.0 0.25921 +590.0 0.26087 +600.0 0.26293 +610.0 0.26395 +620.0 0.26551 +630.0 0.26707 +640.0 0.26945 +650.0 0.27115 +660.0 0.27269 +670.0 0.27500 +680.0 0.27689 +690.0 0.27953 +700.0 0.28055 +710.0 0.28347 +720.0 0.28638 +730.0 0.28755 +740.0 0.28972 +750.0 0.29094 +760.0 0.29217 +770.0 0.29284 +780.0 0.29466 +790.0 0.29635 +800.0 0.29595 +810.0 0.29768 +820.0 0.29924 +830.0 0.29964 +840.0 0.30114 +850.0 0.30159 +860.0 0.30074 +870.0 0.30195 +880.0 0.30200 +890.0 0.30188 +900.0 0.30141 +910.0 0.30104 +920.0 0.29996 +930.0 0.30001 +940.0 0.29804 +950.0 0.29610 +960.0 0.29556 +970.0 0.29435 +980.0 0.29222 +990.0 0.29203 +1000.0 0.29000 +1010.0 0.28878 +1020.0 0.28835 +1030.0 0.28800 +1040.0 0.28821 +1050.0 0.28789 +1060.0 0.28846 +1070.0 0.28933 +1080.0 0.29035 +1090.0 0.29236 +1100.0 0.29379 +1110.0 0.29619 +1120.0 0.29886 +1130.0 0.30084 +1140.0 0.30346 +1150.0 0.30486 +1160.0 0.30705 +1170.0 0.30836 +1180.0 0.31007 +1190.0 0.31134 +1200.0 0.31278 +1210.0 0.31368 +1220.0 0.31538 +1230.0 0.31739 +1240.0 0.31684 +1250.0 0.31974 +1260.0 0.32181 +1270.0 0.32268 +1280.0 0.32423 +1290.0 0.32560 +1300.0 0.32639 +1310.0 0.32820 +1320.0 0.32941 +1330.0 0.33170 +1340.0 0.33342 +1350.0 0.33436 +1360.0 0.33530 +1370.0 0.33748 +1380.0 0.33886 +1390.0 0.33994 +1400.0 0.33978 +1410.0 0.34071 +1420.0 0.34233 +1430.0 0.34442 +1440.0 0.34600 +1450.0 0.34800 +1460.0 0.34914 +1470.0 0.35034 +1480.0 0.35249 +1490.0 0.35366 +1500.0 0.35495 +1510.0 0.35709 +1520.0 0.35754 +1530.0 0.35890 +1540.0 0.36012 +1550.0 0.36074 +1560.0 0.36285 +1570.0 0.36348 +1580.0 0.36486 +1590.0 0.36529 +1600.0 0.36666 +1610.0 0.36697 +1620.0 0.36781 +1630.0 0.36871 +1640.0 0.36919 +1650.0 0.36963 +1660.0 0.37108 +1670.0 0.37045 +1680.0 0.37119 +1690.0 0.37255 +1700.0 0.37356 +1710.0 0.37385 +1720.0 0.37442 +1730.0 0.37470 +1740.0 0.37476 +1750.0 0.37541 +1760.0 0.37611 +1770.0 0.37571 +1780.0 0.37546 +1790.0 0.37674 +1800.0 0.37645 +1810.0 0.37703 +1820.0 0.37652 +1830.0 0.37687 +1840.0 0.37656 +1850.0 0.37711 +1860.0 0.37745 +1870.0 0.37648 +1880.0 0.37596 +1890.0 0.37333 +1900.0 0.36949 +1910.0 0.36412 +1920.0 0.36415 +1930.0 0.36611 +1940.0 0.36813 +1950.0 0.36965 +1960.0 0.37052 +1970.0 0.37140 +1980.0 0.37255 +1990.0 0.37294 +2000.0 0.37402 +2010.0 0.37317 +2020.0 0.37431 +2030.0 0.37427 +2040.0 0.37517 +2050.0 0.37464 +2060.0 0.37418 +2070.0 0.37293 +2080.0 0.37487 +2090.0 0.37457 +2100.0 0.37576 +2110.0 0.37531 +2120.0 0.37515 +2130.0 0.37438 +2140.0 0.37382 +2150.0 0.37364 +2160.0 0.37416 +2170.0 0.37314 +2180.0 0.37340 +2190.0 0.37471 +2200.0 0.37468 +2210.0 0.37474 +2220.0 0.37422 +2230.0 0.37385 +2240.0 0.37334 +2250.0 0.37352 +2260.0 0.37417 +2270.0 0.37449 +2280.0 0.37424 +2290.0 0.37375 +2300.0 0.37336 +2310.0 0.37339 +2320.0 0.37262 +2330.0 0.37242 +2340.0 0.37294 +2350.0 0.37274 +2360.0 0.37325 +2370.0 0.37303 +2380.0 0.37296 +2390.0 0.37240 +2400.0 0.37327 +2410.0 0.37319 +2420.0 0.37328 +2430.0 0.37303 +2440.0 0.37212 +2450.0 0.37228 +2460.0 0.37234 +2470.0 0.37132 +2480.0 0.37139 +2490.0 0.37116 +2500.0 0.37117 +2510.0 0.37053 +2520.0 0.37034 +2530.0 0.37067 +2540.0 0.37141 +2550.0 0.37175 diff --git a/res/surface_albedo/c9mb29.tab b/res/surface_albedo/c9mb29.tab new file mode 100644 index 00000000..5fd59ac4 --- /dev/null +++ b/res/surface_albedo/c9mb29.tab @@ -0,0 +1,461 @@ +300.0 0.02854 0.00277 +305.0 0.03094 0.00312 +310.0 0.03335 0.00146 +315.0 0.03333 0.00014 +320.0 0.03353 0.00022 +325.0 0.03496 0.00124 +330.0 0.03637 0.00309 +335.0 0.03766 0.00126 +340.0 0.03987 0.00136 +345.0 0.04255 0.00221 +350.0 0.04484 0.00096 +355.0 0.04851 0.00118 +360.0 0.05323 0.00130 +365.0 0.05843 0.00147 +370.0 0.06432 0.00120 +375.0 0.07000 0.00110 +380.0 0.07593 0.00140 +385.0 0.08180 0.00174 +390.0 0.08722 0.00047 +395.0 0.09212 0.00115 +400.0 0.09777 0.00037 +405.0 0.10196 0.00283 +410.0 0.10607 0.00148 +415.0 0.10959 0.00144 +420.0 0.11332 0.00149 +425.0 0.11614 0.00139 +430.0 0.11847 0.00146 +435.0 0.12092 0.00159 +440.0 0.12315 0.00154 +445.0 0.12575 0.00212 +450.0 0.12774 0.00207 +455.0 0.12959 0.00213 +460.0 0.13190 0.00210 +465.0 0.13399 0.00230 +470.0 0.13559 0.00218 +475.0 0.13771 0.00215 +480.0 0.13937 0.00225 +485.0 0.14117 0.00203 +490.0 0.14385 0.00226 +495.0 0.14731 0.00221 +500.0 0.14805 0.00204 +505.0 0.14588 0.00193 +510.0 0.14743 0.00183 +515.0 0.15441 0.00213 +520.0 0.15913 0.00192 +525.0 0.16225 0.00223 +530.0 0.16479 0.00201 +535.0 0.16672 0.00203 +540.0 0.16863 0.00205 +545.0 0.16965 0.00210 +550.0 0.17179 0.00226 +555.0 0.17447 0.00235 +560.0 0.17796 0.00249 +565.0 0.18122 0.00229 +570.0 0.18419 0.00232 +575.0 0.18661 0.00227 +580.0 0.18911 0.00236 +585.0 0.19117 0.00254 +590.0 0.19354 0.00256 +595.0 0.19571 0.00247 +600.0 0.19795 0.00212 +605.0 0.20025 0.00219 +610.0 0.20236 0.00244 +615.0 0.20446 0.00181 +620.0 0.20645 0.00248 +625.0 0.20873 0.00238 +630.0 0.21074 0.00250 +635.0 0.21301 0.00216 +640.0 0.21490 0.00240 +645.0 0.21752 0.00239 +650.0 0.21954 0.00251 +655.0 0.22202 0.00237 +660.0 0.22377 0.00229 +665.0 0.22623 0.00253 +670.0 0.22869 0.00221 +675.0 0.23072 0.00203 +680.0 0.23319 0.00247 +685.0 0.23543 0.00258 +690.0 0.23776 0.00258 +695.0 0.24000 0.00209 +700.0 0.24192 0.00286 +705.0 0.24413 0.00274 +710.0 0.24651 0.00246 +715.0 0.24795 0.00227 +720.0 0.24975 0.00249 +725.0 0.25037 0.00216 +730.0 0.25208 0.00232 +735.0 0.25271 0.00248 +740.0 0.25298 0.00253 +745.0 0.25297 0.00242 +750.0 0.25273 0.00209 +755.0 0.25177 0.00239 +760.0 0.25085 0.00261 +765.0 0.24946 0.00232 +770.0 0.24806 0.00182 +775.0 0.24540 0.00209 +780.0 0.24208 0.00185 +785.0 0.23791 0.00158 +790.0 0.23326 0.00111 +795.0 0.22771 0.00168 +800.0 0.22246 0.00145 +805.0 0.21551 0.00108 +810.0 0.20918 0.00145 +815.0 0.20278 0.00100 +820.0 0.19535 0.00081 +825.0 0.18865 0.00087 +830.0 0.18125 0.00160 +835.0 0.17442 0.00050 +840.0 0.16760 0.00072 +845.0 0.16128 0.00078 +850.0 0.15450 0.00135 +855.0 0.14820 0.00085 +860.0 0.14167 0.00034 +865.0 0.13623 0.00119 +870.0 0.13162 0.00035 +875.0 0.12750 0.00041 +880.0 0.12265 0.00035 +885.0 0.11791 0.00007 +890.0 0.11408 0.00029 +895.0 0.11152 0.00085 +900.0 0.10838 0.00006 +905.0 0.10559 0.00064 +910.0 0.10327 0.00043 +915.0 0.10081 0.00023 +920.0 0.09932 0.00017 +925.0 0.09722 0.00054 +930.0 0.09576 0.00033 +935.0 0.09487 0.00009 +940.0 0.09386 0.00005 +945.0 0.09315 0.00022 +950.0 0.09311 0.00014 +955.0 0.09282 0.00015 +960.0 0.09259 0.00023 +965.0 0.09264 0.00028 +970.0 0.09338 0.00030 +975.0 0.09373 0.00045 +980.0 0.09432 0.00045 +985.0 0.09574 0.00033 +990.0 0.09659 0.00004 +995.0 0.09766 0.00002 +1000.0 0.09937 0.00007 +1005.0 0.10094 0.00025 +1010.0 0.10301 0.00035 +1015.0 0.10462 0.00019 +1020.0 0.10691 0.00028 +1025.0 0.10880 0.00023 +1030.0 0.11123 0.00002 +1035.0 0.11390 0.00036 +1040.0 0.11649 0.00021 +1045.0 0.11948 0.00017 +1050.0 0.12240 0.00002 +1055.0 0.12554 0.00013 +1060.0 0.12927 0.00024 +1065.0 0.13304 0.00010 +1070.0 0.13739 0.00013 +1075.0 0.14123 0.00020 +1080.0 0.14558 0.00008 +1085.0 0.14996 0.00008 +1090.0 0.15481 0.00027 +1095.0 0.15906 0.00009 +1100.0 0.16406 0.00000 +1105.0 0.16886 0.00012 +1110.0 0.17383 0.00015 +1115.0 0.17818 0.00029 +1120.0 0.18289 0.00026 +1125.0 0.18749 0.00003 +1130.0 0.19113 0.00001 +1135.0 0.19525 0.00029 +1140.0 0.19898 0.00000 +1145.0 0.20229 0.00007 +1150.0 0.20582 0.00017 +1155.0 0.20860 0.00002 +1160.0 0.21147 0.00016 +1165.0 0.21413 0.00012 +1170.0 0.21629 0.00001 +1175.0 0.21871 0.00018 +1180.0 0.22044 0.00057 +1185.0 0.22263 0.00004 +1190.0 0.22437 0.00005 +1195.0 0.22585 0.00006 +1200.0 0.22737 0.00035 +1205.0 0.22921 0.00004 +1210.0 0.23030 0.00044 +1215.0 0.23178 0.00018 +1220.0 0.23341 0.00033 +1225.0 0.23482 0.00003 +1230.0 0.23615 0.00039 +1235.0 0.23748 0.00027 +1240.0 0.23849 0.00023 +1245.0 0.23981 0.00012 +1250.0 0.24116 0.00039 +1255.0 0.24216 0.00001 +1260.0 0.24376 0.00022 +1265.0 0.24487 0.00036 +1270.0 0.24602 0.00003 +1275.0 0.24758 0.00037 +1280.0 0.24873 0.00021 +1285.0 0.24958 0.00006 +1290.0 0.25136 0.00024 +1295.0 0.25278 0.00021 +1300.0 0.25421 0.00013 +1305.0 0.25548 0.00038 +1310.0 0.25674 0.00020 +1315.0 0.25839 0.00031 +1320.0 0.25981 0.00020 +1325.0 0.26098 0.00028 +1330.0 0.26299 0.00005 +1335.0 0.26398 0.00026 +1340.0 0.26516 0.00016 +1345.0 0.26660 0.00013 +1350.0 0.26829 0.00065 +1355.0 0.26888 0.00002 +1360.0 0.27011 0.00045 +1365.0 0.27175 0.00061 +1370.0 0.27213 0.00021 +1375.0 0.27517 0.00047 +1380.0 0.27476 0.00085 +1385.0 0.27736 0.00051 +1390.0 0.27884 0.00087 +1395.0 0.27951 0.00066 +1400.0 0.28082 0.00053 +1405.0 0.28139 0.00001 +1410.0 0.28375 0.00060 +1415.0 0.28462 0.00031 +1420.0 0.28604 0.00042 +1425.0 0.28711 0.00055 +1430.0 0.28804 0.00019 +1435.0 0.28890 0.00036 +1440.0 0.29034 0.00036 +1445.0 0.29070 0.00031 +1450.0 0.29080 0.00031 +1455.0 0.29254 0.00021 +1460.0 0.29361 0.00050 +1465.0 0.29329 0.00016 +1470.0 0.29391 0.00041 +1475.0 0.29506 0.00018 +1480.0 0.29488 0.00002 +1485.0 0.29626 0.00000 +1490.0 0.29608 0.00046 +1495.0 0.29686 0.00008 +1500.0 0.29727 0.00014 +1505.0 0.29757 0.00016 +1510.0 0.29791 0.00080 +1515.0 0.29800 0.00036 +1520.0 0.29783 0.00006 +1525.0 0.29783 0.00038 +1530.0 0.29802 0.00020 +1535.0 0.29829 0.00005 +1540.0 0.29807 0.00036 +1545.0 0.29776 0.00043 +1550.0 0.29800 0.00021 +1555.0 0.29700 0.00020 +1560.0 0.29672 0.00024 +1565.0 0.29643 0.00018 +1570.0 0.29668 0.00024 +1575.0 0.29575 0.00049 +1580.0 0.29504 0.00027 +1585.0 0.29423 0.00023 +1590.0 0.29392 0.00025 +1595.0 0.29307 0.00044 +1600.0 0.29227 0.00028 +1605.0 0.29093 0.00027 +1610.0 0.29068 0.00004 +1615.0 0.28960 0.00035 +1620.0 0.28890 0.00019 +1625.0 0.28751 0.00045 +1630.0 0.28682 0.00012 +1635.0 0.28564 0.00023 +1640.0 0.28428 0.00004 +1645.0 0.28305 0.00014 +1650.0 0.28166 0.00000 +1655.0 0.28048 0.00026 +1660.0 0.27918 0.00009 +1665.0 0.27832 0.00038 +1670.0 0.27655 0.00026 +1675.0 0.27525 0.00014 +1680.0 0.27381 0.00031 +1685.0 0.27299 0.00026 +1690.0 0.27105 0.00034 +1695.0 0.27017 0.00006 +1700.0 0.26938 0.00064 +1705.0 0.26752 0.00064 +1710.0 0.26595 0.00026 +1715.0 0.26447 0.00071 +1720.0 0.26274 0.00044 +1725.0 0.26169 0.00029 +1730.0 0.25988 0.00045 +1735.0 0.25876 0.00058 +1740.0 0.25741 0.00044 +1745.0 0.25561 0.00035 +1750.0 0.25425 0.00008 +1755.0 0.25242 0.00011 +1760.0 0.25126 0.00020 +1765.0 0.25001 0.00091 +1770.0 0.24881 0.00032 +1775.0 0.24729 0.00037 +1780.0 0.24613 0.00067 +1785.0 0.24500 0.00056 +1790.0 0.24368 0.00070 +1795.0 0.24227 0.00037 +1800.0 0.24142 0.00033 +1805.0 0.24032 0.00060 +1810.0 0.23888 0.00045 +1815.0 0.23734 0.00109 +1820.0 0.23594 0.00048 +1825.0 0.23459 0.00028 +1830.0 0.23400 0.00063 +1835.0 0.23126 0.00072 +1840.0 0.23040 0.00042 +1845.0 0.22888 0.00061 +1850.0 0.22843 0.00088 +1855.0 0.22701 0.00055 +1860.0 0.22657 0.00053 +1865.0 0.22594 0.00042 +1870.0 0.22266 0.00038 +1875.0 0.22219 0.00112 +1880.0 0.22214 0.00065 +1885.0 0.22116 0.00041 +1890.0 0.22039 0.00042 +1895.0 0.22013 0.00046 +1900.0 0.21782 0.00042 +1905.0 0.21709 0.00077 +1910.0 0.21711 0.00070 +1915.0 0.21608 0.00033 +1920.0 0.21465 0.00061 +1925.0 0.21432 0.00057 +1930.0 0.21366 0.00037 +1935.0 0.21320 0.00050 +1940.0 0.21258 0.00038 +1945.0 0.21250 0.00036 +1950.0 0.21158 0.00082 +1955.0 0.21161 0.00064 +1960.0 0.21084 0.00081 +1965.0 0.21094 0.00076 +1970.0 0.21030 0.00030 +1975.0 0.20976 0.00040 +1980.0 0.20897 0.00045 +1985.0 0.20896 0.00059 +1990.0 0.20862 0.00037 +1995.0 0.20842 0.00049 +2000.0 0.20845 0.00031 +2005.0 0.20775 0.00066 +2010.0 0.20806 0.00048 +2015.0 0.20746 0.00077 +2020.0 0.20701 0.00024 +2025.0 0.20649 0.00029 +2030.0 0.20660 0.00055 +2035.0 0.20683 0.00064 +2040.0 0.20606 0.00117 +2045.0 0.20641 0.00057 +2050.0 0.20620 0.00036 +2055.0 0.20648 0.00071 +2060.0 0.20648 0.00074 +2065.0 0.20650 0.00048 +2070.0 0.20645 0.00063 +2075.0 0.20693 0.00044 +2080.0 0.20647 0.00056 +2085.0 0.20702 0.00044 +2090.0 0.20688 0.00008 +2095.0 0.20677 0.00070 +2100.0 0.20719 0.00029 +2105.0 0.20770 0.00034 +2110.0 0.20766 0.00044 +2115.0 0.20844 0.00082 +2120.0 0.20858 0.00022 +2125.0 0.20906 0.00048 +2130.0 0.20894 0.00005 +2135.0 0.20969 0.00038 +2140.0 0.20942 0.00097 +2145.0 0.20977 0.00067 +2150.0 0.21039 0.00031 +2155.0 0.21097 0.00010 +2160.0 0.21113 0.00026 +2165.0 0.21164 0.00059 +2170.0 0.21240 0.00005 +2175.0 0.21338 0.00052 +2180.0 0.21399 0.00037 +2185.0 0.21487 0.00114 +2190.0 0.21585 0.00027 +2195.0 0.21662 0.00086 +2200.0 0.21662 0.00038 +2205.0 0.21747 0.00014 +2210.0 0.21812 0.00050 +2215.0 0.21970 0.00058 +2220.0 0.22011 0.00059 +2225.0 0.22117 0.00014 +2230.0 0.22205 0.00020 +2235.0 0.22284 0.00028 +2240.0 0.22397 0.00044 +2245.0 0.22505 0.00063 +2250.0 0.22557 0.00034 +2255.0 0.22670 0.00058 +2260.0 0.22807 0.00028 +2265.0 0.22910 0.00043 +2270.0 0.23016 0.00050 +2275.0 0.23144 0.00065 +2280.0 0.23256 0.00086 +2285.0 0.23376 0.00045 +2290.0 0.23467 0.00069 +2295.0 0.23561 0.00094 +2300.0 0.23650 0.00104 +2305.0 0.23751 0.00057 +2310.0 0.23875 0.00065 +2315.0 0.24049 0.00063 +2320.0 0.24191 0.00054 +2325.0 0.24317 0.00062 +2330.0 0.24426 0.00004 +2335.0 0.24515 0.00061 +2340.0 0.24647 0.00079 +2345.0 0.24809 0.00044 +2350.0 0.24965 0.00075 +2355.0 0.25118 0.00060 +2360.0 0.25249 0.00034 +2365.0 0.25401 0.00073 +2370.0 0.25548 0.00066 +2375.0 0.25665 0.00063 +2380.0 0.25857 0.00065 +2385.0 0.26041 0.00078 +2390.0 0.26210 0.00058 +2395.0 0.26377 0.00057 +2400.0 0.26553 0.00061 +2405.0 0.26741 0.00034 +2410.0 0.26923 0.00093 +2415.0 0.27124 0.00043 +2420.0 0.27281 0.00071 +2425.0 0.27476 0.00089 +2430.0 0.27656 0.00058 +2435.0 0.27859 0.00015 +2440.0 0.28091 0.00102 +2445.0 0.28261 0.00077 +2450.0 0.28464 0.00061 +2455.0 0.28674 0.00053 +2460.0 0.28864 0.00069 +2465.0 0.29087 0.00080 +2470.0 0.29237 0.00069 +2475.0 0.29483 0.00098 +2480.0 0.29695 0.00048 +2485.0 0.29872 0.00083 +2490.0 0.30027 0.00084 +2495.0 0.30344 0.00064 +2500.0 0.30589 0.00151 +2505.0 0.30762 0.00105 +2510.0 0.30959 0.00184 +2515.0 0.31179 0.00182 +2520.0 0.31405 0.00180 +2525.0 0.31613 0.00266 +2530.0 0.31673 0.00220 +2535.0 0.31950 0.00206 +2540.0 0.32176 0.00281 +2545.0 0.32273 0.00242 +2550.0 0.32528 0.00178 +2555.0 0.32793 0.00311 +2560.0 0.33058 0.00377 +2565.0 0.33546 0.00306 +2570.0 0.33527 0.00361 +2575.0 0.34085 0.00391 +2580.0 0.34050 0.00546 +2585.0 0.34078 0.00358 +2590.0 0.34169 0.00159 +2595.0 0.34601 0.00376 +2600.0 0.34861 0.00590 diff --git a/res/thermo/C2H4.nc b/res/thermodynamics/C2H4.nc similarity index 100% rename from res/thermo/C2H4.nc rename to res/thermodynamics/C2H4.nc diff --git a/res/thermo/CH3.nc b/res/thermodynamics/CH3.nc similarity index 100% rename from res/thermo/CH3.nc rename to res/thermodynamics/CH3.nc diff --git a/res/thermo/CH4.nc b/res/thermodynamics/CH4.nc similarity index 100% rename from res/thermo/CH4.nc rename to res/thermodynamics/CH4.nc diff --git a/res/thermo/CO.nc b/res/thermodynamics/CO.nc similarity index 100% rename from res/thermo/CO.nc rename to res/thermodynamics/CO.nc diff --git a/res/thermo/CO2.nc b/res/thermodynamics/CO2.nc similarity index 100% rename from res/thermo/CO2.nc rename to res/thermodynamics/CO2.nc diff --git a/res/thermo/FeS.nc b/res/thermodynamics/FeS.nc similarity index 100% rename from res/thermo/FeS.nc rename to res/thermodynamics/FeS.nc diff --git a/res/thermo/H2.nc b/res/thermodynamics/H2.nc similarity index 100% rename from res/thermo/H2.nc rename to res/thermodynamics/H2.nc diff --git a/res/thermo/H2O.nc b/res/thermodynamics/H2O.nc similarity index 100% rename from res/thermo/H2O.nc rename to res/thermodynamics/H2O.nc diff --git a/res/thermo/H2O2.nc b/res/thermodynamics/H2O2.nc similarity index 100% rename from res/thermo/H2O2.nc rename to res/thermodynamics/H2O2.nc diff --git a/res/thermo/H2S.nc b/res/thermodynamics/H2S.nc similarity index 100% rename from res/thermo/H2S.nc rename to res/thermodynamics/H2S.nc diff --git a/res/thermo/H2SO4.nc b/res/thermodynamics/H2SO4.nc similarity index 100% rename from res/thermo/H2SO4.nc rename to res/thermodynamics/H2SO4.nc diff --git a/res/thermo/HCN.nc b/res/thermodynamics/HCN.nc similarity index 100% rename from res/thermo/HCN.nc rename to res/thermodynamics/HCN.nc diff --git a/res/thermo/HNO3.nc b/res/thermodynamics/HNO3.nc similarity index 100% rename from res/thermo/HNO3.nc rename to res/thermodynamics/HNO3.nc diff --git a/res/thermo/N2.nc b/res/thermodynamics/N2.nc similarity index 100% rename from res/thermo/N2.nc rename to res/thermodynamics/N2.nc diff --git a/res/thermo/N2O.nc b/res/thermodynamics/N2O.nc similarity index 100% rename from res/thermo/N2O.nc rename to res/thermodynamics/N2O.nc diff --git a/res/thermo/NH3.nc b/res/thermodynamics/NH3.nc similarity index 100% rename from res/thermo/NH3.nc rename to res/thermodynamics/NH3.nc diff --git a/res/thermo/NO.nc b/res/thermodynamics/NO.nc similarity index 100% rename from res/thermo/NO.nc rename to res/thermodynamics/NO.nc diff --git a/res/thermo/O2.nc b/res/thermodynamics/O2.nc similarity index 100% rename from res/thermo/O2.nc rename to res/thermodynamics/O2.nc diff --git a/res/thermo/O3.nc b/res/thermodynamics/O3.nc similarity index 100% rename from res/thermo/O3.nc rename to res/thermodynamics/O3.nc diff --git a/res/thermo/OCS.nc b/res/thermodynamics/OCS.nc similarity index 100% rename from res/thermo/OCS.nc rename to res/thermodynamics/OCS.nc diff --git a/res/thermo/OH.nc b/res/thermodynamics/OH.nc similarity index 100% rename from res/thermo/OH.nc rename to res/thermodynamics/OH.nc diff --git a/res/thermo/S2.nc b/res/thermodynamics/S2.nc similarity index 100% rename from res/thermo/S2.nc rename to res/thermodynamics/S2.nc diff --git a/res/thermo/S8.nc b/res/thermodynamics/S8.nc similarity index 100% rename from res/thermo/S8.nc rename to res/thermodynamics/S8.nc diff --git a/res/thermo/SO.nc b/res/thermodynamics/SO.nc similarity index 100% rename from res/thermo/SO.nc rename to res/thermodynamics/SO.nc diff --git a/res/thermo/SO2.nc b/res/thermodynamics/SO2.nc similarity index 100% rename from res/thermo/SO2.nc rename to res/thermodynamics/SO2.nc diff --git a/res/thermo/SiO.nc b/res/thermodynamics/SiO.nc similarity index 100% rename from res/thermo/SiO.nc rename to res/thermodynamics/SiO.nc diff --git a/res/thermo/SiO2.nc b/res/thermodynamics/SiO2.nc similarity index 100% rename from res/thermo/SiO2.nc rename to res/thermodynamics/SiO2.nc diff --git a/res/thermo/_readme.txt b/res/thermodynamics/_readme.txt similarity index 100% rename from res/thermo/_readme.txt rename to res/thermodynamics/_readme.txt diff --git a/res/thermo/standard.txt b/res/thermodynamics/standard.txt similarity index 100% rename from res/thermo/standard.txt rename to res/thermodynamics/standard.txt diff --git a/src/AGNI.jl b/src/AGNI.jl index 5a7670a0..3dea0c12 100755 --- a/src/AGNI.jl +++ b/src/AGNI.jl @@ -205,17 +205,26 @@ module AGNI # Copy configuration file cp(cfg_path, joinpath(output_dir, "agni.cfg"), force=true) - # Read REQUIRED configuration options from dict + # Read configuration options from dict @info "Using configuration '$(cfg["title"])'" # planet stuff tmp_surf::Float64 = cfg["planet"]["tmp_surf"] instellation::Float64 = cfg["planet"]["instellation"] albedo_b::Float64 = cfg["planet"]["albedo_b"] - albedo_s::Float64 = cfg["planet"]["albedo_s"] asf_sf::Float64 = cfg["planet"]["s0_fact"] radius::Float64 = cfg["planet"]["radius"] zenith::Float64 = cfg["planet"]["zenith_angle"] gravity::Float64 = cfg["planet"]["gravity"] + + albedo_s::Float64 = 0.0 + surface_mat::String = cfg["planet"]["surface_material"] + if surface_mat == "blackbody" + if !haskey(cfg["planet"],"albedo_s") + @error "Misconfiguration: surface is blackbody , so `albedo_s` must be provided" + return false + end + albedo_s = cfg["planet"]["albedo_s"] + end # composition stuff p_top::Float64 = cfg["composition"]["p_top"] @@ -235,7 +244,7 @@ module AGNI mf_path = cfg["files"]["input_vmr"] else @error "Misconfiguration: if providing p_surf, must also provide VMRs" - exit(1) + return false end p_surf = cfg["composition"]["p_surf"] @@ -251,12 +260,12 @@ module AGNI else @error "Misconfiguration: must provide either p_dict or p_surf+VMRs" - exit(1) + return false end if chem_type in [1,2,3] if length(condensates)>0 @error "Misconfiguration: FastChem coupling is incompatible with AGNI condensation scheme" - exit(1) + return false else mkdir(dir_fastchem) end @@ -337,7 +346,9 @@ module AGNI overlap_method=overlap, skin_d=skin_d, skin_k=skin_k, tmp_magma=tmp_magma, target_olr=target_olr, - tmp_int=tmp_int, albedo_s=albedo_s, + tmp_int=tmp_int, + surface_material=surface_mat, + albedo_s=albedo_s, thermo_functions=thermo_funct, C_d=turb_coeff, U=wind_speed, use_all_gases=use_all_gases diff --git a/src/atmosphere.jl b/src/atmosphere.jl index 5c3a311f..d3cb16a8 100644 --- a/src/atmosphere.jl +++ b/src/atmosphere.jl @@ -67,11 +67,15 @@ module atmosphere spectral_file::String # Path to spectral file star_file::String # Path to star spectrum albedo_b::Float64 # Enforced bond albedo - albedo_s::Float64 # Surface albedo zenith_degrees::Float64 # Solar zenith angle [deg] toa_heating::Float64 # Derived downward shortwave radiation flux at topmost level [W m-2] instellation::Float64 # Solar flux at top of atmopshere [W m-2] s0_fact::Float64 # Scale factor to instellation (cronin+14) + + surface_material::String # Surface material file path + albedo_s::Float64 # Grey surface albedo when surface=blackbody + albedo_s_arr::Array{Float64,1} # Spectral surface albedo passed to SOCRATES + tmp_surf::Float64 # Surface brightness temperature [K] tmp_int::Float64 # Effective temperature of the planet [K] grav_surf::Float64 # Surface gravity [m s-2] @@ -246,8 +250,9 @@ module atmosphere - `mf_path::String` path to file containing VMRs at each level. Optional arguments: - - `condensates::Array{String,1}` list of condensates (names) - - `albedo_s::Float64` surface albedo. + - `condensates::Array{String,1}` list of condensates (gas names). + - `surface_material::String` surface material (default is "blackbody", but can point to file instead). + - `albedo_s::Float64` grey surface albedo used when `surface_material="blackbody"`. - `tmp_floor::Float64` temperature floor [K]. - `C_d::Float64` turbulent heat exchange coefficient [dimensionless]. - `U::Float64` surface wind speed [m s-1]. @@ -279,6 +284,7 @@ module atmosphere mf_dict::Dict{String, Float64}, mf_path::String; condensates::Array{String,1} = String[], + surface_material::String = "blackbody", albedo_s::Float64 = 0.0, tmp_floor::Float64 = 2.0, C_d::Float64 = 0.001, @@ -324,7 +330,7 @@ module atmosphere # Set the parameters (and make sure that they're reasonable) atmos.ROOT_DIR = abspath(ROOT_DIR) atmos.OUT_DIR = abspath(OUT_DIR) - atmos.THERMO_DIR = joinpath(atmos.ROOT_DIR, "res", "thermo") + atmos.THERMO_DIR = joinpath(atmos.ROOT_DIR, "res", "thermodynamics") atmos.spectral_file = abspath(spfile) atmos.all_channels = all_channels atmos.overlap_method = overlap_method @@ -344,6 +350,7 @@ module atmosphere atmos.tmp_int = tmp_int atmos.grav_surf = max(1.0e-7, gravity) atmos.zenith_degrees = max(min(zenith_degrees,89.8), 0.2) + atmos.surface_material= surface_material atmos.albedo_s = max(min(albedo_s, 1.0 ), 0.0) atmos.instellation = max(instellation, 0.0) atmos.albedo_b = max(min(albedo_b,1.0), 0.0) @@ -793,7 +800,7 @@ module atmosphere - `atmos::Atmos_t` the atmosphere struct instance to be used. - `boundary_scale::Float64=1.0e-4` scale factor for the thickness of the bottom-most cell. """ - function generate_pgrid!(atmos::atmosphere.Atmos_t; boundary_scale::Float64=1.0e-4) + function generate_pgrid!(atmos::atmosphere.Atmos_t; boundary_scale::Float64=1.0e-6) boundary_scale = max(min(boundary_scale, 1.0-1.0e-8), 1.0e-8) @@ -982,13 +989,59 @@ module atmosphere SOCRATES.allocate_aer( atmos.aer, atmos.dimen, atmos.spectrum) SOCRATES.allocate_bound(atmos.bound, atmos.dimen, atmos.spectrum) - atmos.bound.rho_alb[:, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s # Set surface albedo. + ########################################### + # Surface properties + ########################################### + atmos.albedo_s_arr = zeros(Float64, atmos.nbands) + + # set array values + if atmos.surface_material == "blackbody" + # grey albedo + fill!(atmos.albedo_s_arr, atmos.albedo_s) + + else + # spectral albedo + + # try to find a matching file + atmos.surface_material = abspath(atmos.surface_material) + if !isfile(atmos.surface_material) + error("Could not find surface albedo file '$(atmos.surface_material)'") + end + + # read data from file + _alb_data::Array = readdlm(atmos.surface_material, Float64) + _alb_w::Array{Float64, 1} = _alb_data[:,1] # wavelength [nm] + _alb_a::Array{Float64, 1} = _alb_data[:,2] # albedo [dimensionless] - # atm sizes and coordinates - atmos.atm.n_layer = npd_layer - atmos.atm.n_profile = 1 - atmos.atm.lat[1] = 0.0 - atmos.atm.lon[1] = 0.0 + # extrapolate to 0 wavelength, with constant value + pushfirst!(_alb_w, 0.0) + pushfirst!(_alb_a, _alb_a[1]) + + # extrapolate to large wavelength, with constant value + push!(_alb_w, 1e10) + push!(_alb_a, _alb_a[end]) + + # create interpolator + _alb_itp::Interpolator = Interpolator(_alb_w, _alb_a) + + # use interpolator to fill band values + for i in 1:atmos.nbands + # evaluate at band centre, converting from m to nm + atmos.albedo_s_arr[i] = _alb_itp(0.5 * (atmos.bands_min[i] + atmos.bands_max[i]) * 1.0e9) + end + + end + + # pass albedos to socrates + atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s_arr + + ########################################### + # Number of profiles, and profile coordinates + ########################################### + atmos.atm.n_layer = npd_layer + atmos.atm.n_profile = 1 + atmos.atm.lat[1] = 0.0 + atmos.atm.lon[1] = 0.0 ########################################### # Range of bands diff --git a/src/dump.jl b/src/dump.jl index 56ed9dcb..b5436af5 100644 --- a/src/dump.jl +++ b/src/dump.jl @@ -135,7 +135,6 @@ module dump var_tmax = defVar(ds, "tceiling", Float64, (), attrib = OrderedDict("units" => "K")) # Maximum temperature var_plrad = defVar(ds, "planet_radius", Float64, (), attrib = OrderedDict("units" => "m")) # Value taken for planet radius var_gsurf = defVar(ds, "surf_gravity", Float64, (), attrib = OrderedDict("units" => "m s-2")) # Surface gravity - var_albsurf = defVar(ds, "surf_albedo", Float64, ()) # Surface albedo var_fray = defVar(ds, "flag_rayleigh", Char, ()) # Includes rayleigh scattering? var_fcon = defVar(ds, "flag_continuum",Char, ()) # Includes continuum absorption? var_fcld = defVar(ds, "flag_cloud" ,Char, ()) # Includes clouds? @@ -161,7 +160,6 @@ module dump var_tmax[1] = atmos.tmp_ceiling var_plrad[1] = atmos.rp var_gsurf[1] = atmos.grav_surf - var_albsurf[1] = atmos.albedo_s if atmos.control.l_rayleigh var_fray[1] = 'y' @@ -246,6 +244,7 @@ module dump var_bus = defVar(ds, "ba_U_SW", Float64, ("nbands","nlev_l"), attrib = OrderedDict("units" => "W m-2")) var_bns = defVar(ds, "ba_N_SW", Float64, ("nbands","nlev_l"), attrib = OrderedDict("units" => "W m-2")) var_cfn = defVar(ds, "contfunc", Float64, ("nbands","nlev_c")) + var_albs = defVar(ds, "albedo_s", Float64, ("nbands",)) # Store data var_p[:] = atmos.p @@ -275,8 +274,13 @@ module dump end end + # Clouds var_cldl[:] = atmos.cloud_arr_l + # Kzz mixing + var_kzz[:] = atmos.Kzz + + # Bolometric fluxes var_fdl[:] = atmos.flux_d_lw var_ful[:] = atmos.flux_u_lw var_fnl[:] = atmos.flux_n_lw @@ -297,8 +301,7 @@ module dump var_hr[:] = atmos.heating_rate var_fdiff[:] = atmos.flux_dif - var_kzz[:] = atmos.Kzz - + # Spectral fluxes var_bmin[:] = atmos.bands_min var_bmax[:] = atmos.bands_max @@ -319,6 +322,9 @@ module dump end end + # Surface spectral albedo + var_albs[:] = atmos.albedo_s_arr + close(ds) end # suppress output @debug "ALL OUTPUT RESTORED" diff --git a/src/energy.jl b/src/energy.jl index 5282c341..ce2f3130 100644 --- a/src/energy.jl +++ b/src/energy.jl @@ -62,9 +62,14 @@ module energy if !Bool(atmos.spectrum.Basic.l_present[2]) error("The spectral file contains no solar spectral data.") end + + # Downward SW flux at TOA + atmos.toa_heating = atmos.instellation * (1.0 - atmos.albedo_b) * atmos.s0_fact * cosd(atmos.zenith_degrees) - atmos.bound.zen_0[1] = 1.0/cosd(atmos.zenith_degrees) # Convert the zenith angles to secants. - atmos.bound.solar_irrad[1] = atmos.toa_heating / cosd(atmos.zenith_degrees) + # SOCRATES requires this to be passed as two variables, since it needs to know + # the zenith angle of the direct beam. + atmos.bound.zen_0[1] = 1.0/cosd(atmos.zenith_degrees) # Convert the zenith angles to secants. + atmos.bound.solar_irrad[1] = atmos.instellation * (1.0 - atmos.albedo_b) * atmos.s0_fact end atmos.bound.rho_alb[:, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s diff --git a/test/runtests.jl b/test/runtests.jl index 77c9efea..02388ff9 100755 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -45,7 +45,7 @@ passing = true # ------------- @info " " @info "Testing heat capacity functions" -data_H2O::phys.Gas_t = phys.load_gas("res/thermo/", "H2O", true) +data_H2O::phys.Gas_t = phys.load_gas("res/thermodynamics/", "H2O", true) c_expt::Array{Float64, 1} = [4.975, 35.22, 41.27 , 51.20 , 55.74 , 59.40 ] # Expected values of cp [J mol-1 K-1] t_test::Array{Float64, 1} = [10.0, 500.0, 1000.0, 2000.0, 3000.0, 5000.0] # Tested values of temperature cp_pass = true @@ -192,7 +192,7 @@ theta = 45.0 mf_dict = Dict([ ("H2O" , 1.0), ]) -spfile_name = joinpath(ROOT_DIR,"res/spectral_files/Oak/Oak.sf") +spfile_name = joinpath(ROOT_DIR,"res/spectral_files/Oak/318/Oak.sf") # Setup atmosphere atmos = atmosphere.Atmos_t() @@ -290,7 +290,7 @@ theta = 45.0 mf_dict = Dict([ ("H2O" , 1.0) ]) -spfile_name = joinpath(ROOT_DIR,"res/spectral_files/Oak/Oak.sf") +spfile_name = joinpath(ROOT_DIR,"res/spectral_files/Oak/318/Oak.sf") # Setup atmosphere atmos = atmosphere.Atmos_t() diff --git a/tutorials/01_canonical-runaway.ipynb b/tutorials/01_canonical-runaway.ipynb index 2bcd8d70..88add1a4 100644 --- a/tutorials/01_canonical-runaway.ipynb +++ b/tutorials/01_canonical-runaway.ipynb @@ -109,7 +109,7 @@ "mole_fractions = Dict([(\"H2O\", 1.0)])\n", "run_len = 23\n", "\n", - "spectral_file = joinpath(ROOT_DIR,\"res/spectral_files/Oak/Oak.sf\")\n", + "spectral_file = joinpath(ROOT_DIR,\"res/spectral_files/Oak/318/Oak.sf\")\n", "star_file = joinpath(ROOT_DIR,\"res/stellar_spectra/sun.txt\")\n", "output_dir = joinpath(ROOT_DIR,\"out/\")" ] @@ -248,6 +248,13 @@ "### Save these data to a CSV" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": 8, From 7452efb8751ceb08cc6f5582c6633fb0456330b5 Mon Sep 17 00:00:00 2001 From: Harrison Nicholls Date: Thu, 4 Jul 2024 13:42:16 +0100 Subject: [PATCH 2/5] Surface albedo seemingly not working? Updated cfgs and plots --- res/config/55cnce_chem.toml | 2 +- res/config/condense.toml | 2 +- res/config/default.toml | 2 +- src/AGNI.jl | 1 - src/atmosphere.jl | 1 + src/plotting.jl | 7 ++++--- 6 files changed, 8 insertions(+), 7 deletions(-) diff --git a/res/config/55cnce_chem.toml b/res/config/55cnce_chem.toml index 9b77ee54..63ed4d25 100644 --- a/res/config/55cnce_chem.toml +++ b/res/config/55cnce_chem.toml @@ -15,7 +15,7 @@ title = "Roughly 55 Cancri e @ fO2=IW" wind_speed = 2.0 [files] - input_sf = "res/spectral_files/nogit/Dayspring/256/Dayspring.sf" + input_sf = "res/spectral_files/Dayspring/256/Dayspring.sf" input_star = "res/stellar_spectra/hd97658.txt" output_dir = "out/" diff --git a/res/config/condense.toml b/res/config/condense.toml index 6bcb9ede..bd1f8df0 100644 --- a/res/config/condense.toml +++ b/res/config/condense.toml @@ -20,7 +20,7 @@ title = "Condensation test" [files] clean_output = true - input_sf = "res/spectral_files/nogit/Dayspring/16/Dayspring.sf" + input_sf = "res/spectral_files/Dayspring/16/Dayspring.sf" input_star = "res/stellar_spectra/sun.txt" output_dir = "out/" diff --git a/res/config/default.toml b/res/config/default.toml index 69edf644..cdaa3934 100644 --- a/res/config/default.toml +++ b/res/config/default.toml @@ -10,7 +10,7 @@ title = "Default" # Name for this configuration file albedo_b = 0.18 # Pseudo bond-albedo which downscales the stellar flux by 1-this_value. s0_fact = 0.6652 # Stellar flux scale factor which accounts for planetary rotation (c.f. Cronin+13). zenith_angle = 60.0 # Characteristic zenith angle for incoming stellar radiation [degrees]. - surface_material= "blackbody" # Surface material (can be "blackbody" or path to spectral albedo file). + surface_material= "res/surface_albedo/c9mb29.tab" # Surface material (can be "blackbody" or path to spectral albedo file). albedo_s = 0.12 # Grey surface albedo when material=blackbody. radius = 6.37e6 # Planet radius at the surface [m]. gravity = 9.81 # Gravitational acceleration at the surface [m s-2] diff --git a/src/AGNI.jl b/src/AGNI.jl index 3dea0c12..292178c4 100755 --- a/src/AGNI.jl +++ b/src/AGNI.jl @@ -500,7 +500,6 @@ module AGNI # Save plots @info "Plotting results" - plt_alb = plt_alb && (flag_cld || flag_ray) flag_cld && plotting.plot_cloud(atmos, joinpath(atmos.OUT_DIR,"plot_cloud.png")) diff --git a/src/atmosphere.jl b/src/atmosphere.jl index d3cb16a8..832f3023 100644 --- a/src/atmosphere.jl +++ b/src/atmosphere.jl @@ -1033,6 +1033,7 @@ module atmosphere end # pass albedos to socrates + fill!(atmos.bound.rho_alb, 0.0) atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s_arr ########################################### diff --git a/src/plotting.jl b/src/plotting.jl index 359dd7a9..57150fb6 100644 --- a/src/plotting.jl +++ b/src/plotting.jl @@ -496,12 +496,13 @@ module plotting # x value - band centres [nm] x[ba] = 0.5 * (atmos.bands_min[ba] + atmos.bands_max[ba]) * 1.0e9 - # y value - spectral albedo [dimensionless] + # y value - spectral albedo [percentage] y[ba] = 100.0 * atmos.band_u_sw[1, ba]/atmos.band_d_sw[1, ba] end # Make plot - plt = plot(dpi=dpi) + ylims = (0.0, 100.0) + plt = plot(dpi=dpi, ylims=ylims) plot!(plt, x, y, label="", color="black") @@ -519,7 +520,7 @@ module plotting end """ - Combined plot + Combined plot used for tracking behaviour of the solver """ function combined(plt_pt, plt_fl, plt_mr, info::String, fname::String; dpi::Int=180, size_x::Int=800, size_y::Int=650) From 8dd34601c17ec6d28ba617331698d715f7468f4e Mon Sep 17 00:00:00 2001 From: Harrison Nicholls Date: Thu, 4 Jul 2024 20:06:56 +0100 Subject: [PATCH 3/5] Surface albedo fixed --- README.md | 8 ++-- res/config/default.toml | 4 +- src/atmosphere.jl | 101 +++++++++++++++++++++------------------- src/energy.jl | 12 ++--- 4 files changed, 66 insertions(+), 59 deletions(-) diff --git a/README.md b/README.md index ab200c25..94afd624 100644 --- a/README.md +++ b/README.md @@ -19,9 +19,11 @@ See the Getting Started page in the [documentation](https://nichollsh.github.io/ ## Repository structure * `agni.jl` - AGNI executable * `LICENSE.txt` - License for use and re-use -* `doc/` - Further documentation -* `out/` - Output files -* `res/` - Resources (configuration files, etc.) +* `deps/` - Package build scripts +* `docs/` - Documentation source files +* `misc/` - Miscellaneous files +* `out/` - Model output +* `res/` - Resources (configs, thermodynamic data, etc.) * `src/` - Package source code * `test/` - Package tests * `tutorials/` - Notebooks and tutorials diff --git a/res/config/default.toml b/res/config/default.toml index cdaa3934..90caeddd 100644 --- a/res/config/default.toml +++ b/res/config/default.toml @@ -10,7 +10,7 @@ title = "Default" # Name for this configuration file albedo_b = 0.18 # Pseudo bond-albedo which downscales the stellar flux by 1-this_value. s0_fact = 0.6652 # Stellar flux scale factor which accounts for planetary rotation (c.f. Cronin+13). zenith_angle = 60.0 # Characteristic zenith angle for incoming stellar radiation [degrees]. - surface_material= "res/surface_albedo/c9mb29.tab" # Surface material (can be "blackbody" or path to spectral albedo file). + surface_material= "blackbody" # Surface material (can be "blackbody" or path to data file). albedo_s = 0.12 # Grey surface albedo when material=blackbody. radius = 6.37e6 # Planet radius at the surface [m]. gravity = 9.81 # Gravitational acceleration at the surface [m s-2] @@ -23,7 +23,7 @@ title = "Default" # Name for this configuration file [files] input_sf = "res/spectral_files/Frostflow/256/Frostflow.sf" # Path to SOCRATES spectral file. - input_star = "res/stellar_spectra/sun.txt" # Path to stellar spectrum. + input_star = "res/stellar_spectra/trappist-1.txt" # Path to stellar spectrum. output_dir = "out/" # Path to output directory. [composition] diff --git a/src/atmosphere.jl b/src/atmosphere.jl index 832f3023..74c32c13 100644 --- a/src/atmosphere.jl +++ b/src/atmosphere.jl @@ -984,57 +984,16 @@ module atmosphere atmos.dimen.nd_subcol_gen = 1 atmos.dimen.nd_subcol_req = 1 atmos.dimen.nd_aerosol_mode = 1 + + # atmos.control.l_flux_ground = false SOCRATES.allocate_atm( atmos.atm, atmos.dimen, atmos.spectrum) + SOCRATES.allocate_cld( atmos.cld, atmos.dimen, atmos.spectrum) SOCRATES.allocate_aer( atmos.aer, atmos.dimen, atmos.spectrum) SOCRATES.allocate_bound(atmos.bound, atmos.dimen, atmos.spectrum) - ########################################### - # Surface properties - ########################################### - atmos.albedo_s_arr = zeros(Float64, atmos.nbands) - - # set array values - if atmos.surface_material == "blackbody" - # grey albedo - fill!(atmos.albedo_s_arr, atmos.albedo_s) - - else - # spectral albedo - - # try to find a matching file - atmos.surface_material = abspath(atmos.surface_material) - if !isfile(atmos.surface_material) - error("Could not find surface albedo file '$(atmos.surface_material)'") - end + # fill!(atmos.bound.flux_ground, 100.0) - # read data from file - _alb_data::Array = readdlm(atmos.surface_material, Float64) - _alb_w::Array{Float64, 1} = _alb_data[:,1] # wavelength [nm] - _alb_a::Array{Float64, 1} = _alb_data[:,2] # albedo [dimensionless] - - # extrapolate to 0 wavelength, with constant value - pushfirst!(_alb_w, 0.0) - pushfirst!(_alb_a, _alb_a[1]) - - # extrapolate to large wavelength, with constant value - push!(_alb_w, 1e10) - push!(_alb_a, _alb_a[end]) - - # create interpolator - _alb_itp::Interpolator = Interpolator(_alb_w, _alb_a) - - # use interpolator to fill band values - for i in 1:atmos.nbands - # evaluate at band centre, converting from m to nm - atmos.albedo_s_arr[i] = _alb_itp(0.5 * (atmos.bands_min[i] + atmos.bands_max[i]) * 1.0e9) - end - - end - - # pass albedos to socrates - fill!(atmos.bound.rho_alb, 0.0) - atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s_arr ########################################### # Number of profiles, and profile coordinates @@ -1060,7 +1019,7 @@ module atmosphere end SOCRATES.allocate_control(atmos.control, atmos.spectrum) - + if n_channel == 1 atmos.control.map_channel[1:atmos.spectrum.Basic.n_band] .= 1 elseif n_channel == atmos.spectrum.Basic.n_band @@ -1215,7 +1174,6 @@ module atmosphere atmos.control.i_cloud = SOCRATES.rad_pcf.ip_cloud_off # 5 (clear sky) end - SOCRATES.allocate_cld( atmos.cld, atmos.dimen, atmos.spectrum) SOCRATES.allocate_cld_prsc(atmos.cld, atmos.dimen, atmos.spectrum) if atmos.control.l_cloud @@ -1231,6 +1189,55 @@ module atmosphere atmos.control.i_angular_integration = SOCRATES.rad_pcf.ip_two_stream + ########################################### + # Surface properties + ########################################### + atmos.albedo_s_arr = zeros(Float64, atmos.nbands) + + # set array values + if atmos.surface_material == "blackbody" + # grey albedo + fill!(atmos.albedo_s_arr, atmos.albedo_s) + + else + # spectral albedo + + # try to find a matching file + atmos.surface_material = abspath(atmos.surface_material) + if !isfile(atmos.surface_material) + error("Could not find surface albedo file '$(atmos.surface_material)'") + end + + # read data from file + _alb_data::Array = readdlm(atmos.surface_material, Float64) + _alb_w::Array{Float64, 1} = _alb_data[:,1] # wavelength [nm] + _alb_a::Array{Float64, 1} = _alb_data[:,2] # albedo [dimensionless] + + # extrapolate to 0 wavelength, with constant value + pushfirst!(_alb_w, 0.0) + pushfirst!(_alb_a, _alb_a[1]) + + # extrapolate to large wavelength, with constant value + push!(_alb_w, 1e10) + push!(_alb_a, _alb_a[end]) + + # create interpolator + _alb_itp::Interpolator = Interpolator(_alb_w, _alb_a) + + # use interpolator to fill band values + for i in 1:atmos.nbands + # evaluate at band centre, converting from m to nm + atmos.albedo_s_arr[i] = _alb_itp(0.5 * (atmos.bands_min[i] + atmos.bands_max[i]) * 1.0e9) + end + + end + + # pass albedos to socrates + fill!(atmos.bound.rho_alb, 0.0) + atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= 0.0 + atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.albedo_s_arr + + ####################################### # Output arrays ####################################### diff --git a/src/energy.jl b/src/energy.jl index ce2f3130..f956482f 100644 --- a/src/energy.jl +++ b/src/energy.jl @@ -72,8 +72,6 @@ module energy atmos.bound.solar_irrad[1] = atmos.instellation * (1.0 - atmos.albedo_b) * atmos.s0_fact end - atmos.bound.rho_alb[:, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s - # Set the two-stream approximation to be used (-t f) if lw atmos.control.i_2stream = atmosphere.SOCRATES.rad_pcf.ip_elsasser @@ -122,11 +120,10 @@ module energy # IP_surface_char = 51, file suffix 'surf' ##################################### - if atmos.control.i_angular_integration == atmosphere.SOCRATES.rad_pcf.ip_two_stream - if !lw - atmos.bound.rho_alb[:, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.bound.rho_alb[:, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_diff, :] - end - end + # set albedos + fill!(atmos.bound.rho_alb, 0.0) + atmos.bound.rho_alb[1, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s_arr + atmos.bound.rho_alb[1, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.albedo_s_arr ################################################### # Cloud information @@ -183,6 +180,7 @@ module energy end end + # Do radiative transfer atmosphere.atmosphere.SOCRATES.radiance_calc(atmos.control, atmos.dimen, atmos.spectrum, atmos.atm, atmos.cld, atmos.aer, From 08af17a82c6e53ba1db9c113436f415a959159f9 Mon Sep 17 00:00:00 2001 From: Harrison Nicholls Date: Thu, 4 Jul 2024 20:24:34 +0100 Subject: [PATCH 4/5] Docs and tests --- res/config/55cnce_chem.toml | 3 +-- res/config/default.toml | 2 +- src/atmosphere.jl | 11 ++------ src/energy.jl | 9 +++---- test/runtests.jl | 51 ++++++++++++++++++++++++++++--------- 5 files changed, 47 insertions(+), 29 deletions(-) diff --git a/res/config/55cnce_chem.toml b/res/config/55cnce_chem.toml index 63ed4d25..67357692 100644 --- a/res/config/55cnce_chem.toml +++ b/res/config/55cnce_chem.toml @@ -21,8 +21,7 @@ title = "Roughly 55 Cancri e @ fO2=IW" [composition] p_top = 1e-7 - # p_dict = { H2O=0.206, CO2=14.184, N2 =16.303, H2 =0.462, CO =211.539 } - p_dict = {H2O = 0.308,CO2 = 15.516,N2 = 16.065,H2 = 0.691,CO = 231.415 } + p_dict = {H2O = 0.308,CO2 = 15.516,N2 = 16.065,H2 = 0.691,CO = 231.415 } include_all = true chemistry = 1 condensates = [] diff --git a/res/config/default.toml b/res/config/default.toml index 90caeddd..8c7d0b8f 100644 --- a/res/config/default.toml +++ b/res/config/default.toml @@ -11,7 +11,7 @@ title = "Default" # Name for this configuration file s0_fact = 0.6652 # Stellar flux scale factor which accounts for planetary rotation (c.f. Cronin+13). zenith_angle = 60.0 # Characteristic zenith angle for incoming stellar radiation [degrees]. surface_material= "blackbody" # Surface material (can be "blackbody" or path to data file). - albedo_s = 0.12 # Grey surface albedo when material=blackbody. + albedo_s = 0.3 # Grey surface albedo when material=blackbody. radius = 6.37e6 # Planet radius at the surface [m]. gravity = 9.81 # Gravitational acceleration at the surface [m s-2] skin_d = 0.01 # Conductive skin thickness [m]. Used when sol_type=2. diff --git a/src/atmosphere.jl b/src/atmosphere.jl index 74c32c13..949b3108 100644 --- a/src/atmosphere.jl +++ b/src/atmosphere.jl @@ -1125,8 +1125,8 @@ module atmosphere end - # Calc layer properties using initial temperature profile - # Can generate weird issues since the TOA temperature can be large + # Calc layer properties using initial temperature profile. + # Can generate weird issues since the TOA temperature may be large # large but pressure small, which gives it a low density. With the # hydrostatic integrator, this can cause dz to blow up, especially # with a low MMW gas. Should be okay as long as the T(p) provided @@ -1194,7 +1194,6 @@ module atmosphere ########################################### atmos.albedo_s_arr = zeros(Float64, atmos.nbands) - # set array values if atmos.surface_material == "blackbody" # grey albedo fill!(atmos.albedo_s_arr, atmos.albedo_s) @@ -1232,12 +1231,6 @@ module atmosphere end - # pass albedos to socrates - fill!(atmos.bound.rho_alb, 0.0) - atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= 0.0 - atmos.bound.rho_alb[1, SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.albedo_s_arr - - ####################################### # Output arrays ####################################### diff --git a/src/energy.jl b/src/energy.jl index f956482f..0c486f3f 100644 --- a/src/energy.jl +++ b/src/energy.jl @@ -66,8 +66,8 @@ module energy # Downward SW flux at TOA atmos.toa_heating = atmos.instellation * (1.0 - atmos.albedo_b) * atmos.s0_fact * cosd(atmos.zenith_degrees) - # SOCRATES requires this to be passed as two variables, since it needs to know - # the zenith angle of the direct beam. + # SOCRATES requires this to be passed as two variables, since it + # needs to know the angle of the direct beam. atmos.bound.zen_0[1] = 1.0/cosd(atmos.zenith_degrees) # Convert the zenith angles to secants. atmos.bound.solar_irrad[1] = atmos.instellation * (1.0 - atmos.albedo_b) * atmos.s0_fact end @@ -123,7 +123,7 @@ module energy # set albedos fill!(atmos.bound.rho_alb, 0.0) atmos.bound.rho_alb[1, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_diff, :] .= atmos.albedo_s_arr - atmos.bound.rho_alb[1, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.albedo_s_arr + atmos.bound.rho_alb[1, atmosphere.SOCRATES.rad_pcf.ip_surf_alb_dir, :] .= atmos.albedo_s_arr ################################################### # Cloud information @@ -280,6 +280,7 @@ module energy return nothing end + # Calculate conductive fluxes function conduct!(atmos::atmosphere.Atmos_t) # top layer @@ -296,8 +297,6 @@ module energy end - - """ **Calculate dry convective fluxes using mixing length theory.** diff --git a/test/runtests.jl b/test/runtests.jl index 02388ff9..462a4cc2 100755 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -62,6 +62,7 @@ else @warn "Fail" passing = false end +@info "--------------------------" @@ -72,9 +73,9 @@ end @info " " @info "Testing composition" -tmp_surf = 200.0 # Surface temperature [kelvin] -toa_heating = 1000.00 # Instellation flux [W m-2] -p_surf = 50.0 # bar +tmp_surf = 200.0 # Surface temperature [kelvin] +toa_heating = 10000.00 # Instellation flux [W m-2] +p_surf = 1.0 # bar theta = 65.0 mf_dict = Dict([ ("H2O" , 0.5), @@ -112,7 +113,7 @@ else passing = false end atmosphere.deallocate!(atmos) - +@info "--------------------------" @@ -123,7 +124,7 @@ atmosphere.deallocate!(atmos) @info " " @info "Testing instellation" -tmp_surf = 200.0 # Surface temperature [kelvin] +tmp_surf = 200.0 # Surface temperature [kelvin] toa_heating = 1000.00 # Instellation flux [W m-2] p_surf = 50.0 # bar theta = 65.0 @@ -178,6 +179,9 @@ else passing = false end atmosphere.deallocate!(atmos) +@info "--------------------------" + + # ------------- # Test greenhouse effect @@ -206,16 +210,18 @@ atmosphere.setup!(atmos, ROOT_DIR, output_dir, flag_gcontinuum=true, flag_rayleigh=false, overlap_method=4, - condensates=["H2O"] + condensates=["H2O"], + surface_material="blackbody", + albedo_s=0.5 ) atmosphere.allocate!(atmos,joinpath(ROOT_DIR,"res/stellar_spectra/sun.txt")) setpt.prevent_surfsupersat!(atmos) setpt.dry_adiabat!(atmos) setpt.saturation!(atmos, "H2O") atmosphere.calc_layer_props!(atmos) -energy.radtrans!(atmos, true) +energy.radtrans!(atmos, true) # LW only -val_e = [270.0, 290.0] +val_e = [270.0, 280.0] val_o = atmos.flux_u_lw[1] @info "Expected range = $(val_e) W m-2" @info "Modelled value = $(val_o) W m-2" @@ -225,8 +231,29 @@ else @warn "Fail" passing = false end -atmosphere.deallocate!(atmos) +@info "--------------------------" + + +# ------------- +# Test surface albedo +# ------------- +@info " " +@info "Testing surface albedo " +energy.radtrans!(atmos, false) # SW only + +val_e = [20.0, 40.0] # known from previous tests +val_o = atmos.flux_u_sw[end] # bottom level +@info "Expected range = $(val_e) W m-2" +@info "Modelled value = $(val_o) W m-2" +if ( val_o > val_e[1]) && (val_o < val_e[2]) + @info "Pass" +else + @warn "Fail" + passing = false +end +atmosphere.deallocate!(atmos) +@info "--------------------------" # ------------- @@ -273,8 +300,7 @@ else passing = false end atmosphere.deallocate!(atmos) - - +@info "--------------------------" # ------------- @@ -283,7 +309,7 @@ atmosphere.deallocate!(atmos) @info " " @info "Testing heating rates" -tmp_surf = 2500.0 # Surface temperature [kelvin] +tmp_surf = 2500.0 # Surface temperature [kelvin] toa_heating = 1000.0 # Instellation flux [W m-2] p_surf = 5.0 # bar theta = 45.0 @@ -325,6 +351,7 @@ else passing = false end atmosphere.deallocate!(atmos) +@info "--------------------------" # ------------- From 17de5acdc25dec1b906402eea3e6d75a62a0627d Mon Sep 17 00:00:00 2001 From: Harrison Nicholls Date: Thu, 4 Jul 2024 20:32:21 +0100 Subject: [PATCH 5/5] Updated docs --- docs/src/model/index.md | 5 +++-- src/atmosphere.jl | 3 +++ 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/docs/src/model/index.md b/docs/src/model/index.md index 882f3a67..d8bfb511 100644 --- a/docs/src/model/index.md +++ b/docs/src/model/index.md @@ -2,7 +2,7 @@ AGNI models a planetary atmosphere by treating it as a single column (1D) and splitting it up into levels of finite thickness. These levels are defined in pressure-space, and are arranged logarithmically between the surface and the top of the atmosphere. The atmosphere is assumed to be plane-parallel. Quantities such as pressure and temperature are calculated at level-centres and level-edges, while energy fluxes are calculated only at the edges, and thermodynamic properties (e.g. heat capacity) are calculated only at their centres. ## Radiative transfer -Radiative transfer (RT) refers to the transport of radiation energy through a medium subject to the characteristics of the medium. Radiation passing through an atmosphere is absorbed, emitted, scattered, and reflected. In the context of planetary atmospheres, we also have to handle their surfaces, cloud formation, and radiation from the host star. +Radiative transfer (RT) refers to the transport of radiation energy through a medium subject to the characteristics of the medium. Radiation passing through an atmosphere is absorbed, emitted, scattered, and reflected. In the context of planetary atmospheres, we also have to handle their surfaces, cloud formation, and radiation from the host star. AGNI simulates RT using SOCRATES, a numerical code written by the UK Met Office which solves the RT equation using a two-stream solution. SOCRATES is accessed using a Julia interface originally written by Stuart Daines. The atmosphere is assumed to be hydrostatically supported and to behave as an ideal gas. Opacity is handle using the correlated-k approximation, with either random overlap or equivalent extinction used to account for overlapping absorption in mixtures of gases. @@ -10,6 +10,7 @@ The model uses k-terms fitted to spectral absorption cross-section data from [DA ```@raw html ``` +Surface reflectivity is modelled either as a greybody or with a wavelength-depedent spectral albedo. ## Convection Convection is a turbulent process which occurs across more than one spatial dimension, so it must be parameterised within 1D models like AGNI. In fact, it is typically parameterised inside 3D global circulation models as resolving convection is numerically expensive. AGNI uses mixing length theory (MLT) to parameterise convection. This is in contrast to convective adjustment, which forcibly adjusts a convectively unstable region of the atmosphere to the corresponding adiabat while ensuring that enthalpy is conserved. @@ -29,7 +30,7 @@ heating rate. This is then integrated (from the TOA downwards) to provide a late Latent heats are temperature-dependent, using values derived from Coker (2007) and Wagner & Pruß (2001). ## Solar flux -A key input to the radiation model is the shortwave downward-directed flux from the star at the top of the atmosphere. This is quantified by the bolometric instellation flux, a scale factor, a grey planetary albedo, and a zenith angle. All of these may be provided to the model through the configuration file. The model also requires a stellar spectrum scaled to the top of the atmosphere. +A key input to the radiation model is the shortwave downward-directed flux from the star at the top of the atmosphere. This is quantified by the bolometric instellation flux, a scale factor, an artificial additional albedo factor, and a zenith angle. All of these may be provided to the model through the configuration file. The model also requires a stellar spectrum scaled to the top of the atmosphere. ## Obtaining a solution diff --git a/src/atmosphere.jl b/src/atmosphere.jl index 949b3108..5f223abd 100644 --- a/src/atmosphere.jl +++ b/src/atmosphere.jl @@ -985,6 +985,8 @@ module atmosphere atmos.dimen.nd_subcol_req = 1 atmos.dimen.nd_aerosol_mode = 1 + # Set to true to enable custom surface emission through the + # variables `planck%flux_ground(l)` and `d_planck_flux_surface`. # atmos.control.l_flux_ground = false SOCRATES.allocate_atm( atmos.atm, atmos.dimen, atmos.spectrum) @@ -992,6 +994,7 @@ module atmosphere SOCRATES.allocate_aer( atmos.aer, atmos.dimen, atmos.spectrum) SOCRATES.allocate_bound(atmos.bound, atmos.dimen, atmos.spectrum) + # This defines the surface emission, once a custom value is enabled. # fill!(atmos.bound.flux_ground, 100.0)