-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
401 lines (335 loc) · 14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import sys
import random
import time
import importlib
import numpy as np
from pathlib import Path
from tqdm import tqdm
import csv
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import loadWAV, score_normalization
class SpeakerNet(nn.Module):
def __init__(self, model, optimizer, scheduler, trainfunc, device, **kwargs):
super(SpeakerNet, self).__init__()
self.device = torch.device(device)
SpeakerNetModel = importlib.import_module(
'models.' + model).__getattribute__('MainModel')
self.__S__ = SpeakerNetModel(**kwargs).to(self.device)
LossFunction = importlib.import_module(
'loss.' + trainfunc).__getattribute__('LossFunction')
self.__L__ = LossFunction(**kwargs).to(self.device)
Optimizer = importlib.import_module(
'optimizer.' + optimizer).__getattribute__('Optimizer')
self.__optimizer__ = Optimizer(self.parameters(), **kwargs)
Scheduler = importlib.import_module(
'scheduler.' + scheduler).__getattribute__('Scheduler')
self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, **kwargs)
assert self.lr_step in ['epoch', 'iteration']
def train_network(self, loader):
self.train()
stepsize = loader.batch_size
counter = 0
index = 0
loss = 0
top1 = 0 # EER or accuracy
tstart = time.time()
for data, data_label in loader:
data = data.transpose(0, 1)
self.zero_grad()
feat = []
for inp in data:
outp = self.__S__.forward(inp.to(self.device))
feat.append(outp)
feat = torch.stack(feat, dim=1).squeeze()
label = torch.LongTensor(data_label).to(self.device)
nloss, prec1 = self.__L__.forward(feat, label)
loss += nloss.detach().cpu()
top1 += prec1
counter += 1
index += stepsize
nloss.backward()
self.__optimizer__.step()
telapsed = time.time() - tstart
tstart = time.time()
sys.stdout.write("\rProcessing (%d) " % (index))
sys.stdout.write(
"Loss %f TEER/TAcc %2.3f%% - %.2f Hz " %
(loss / counter, top1 / counter, stepsize / telapsed))
sys.stdout.flush()
if self.lr_step == 'iteration':
self.__scheduler__.step()
if self.lr_step == 'epoch':
self.__scheduler__.step()
sys.stdout.write("\n")
return (loss / counter, top1 / counter)
def evaluateFromList(self,
listfilename,
cohorts_path='dataset/cohorts.npy',
print_interval=100,
num_eval=10,
eval_frames=None):
self.eval()
lines = []
files = []
feats = {}
tstart = time.time()
# Cohorts
if cohorts_path is not None:
cohorts = np.load(cohorts_path)
# Read all lines
with open(listfilename) as listfile:
while True:
line = listfile.readline()
if (not line):
break
data = line.split()
# Append random label if missing
if len(data) == 2:
data = [random.randint(0, 1)] + data
files.append(data[1])
files.append(data[2])
lines.append(line)
setfiles = list(set(files))
setfiles.sort()
# Save all features to file
for idx, file in enumerate(setfiles):
inp1 = torch.FloatTensor(
loadWAV(file, eval_frames, evalmode=True,
num_eval=num_eval)).to(self.device)
with torch.no_grad():
ref_feat = self.__S__.forward(inp1).detach().cpu()
feats[file] = ref_feat
telapsed = time.time() - tstart
if idx % print_interval == 0:
sys.stdout.write(
"\rReading %d of %d: %.2f Hz, %.4f s, embedding size %d" %
(idx, len(setfiles), idx / telapsed, telapsed / (idx + 1), ref_feat.size()[1]))
print('')
all_scores = []
all_labels = []
all_trials = []
tstart = time.time()
# Read files and compute all scores
for idx, line in enumerate(lines):
data = line.split()
# Append random label if missing
if len(data) == 2:
data = [random.randint(0, 1)] + data
ref_feat = feats[data[1]].to(self.device)
com_feat = feats[data[2]].to(self.device)
if self.__L__.test_normalize:
ref_feat = F.normalize(ref_feat, p=2, dim=1)
com_feat = F.normalize(com_feat, p=2, dim=1)
# NOTE: distance for training, normalized score for evaluating and testing
if cohorts_path is None:
dist = F.pairwise_distance(
ref_feat.unsqueeze(-1),
com_feat.unsqueeze(-1).transpose(
0, 2)).detach().cpu().numpy()
score = -1 * np.mean(dist)
else:
score = score_normalization(ref_feat,
com_feat,
cohorts,
top=200)
all_scores.append(score)
all_labels.append(int(data[0]))
all_trials.append(data[1] + " " + data[2])
if idx % print_interval == 0:
telapsed = time.time() - tstart
sys.stdout.write("\rComputing %d of %d: %.2f Hz - %.4f s" %
(idx, len(lines), (idx + 1) / telapsed, telapsed / (idx + 1)))
sys.stdout.flush()
print('\n')
return (all_scores, all_labels, all_trials)
def testFromList(self,
root,
thre_score=0.5,
cohorts_path='data/zalo/cohorts.npy',
print_interval=100,
num_eval=10,
eval_frames=None):
self.eval()
lines = []
files = []
feats = {}
tstart = time.time()
# Cohorts
cohorts = np.load(cohorts_path)
# Read all lines
data_root = Path(root, 'public-test')
read_file = Path(root, 'public-test.csv')
write_file = Path(root, 'submission.csv')
with open(read_file, newline='') as rf:
spamreader = csv.reader(rf, delimiter=',')
next(spamreader, None)
for row in tqdm(spamreader):
files.append(row[0])
files.append(row[1])
lines.append(row)
setfiles = list(set(files))
setfiles.sort()
# Save all features to file
for idx, file in enumerate(setfiles):
inp1 = torch.FloatTensor(
loadWAV(Path(data_root, file),
eval_frames,
evalmode=True,
num_eval=num_eval)).to(self.device)
with torch.no_grad():
ref_feat = self.__S__.forward(inp1).detach().cpu()
feats[file] = ref_feat
telapsed = time.time() - tstart
if idx % print_interval == 0:
sys.stdout.write(
"\rReading %d of %d: %.2f Hz, %.4f s, embedding size %d" %
(idx, len(setfiles), (idx + 1) / telapsed, telapsed / (idx + 1), ref_feat.size()[1]))
print('')
tstart = time.time()
# Read files and compute all scores
with open(write_file, 'w', newline='') as wf:
spamwriter = csv.writer(wf, delimiter=',')
spamwriter.writerow(['audio_1', 'audio_2', 'label'])
for idx, data in enumerate(lines):
ref_feat = feats[data[0]].to(self.device)
com_feat = feats[data[1]].to(self.device)
if self.__L__.test_normalize:
ref_feat = F.normalize(ref_feat, p=2, dim=1)
com_feat = F.normalize(com_feat, p=2, dim=1)
score = score_normalization(ref_feat,
com_feat,
cohorts,
top=200)
pred = '0'
if score >= thre_score:
pred = '1'
spamwriter.writerow([data[0], data[1], pred])
if idx % print_interval == 0:
telapsed = time.time() - tstart
sys.stdout.write("\rComputing %d of %d: %.2f Hz, %.4f s" %
(idx, len(lines), (idx + 1) / telapsed, telapsed / (idx + 1)))
sys.stdout.flush()
print('\n')
def prepare(self,
from_path='../data/test',
save_path='checkpoints',
prepare_type='cohorts',
num_eval=10,
eval_frames=0,
print_interval=1):
"""
Prepared 1 of the 2:
1. Mean L2-normalized embeddings for known speakers.
2. Cohorts for score normalization.
"""
tstart = time.time()
self.eval()
if prepare_type == 'cohorts':
# Prepare cohorts for score normalization.
feats = []
read_file = Path(from_path)
files = []
used_speakers = []
with open(read_file) as listfile:
while True:
line = listfile.readline()
if (not line):
break
data = line.split()
data_1_class = Path(data[1]).parent.stem
data_2_class = Path(data[2]).parent.stem
if data_1_class not in used_speakers:
used_speakers.append(data_1_class)
files.append(data[1])
if data_2_class not in used_speakers:
used_speakers.append(data_2_class)
files.append(data[2])
setfiles = list(set(files))
setfiles.sort()
# Save all features to file
for idx, f in enumerate(tqdm(setfiles)):
inp1 = torch.FloatTensor(
loadWAV(f, eval_frames, evalmode=True,
num_eval=num_eval)).to(self.device)
feat = self.__S__.forward(inp1)
if self.__L__.test_normalize:
feat = F.normalize(feat, p=2,
dim=1).detach().cpu().numpy().squeeze()
else:
feat = feat.detach().cpu().numpy().squeeze()
feats.append(feat)
np.save(save_path, np.array(feats))
elif prepare_type == 'embed':
# Prepare mean L2-normalized embeddings for known speakers.
speaker_dirs = [x for x in Path(from_path).iterdir() if x.is_dir()]
embeds = None
classes = {}
# Save mean features
for idx, speaker_dir in enumerate(speaker_dirs):
classes[idx] = speaker_dir.stem
files = list(speaker_dir.glob('*.wav'))
mean_embed = None
for f in files:
embed = self.embed_utterance(
f,
eval_frames=eval_frames,
num_eval=num_eval,
normalize=self.__L__.test_normalize)
if mean_embed is None:
mean_embed = embed.unsqueeze(0)
else:
mean_embed = torch.cat(
(mean_embed, embed.unsqueeze(0)), 0)
mean_embed = torch.mean(mean_embed, dim=0)
if embeds is None:
embeds = mean_embed.unsqueeze(-1)
else:
embeds = torch.cat((embeds, mean_embed.unsqueeze(-1)), -1)
telapsed = time.time() - tstart
if idx % print_interval == 0:
sys.stdout.write(
"\rReading %d of %d: %.4f s, embedding size %d" %
(idx, len(speaker_dirs), telapsed / (idx + 1), embed.size()[1]))
print('')
print(embeds.shape)
# embeds = rearrange(embeds, 'n_class n_sam feat -> n_sam feat n_class')
torch.save(embeds, Path(save_path, 'embeds.pt'))
np.save(Path(save_path, 'classes.npy'), classes)
else:
raise NotImplementedError
def embed_utterance(self,
fpath,
eval_frames=0,
num_eval=10,
normalize=True):
"""
Get embedding from utterance
"""
inp = torch.FloatTensor(
loadWAV(fpath, eval_frames, evalmode=True,
num_eval=num_eval)).to(self.device)
with torch.no_grad():
embed = self.__S__.forward(inp)
if normalize:
embed = F.normalize(embed, p=2, dim=1)
return embed
def saveParameters(self, path):
torch.save(self.state_dict(), path)
def loadParameters(self, path):
self_state = self.state_dict()
loaded_state = torch.load(path)
for name, param in loaded_state.items():
origname = name
if name not in self_state:
name = name.replace("module.", "")
if name not in self_state:
print("%s is not in the model." % origname)
continue
if self_state[name].size() != loaded_state[origname].size():
print("Wrong parameter length: %s, model: %s, loaded: %s" %
(origname, self_state[name].size(),
loaded_state[origname].size()))
continue
self_state[name].copy_(param)