-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (169 loc) · 7.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from NeuralNetworkTrainer import NeuralNetworkTrainer
from UtilityFunctions import UtilityFunctions
from DataProcessor import DataProcessor
from OptunaTrainer import OptunaTrainer
import sys
import argparse
import numpy as np
import absl.logging
absl.logging.set_verbosity(absl.logging.ERROR)
def main():
# I/O SEARCH PARAMS
parser = argparse.ArgumentParser(description=("arguments"))
parser.add_argument("--input_quantity", default="flux")
parser.add_argument("--output_quantity", default="densityw")
parser.add_argument("--output_dir", default="ml_outputs")
parser.add_argument("--redshift", default="4")
parser.add_argument("--dataset_dir", default="dataset_files")
parser.add_argument("--dataset_file_filter", default="model_train")
parser.add_argument("--prediction_file_filter", default="model_test")
parser.add_argument("--train_fraction", default="0.8")
parser.add_argument("--seed_int", default="12345")
# GRID SEARCH PARAMS
parser.add_argument("--grid_search", action='store_true', default=False)
parser.add_argument("--load_study", action='store_true', default=False)
parser.add_argument("--study_file", default="hyperparams_search")
parser.add_argument("--trails", default="100")
parser.add_argument("--search_epochs", default="100")
parser.add_argument("--search_patience_epochs", default="10")
# TRAIN SEARCH PARAMS
# default hyper params if the no grid search is enabled
# otherwise these params are set by Optuna grid search
parser.add_argument("--epochs", default="150")
parser.add_argument("--patience_epochs", default="1000")
parser.add_argument('--load_best_model', action='store_true',
default=False)
# TRAIN SEARCH PARAMS -- NETWORK ARCHITECTURE
# ResNET, ConvNet, MLPNet
# If grid search is enabled these numbers are replaced by the
# results from Optuna search
parser.add_argument("--network", default="ResNet")
parser.add_argument("--trim", default="16")
parser.add_argument("--lr", default="0.008344311976051623")
parser.add_argument("--l2_factor", default="0.0008702202857950019")
parser.add_argument("--batch_size", default="1024")
parser.add_argument("--noweights", default=True)
parser.add_argument("--only_predict", default=False)
parser.add_argument('--layers_per_block', action='store',
default=[2], type=int, nargs='*'
)
parser.add_argument('--features_per_block', action='store',
default=[32], type=int, nargs='*'
)
# DATA PROCESSING PARAMS
# standard processing params related to data processing
parser.add_argument("--bins", default=None)
parser.add_argument("--mean_flux", default=None)
# Noise value to be added serves as one sigma level of
# Gaussian noise with zero mean
# Must be positive. 0 means no noise
parser.add_argument("--noise", default="0.02")
parser.add_argument("--fwhm", default="6")
parser.add_argument("--quasar", default=None)
parser.add_argument("--hubble", default="0.676")
parser.add_argument("--omegam", default="0.305147")
parser.add_argument("--skewer_length", default="20")
args = parser.parse_args()
input_quantity = args.input_quantity
output_quantity = args.output_quantity
patience_epochs = np.int32(args.patience_epochs)
skewer_length = np.float32(args.skewer_length)
train_fraction = np.float32(args.train_fraction)
noise = np.float32(args.noise)
hubble = np.float32(args.hubble)
omegam = np.float32(args.omegam)
redshift = np.float32(args.redshift)
fwhm = np.float32(args.fwhm)
redshift = np.float32(args.redshift)
seed_int = int(args.seed_int)
epochs = np.int32(args.epochs)
search_epochs = np.int32(args.search_epochs)
search_patience_epochs = np.int32(args.search_patience_epochs)
study_file = args.study_file
trails = np.int32(args.trails)
network = args.network
trim = np.int32(args.trim)
batch_size = np.int32(args.batch_size)
lr = float(args.lr)
l2_factor = float(args.l2_factor)
layers_per_block = np.int32(args.layers_per_block)
features_per_block = np.int32(args.features_per_block)
utilities = UtilityFunctions()
if args.bins is None:
bins = utilities.fwhm_to_bins(
fwhm, skewer_length, redshift, hubble, omegam)
else:
bins = np.int32(args.bins)
if args.mean_flux == None:
mean_flux = utilities.mean_flux_z(redshift)
else:
mean_flux = np.float32(args.mean_flux)
dataset_dir = args.dataset_dir+"/"
output_dir = args.output_dir+"/"
print('epochs, <F>, patience_epochs, dataset_dir = ',
epochs, mean_flux, patience_epochs, dataset_dir
)
##################################################################################
if args.only_predict==True:
print()
print('MAKING DATASET..')
# collect, normalize and shape data for training and validation
dp = DataProcessor(dataset_dir, args.dataset_file_filter, args.quasar,
output_dir, input_quantity, output_quantity, args.noweights,
redshift, skewer_length, hubble, omegam, fwhm, bins, mean_flux,
noise, seed_int)
dp.make_dataset(True)
# if grid search is true replace the hyperparams using grid search
if args.grid_search:
print()
print('GRID SEARCH..')
opt = OptunaTrainer(dp.get_output_dir(), redshift, dp.get_files_list(),
study_file, args.load_study,
input_quantity, output_quantity,
seed_int, trails,
search_epochs, search_patience_epochs,
train_fraction, dp.get_dataset(),
dp.get_post_file_name(), noise)
network, lr, batch_size, layers_per_block, \
features_per_block, l2_factor = opt.run_trails()
del opt
print()
print('ML TRAINING..')
nnt = NeuralNetworkTrainer(dp.get_output_dir(), redshift, network,
seed_int, args.load_best_model,
input_quantity, output_quantity)
nnt.set_dataset(dp.get_dataset(), dp.get_files_list(),
dp.get_post_file_name(), noise,
None, None, train_fraction)
nnt.set_ml_model(trim, layers_per_block, features_per_block, l2_factor)
nnt.train(True, epochs, patience_epochs, batch_size, lr)
del dp
del nnt
###########################################################################
print()
print('PREDICTIONS..')
# collect, normalize and shape data for predictions
dp = DataProcessor(dataset_dir, args.prediction_file_filter, args.quasar,
output_dir, input_quantity, output_quantity, args.noweights,
redshift, skewer_length, hubble, omegam, fwhm, bins, mean_flux,
noise, seed_int)
# With no normalizing or shuffling
dp.make_dataset(False)
nnt = NeuralNetworkTrainer(
dp.get_output_dir(), redshift, network, seed_int, True,
input_quantity, output_quantity
)
nnt.set_dataset(dp.get_dataset(), dp.get_files_list(),
dp.get_post_file_name(), noise,
None, None, train_fraction)
nnt.set_ml_model(trim, layers_per_block, features_per_block, l2_factor)
if args.quasar != None:
nnt.predict_obs_los(dataset_dir, args.quasar)
nnt.predict(dp)
############################################################################
if __name__ == "__main__":
# Check the number of arguments passed
if len(sys.argv) > 33:
print("Too many arguments..")
else:
main()