forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfloat8_linear_utils.py
327 lines (274 loc) · 12.7 KB
/
float8_linear_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Callable, List, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from torchao.float8.config import Float8LinearConfig, ScalingType
from torchao.float8.float8_linear import Float8Linear
from torchao.float8.float8_utils import (
amax_history_to_scale_stack,
e4m3_dtype,
e5m2_dtype,
)
from torch.distributed._functional_collectives import all_reduce, AsyncCollectiveTensor
log = logging.getLogger(__name__)
log.addHandler(logging.NullHandler())
def linear_requires_sync(config: Float8LinearConfig):
"""Returns whether the given linear_type requires sync before forward."""
return any(
[
config.cast_config_input.scaling_type is ScalingType.DELAYED,
config.cast_config_weight.scaling_type is ScalingType.DELAYED,
config.cast_config_grad_output.scaling_type is ScalingType.DELAYED,
]
)
def _update_history_stack(
new_amax: torch.Tensor, amax_history_stack: torch.Tensor
) -> torch.Tensor:
"""
Updates `amax_history` (the last N cur_amax values) inplace with the value
of `new_amax`.
Args:
new_amax (torch.Tensor): The new amax value to add to the history. (n_amaxes, 1)
amax_history_stack (torch.Tensor): The history of amax values. (n_amaxes, history_length)
"""
assert (
amax_history_stack.dim() == 2
), f"Expected amat_history_stack to be 2D, got {amax_history_stack.shape()}"
assert new_amax.size(0) == amax_history_stack.size(
0
), f"Expected new_amax to have the same size as the first dimension of amax_history_stack, got {new_amax.size(0)} and {amax_history_stack.size(0)}"
new_amax_history_stack = torch.roll(amax_history_stack, 1, dims=1)
new_amax_history_stack[:, 0] = new_amax.squeeze(-1)
amax_history_stack.copy_(new_amax_history_stack)
def swap_linear_layers(
module: nn.Module,
from_float_func: Callable[[nn.Linear], nn.Linear],
*,
module_filter_fn: Optional[Callable[[nn.Module, str], bool]] = None,
) -> nn.Module:
"""
Generic function to swap linear layers in a module with a new type of linear layer.
Note:
If applied to a root-level nn.Linear, the module will not be modified in place
and returned instead
Args:
module: Module to modify.
from_float_func: Function that accepts a linear layer and returns a new type of linear layer.
module_filter_fn: If specified, only the `torch.nn.Linear` subclasses that
that pass the filter function will be swapped. The inputs to the
filter function are the module instance, and the FQN.
Returns:
nn.Module: The modified module with swapped linear layers.
"""
if isinstance(module, nn.Linear) and (
module_filter_fn is None or module_filter_fn(module, "")
):
if len(list(module.children())) > 0:
raise AssertionError(
f"Does not support a root nn.Linear with children: {module}"
)
return from_float_func(
module,
)
root_module = module
def post_order_traversal(
module: nn.Module,
cur_fqn: Optional[str] = None,
parent_module: Optional[nn.Module] = None,
):
if cur_fqn is None:
cur_fqn = ""
for child_module_name, child_module in module.named_children():
if cur_fqn == "":
new_fqn = child_module_name
else:
new_fqn = f"{cur_fqn}.{child_module_name}"
post_order_traversal(child_module, new_fqn, module)
if isinstance(module, nn.Linear) and (
module_filter_fn is None or module_filter_fn(module, cur_fqn)
):
assert (
parent_module is not None
), f"Linear root module should return early: {module}"
new_linear_module = from_float_func(module)
cur_module_name = cur_fqn.split(".")[-1]
setattr(parent_module, cur_module_name, new_linear_module)
post_order_traversal(root_module)
return root_module
def convert_to_float8_training(
module: nn.Module,
*,
module_filter_fn: Optional[Callable[[nn.Module, str], bool]] = None,
config: Float8LinearConfig = None,
) -> nn.Module:
"""
Swaps `torch.nn.Linear` in `module` with `Float8Linear`.
Args:
module: Module to modify.
module_filter_fn: If specified, only the `torch.nn.Linear` subclasses that
that pass the filter function will be swapped. The inputs to the
filter function are the module instance and the FQN.
config (Float8LinearConfig): configuration for conversion to float8
Returns:
nn.Module: The modified module with swapped linear layers.
"""
if config is None:
config = Float8LinearConfig()
from_float = lambda m: Float8Linear.from_float(
m,
config=config,
)
return swap_linear_layers(
module,
from_float,
module_filter_fn=module_filter_fn,
)
def get_float8_layers(model: torch.nn.Module):
"""Iterates through the model and returns all the Float8Linear layers.
Args:
model (torch.nn.Module): The model to look for Float8Linear layers in.
"""
# Get all fp8 layers and tensors
fp8_layers = [child for child in model.modules() if isinstance(child, Float8Linear)]
if not torch.compiler.is_compiling():
for layer in fp8_layers:
for buf in layer.buffers():
torch._dynamo.mark_static_address(buf, guard=True)
return fp8_layers
@torch.no_grad()
def sync_float8_amax_and_scale_history(model: torch.nn.Module, fp8_layers=None) -> None:
"""
Manages the float8 amax and scale bookkeeping. In detail, it does the
following:
1. in distributed contexts, syncs amax values across workers for activations and gradients
2. adds the `amax` values to history
3. calculates the scales to be used for next iteration
4. sets the `amax_and_scale_synced` flag on the Float8Linear modules
to signal that they have been synced
TODO(future): design the UX for this (context manager, etc)
PERFORMANCE NOTE:
When you can, it is much more efficient to call get_float8_layers once at
the beginning of the training loop and pass the result to this function.
Because of how this interacts with torch.compile
Args:
model (torch.nn.Module): The model to track amaxes for
fp8_layers (optional): If fp8_layers are provided, fp8_classes are ignored,
and we loop over all fp8_layers to sync and update amax scale histories.
Users can use get_float8_layers to get all fp8 layers.
"""
if fp8_layers is None:
fp8_layers = get_float8_layers(model)
if len(fp8_layers) == 0:
log.warn(
"Calling sync_float8_amax_and_scale_history on a module with no Float8Linear layers"
)
return
def inner_func():
"""Why do we have this inner_function?
There are two portions of the outer sync_function that cause graph_breaks:
1. The `get_float8_layers` call can cause graph breaks if the user did not pass
in the fp8_layers.
2. At the end of syncing all the amaxes and scales we set the attr on the module
signaling that we have synced the amaxes and scales and the next forward can be run.
# TODO Maybe we should remove this safety check to remove the graph break?
By having this inner function, we can ensure that although the outer function may cause graph breaks
the inner function will not.
"""
# Loop over all fp8 layers and grab the needed tensors
fp8_amax_input_tensor_list = [None] * len(fp8_layers)
fp8_amax_weight_tensor_list = [None] * len(fp8_layers)
fp8_amax_grad_output_tensor_list = [None] * len(fp8_layers)
fp8_input_amax_history_stack = [None] * len(fp8_layers)
fp8_weight_amax_history_stack = [None] * len(fp8_layers)
fp8_grad_output_amax_history_stack = [None] * len(fp8_layers)
x_dtypes = set()
scale_fn_recipes = set()
for idx, child in enumerate(fp8_layers):
fp8_amax_input_tensor_list[idx] = child.fp8_amax_input
fp8_amax_weight_tensor_list[idx] = child.fp8_amax_weight
fp8_amax_grad_output_tensor_list[idx] = child.fp8_amax_grad_output
fp8_input_amax_history_stack[idx] = child.fp8_amax_history_input
fp8_weight_amax_history_stack[idx] = child.fp8_amax_history_weight
fp8_grad_output_amax_history_stack[idx] = child.fp8_amax_history_grad_output
x_dtypes.add(child.last_seen_input_dtype)
scale_fn_recipes.add(child.config.delayed_scaling_config.scale_fn_name)
# TODO This way to get the activation dtype is not ideal
if len(x_dtypes) != 1:
raise ValueError(
f"All layers must have the same last seen input_dtype, got {x_dtypes}"
)
x_dtype = next(iter(x_dtypes))
if len(scale_fn_recipes) != 1:
raise ValueError(
f"All layers must have the same scale_fn recipe, got {scale_fn_recipes}"
)
scale_fn_recipe = next(iter(scale_fn_recipes))
assert (
len(fp8_amax_input_tensor_list)
== len(fp8_amax_weight_tensor_list)
== len(fp8_amax_grad_output_tensor_list)
), "Mismatched lengths of amax tensors."
if dist.is_initialized():
all_amax_tensors = torch.cat(
fp8_amax_input_tensor_list
+ fp8_amax_weight_tensor_list
+ fp8_amax_grad_output_tensor_list
)
all_reduced_amax_tensor = all_reduce(
all_amax_tensors, "MAX", list(range(dist.get_world_size()))
)
if isinstance(all_reduced_amax_tensor, AsyncCollectiveTensor):
all_reduced_amax_tensor = all_reduced_amax_tensor.wait()
(
reduced_fp8_amax_input_tensor,
reduced_fp8_amax_weight_tensor,
reduced_fp8_amax_grad_output_tensor,
) = torch.split(all_reduced_amax_tensor, len(fp8_amax_input_tensor_list))
for idx, child in enumerate(fp8_layers):
child.fp8_amax_input.copy_(reduced_fp8_amax_input_tensor[idx])
child.fp8_amax_weight.copy_(reduced_fp8_amax_weight_tensor[idx])
child.fp8_amax_grad_output.copy_(
reduced_fp8_amax_grad_output_tensor[idx]
)
# We create two stacked tensor groups, one for the amax history and one for the current scales
fp8_amax_input_tensors = torch.vstack(fp8_amax_input_tensor_list)
fp8_amax_weight_tensors = torch.vstack(fp8_amax_weight_tensor_list)
fp8_amax_grad_output_tensors = torch.vstack(fp8_amax_grad_output_tensor_list)
fp8_input_amax_history_stack = torch.vstack(fp8_input_amax_history_stack)
fp8_weight_amax_history_stack = torch.vstack(fp8_weight_amax_history_stack)
fp8_grad_output_amax_history_stack = torch.vstack(
fp8_grad_output_amax_history_stack
)
# Update the history stacks with the new amax values
_update_history_stack(fp8_amax_input_tensors, fp8_input_amax_history_stack)
_update_history_stack(fp8_amax_weight_tensors, fp8_weight_amax_history_stack)
_update_history_stack(
fp8_amax_grad_output_tensors, fp8_grad_output_amax_history_stack
)
# Calculate the new scales from the updated history stacks
new_input_scales = amax_history_to_scale_stack(
fp8_input_amax_history_stack, e4m3_dtype, x_dtype, scale_fn_recipe
)
new_weight_scales = amax_history_to_scale_stack(
fp8_weight_amax_history_stack, e4m3_dtype, x_dtype, scale_fn_recipe
)
new_grad_output_scales = amax_history_to_scale_stack(
fp8_grad_output_amax_history_stack, e5m2_dtype, x_dtype, scale_fn_recipe
)
# Iterate through the layers and update the scales
for idx, child in enumerate(fp8_layers):
child.fp8_scale_input.copy_(new_input_scales[idx])
child.fp8_scale_weight.copy_(new_weight_scales[idx])
child.fp8_scale_grad_output.copy_(new_grad_output_scales[idx])
# This allows for the compile to succede on the inner func and fail on the graph breaks
# at the beginning and and of syncing
inner_func()
for child in fp8_layers:
# Set a flag to signal amaxes/scales are ready
child.amax_and_scale_synced = True