-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
224 lines (167 loc) · 9.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pickle
import argparse
import os
import models
import helper_layers
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from helper import EarlyStopping
from helper import CustomMNIST
from tensorboardX import SummaryWriter # allows tracking and visualizing metrics such as loss and accuracy
def train(args, model, device, train_loader, val_loader, optimizer, epoch, writer):
train_losses = [] # contains training losses over training batches
model.train() # model in the training mode
correct_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# necessary for general dataset: broadcast input
data, _ = torch.broadcast_tensors(data, torch.zeros((helper_layers.steps,) + data.shape)) # adds time dimension to the first axis
data = data.permute(1, 2, 3, 4, 0) # moves time dimension to the last axis
output = model(data)
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct_train += pred.eq(target.view_as(pred)).sum().item()
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_losses.append(loss.item())
if batch_idx % args.log_interval == 0:
print('Training Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data / helper_layers.steps), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
writer.add_scalar('Training Loss / Batch Index', loss, batch_idx + len(train_loader) * epoch)
train_loss = sum(train_losses) / len(train_losses)
train_acc = 100. * correct_train / len(train_loader.dataset)
writer.add_scalar('Training Loss / Epoch', train_loss, epoch)
writer.add_scalar('Training Accuracy / Epoch', train_acc, epoch)
val_loss = 0.
correct_val = 0
model.eval() # model turns on the evaluation mode
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
data, _ = torch.broadcast_tensors(data, torch.zeros((helper_layers.steps,) + data.shape)) # adds time dimension to the first axis
data = data.permute(1,2,3,4,0) # moves time dimension to the last axis
output = model(data)
loss = F.cross_entropy(output, target, reduction='sum')
val_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct_val += pred.eq(target.view_as(pred)).sum().item()
# val_losses.append(loss.item())
val_loss = val_loss / len(val_loader.dataset)
val_acc = 100. * correct_val / len(val_loader.dataset)
writer.add_scalar('Validation Loss / Epoch', val_loss, epoch)
writer.add_scalar('Validation Accuracy / Epoch', val_acc, epoch)
for i, (name, param) in enumerate(model.named_parameters()):
if '_s' in name:
writer.add_histogram(name, param, epoch)
return model, train_loss, val_loss, train_acc, val_acc
def test(model, device, test_loader):
model.eval()
test_loss = 0.
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data, _ = torch.broadcast_tensors(data, torch.zeros((helper_layers.steps,) + data.shape)) # adds time dimension to the first axis
data = data.permute(1, 2, 3, 4, 0) # moves time dimension to the last axis
output = model(data)
loss = F.cross_entropy(output, target, reduction='sum') # sum up batch loss, target passed through softmax function
test_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
return test_loss, correct
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
if (epoch % 10 == 0) and epoch > 1:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * 0.1
return optimizer
def main():
# Arguments settings
parser = argparse.ArgumentParser(description='Direct training for Deep Spiking Neural Networks')
parser.add_argument('--train_batch_size', type=int, default=32, metavar='N',
help='Input batch size for training (default: 32)')
parser.add_argument('--val_batch_size', type=int, default=32, metavar='N',
help='Input batch size for validation (default: 32)')
parser.add_argument('--test_batch_size', type=int, default=200, metavar='N',
help='Input batch size for testing (default: 200)')
parser.add_argument('--epochs', type=int, default=800, metavar='N',
help='The number of epochs to train (default: 800)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='Learning rate (default: 1e-3)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='Disables CUDA training')
parser.add_argument('--no_mps', action='store_true', default=False,
help='Disables MPS training (Macbook M1 GPU)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='The number of batches to wait before logging training status')
args = parser.parse_args()
torch.manual_seed(args.seed) # helps reproduce random results
# Training settings
# Pick the best device to run
if not args.no_cuda and torch.cuda.is_available():
device = 'cuda'
print('Current device is {}'.format(device))
elif not args.no_mps and torch.backends.mps.is_available():
device = 'mps'
print('Current device is {}'.format(device))
else:
device = 'cpu'
print('Current device is {}'.format(device))
# kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
writer = SummaryWriter() # Writer will output to ./runs/ directory by default.
mnist_train_path = './datasets/MNIST/raw/mnist_train.csv'
train_loader = torch.utils.data.DataLoader(
CustomMNIST(csv_file=mnist_train_path,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(28, padding=4),
transforms.Normalize(0.1307, 0.3082)
])), batch_size=args.train_batch_size, shuffle=True)
mnist_val_path = './datasets/MNIST/raw/mnist_val.csv'
val_loader = torch.utils.data.DataLoader(
CustomMNIST(csv_file=mnist_val_path,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(28, padding=4),
transforms.Normalize(0.1301, 0.3074)
])), batch_size=args.val_batch_size, shuffle=True)
mnist_test_path = './datasets/MNIST/raw/mnist_test.csv'
test_loader = torch.utils.data.DataLoader(
CustomMNIST(csv_file=mnist_test_path,
transform=transforms.Compose([
transforms.Normalize(0.1325, 0.3105)
])), batch_size=args.test_batch_size, shuffle=True)
model = models.DSRN().to(device) # Deep Spiking Neural Network 19 layers model
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# checkpoint_path = './models/checkpoint.pt'
# if os.path.exists(checkpoint_path):
# checkpoint = torch.load(checkpoint_path)
# model.load_state_dict(checkpoint)
# print('Model loaded.')
early_stopper = EarlyStopping(verbose=True) # patience=7 by default
for epoch in range(args.epochs):
optimizer = adjust_learning_rate(optimizer, epoch)
print('Epoch {}: Current learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr']))
model, train_loss, val_loss, train_acc, val_acc = train(args, model, device, train_loader, val_loader, optimizer, epoch, writer)
print('Average Training Loss: {}\t Average Validation Loss: {}'.format(train_loss, val_loss))
print('Average Training Accuracy: {}\t Average Validation Accuracy: {}'.format(train_acc, val_acc))
early_stopper(val_loss, model)
if early_stopper.early_stop:
break
test_loss, correct = test(model, device, test_loader)
print('\nTest Set: Average Loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
writer.flush()
writer.close()
if __name__ == '__main__':
main()