-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOlah_et_al_processing_with_plots.R
261 lines (150 loc) · 8.08 KB
/
Olah_et_al_processing_with_plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
library(SingleCellExperiment)
library(Seurat)
sce<-qs::qread('sce.qs')
sce<-as.Seurat(sce,data=NULL)
sce<-NormalizeData(sce)
table(sce$clusters)
# Visualization
DimPlot(sce, reduction = "UMAP_Liger", group.by = "clusters", label=T)
DimPlot(sce, reduction = "UMAP_Liger", label = TRUE)
DimPlot(sce, reduction = "UMAP_Liger", group.by = "manifest")
dev.off()
FeaturePlot(object = sce, features = c("TSPO",'APOE','C1QA','C1QB','P2RY12','TMEM119','HLA-DRB1','CD68'), pt.size = 0.05, reduction='UMAP_Liger')
ggsave(filename = '.tiff',height=20,width=20)
VlnPlot(object = sce, features = c("TSPO"), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('APOE'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('C1QA'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('C1QB'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('P2RY12'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('TMEM119'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('HLA-DRB1'), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = sce, features = c('CD68'), pt.size = 0.05, group.by = 'clusters')
dev.off()
sce<-SetIdent(sce,value = 'clusters')
cluster_markers<-FindAllMarkers(object = sce,only.pos = T,test.use = 'wilcox',logfc.threshold = 0.01)
saveRDS(cluster_markers,'cluster_markers_wilcoxon.RDS')
gc()
###### clusters 1, 2,5 seem to be the most activated
sce<-qs::qread('sce.qs')
a<-as.data.frame(as.character(sce$clusters))
colnames(a)<-'clusters'
a$new_clusters<-'other'
a$new_clusters[a$clusters %in% c('5','6')]<-'Activ'
a$new_clusters[a$clusters %in% c('3','4')]<-'Non-activ'
sce$new_clusters<-as.character(a$new_clusters)
sce$new_clusters<-factor(sce$new_clusters)
sce<-as.Seurat(sce,data=NULL)
sce<-NormalizeData(sce)
qs::qsave(sce,'Seurat.qs')
#####
sce<-SetIdent(sce,value = 'new_clusters')
activ_vs_non_activ<-FindMarkers(object = sce,only.pos = F,test.use = 'wilcox',slot = 'counts',logfc.threshold = 0.1,ident.1 = 'Activ',ident.2 = 'Non-activ')
saveRDS(activ_vs_non_activ,'Activ_vs_Non_Activ.RDS')
gc()
######## AUCell with known gene sets
library(AUCell)
library(Seurat)
object<-qs::qread('Seurat.qs')
cells_rankings<-AUCell_buildRankings(as.matrix(object@assays$originalexp@counts))
qs::qsave(cells_rankings,'cells_rankings.qs')
Important_GeneSets <- readRDS("Important_GeneSets.RDS")
list<-list()
list[['DAM']]<-Important_GeneSets$DAM_logFC0.25_padj0.05
list[['Homeostatic']]<-Important_GeneSets$Rangaraju_micro$Homeostatic
list[['Homeostatic']]<-Important_GeneSets$Rangaraju_micro$Homeostatic
list[['Proinflammatory']]<-Important_GeneSets$Rangaraju_micro$Pro_inflammatory
list[['Core_microglia']]<-Important_GeneSets$Butovsky_micro
cells_AUC<-AUCell_calcAUC(list,cells_rankings)
saveRDS(cells_AUC,'AUCell_gene_sets.RDS')
[email protected]<-cbind([email protected],t(getAUC(cells_AUC)))
VlnPlot(object = object, features = c("DAM"), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = object, features = c("Homeostatic"), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = object, features = c("Proinflammatory"), pt.size = 0.05, group.by = 'clusters')
VlnPlot(object = object, features = c("Core_microglia"), pt.size = 0.05, group.by = 'clusters')
dev.off()
##### limma comparisons
library(limma)
object<-qs::qread('Seurat.qs')
cells_AUC <- readRDS("AUCell_gene_sets.RDS")
# ### quantification using limma
#
#
#
limma_cluster<-'6'
a<-as.data.frame(as.character(object$clusters))
colnames(a)<-'clusters'
a$limma_clusters<-NA
a$limma_clusters[a$clusters == limma_cluster]<-'test'
a$limma_clusters[a$clusters !=limma_cluster]<-'CTR'
object$limma_clusters<-as.character(a$limma_clusters)
nFeature<-scale(as.matrix(object$total_features_by_counts),scale=T,center = T)
pc.mito<-scale(as.matrix(object$pc_mito),scale = T,center = T)
individual<-as.factor(object$manifest)
cluster<-as.factor(object$limma_clusters)
cluster<-relevel(cluster, ref = 'CTR')
mm <- model.matrix(~0+cluster+nFeature+pc.mito+individual)
fit <- lmFit(log2(cells_AUC@assays@data@listData$AUC[,colnames(object)]), mm)
contr <- makeContrasts(contrasts = 'clustertest-clusterCTR', levels = colnames(fit$coefficients))
tmp <- contrasts.fit(fit,contrasts = contr) #coefficients = 3)
tmp <- eBayes(tmp)
top.table <- topTable(tmp, sort.by = 'none', n = Inf)
limma_results_clusters<-list()
limma_results_clusters[[cluster1_vs_others]]<-top.table1
limma_results_clusters[['cluster1_vs_others']]<-top.table1
limma_results_clusters[['cluster2_vs_others']]<-top.table2
limma_results_clusters[['cluster3_vs_others']]<-top.table3
limma_results_clusters[['cluster4_vs_others']]<-top.table4
limma_results_clusters[['cluster5_vs_others']]<-top.table5
limma_results_clusters[['cluster6_vs_others']]<-top.table6
saveRDS(limma_results_clusters,'limma_results_clusters.RDS')
#### comparison to homeostatic subclusters
limma_cluster<-c('5')
a<-as.data.frame(as.character(object$clusters))
colnames(a)<-'clusters'
a$limma_clusters<-a$clusters
a$limma_clusters[a$clusters%in%limma_cluster]<-'Activated'
a$limma_clusters[a$clusters %in% c('3','4')]<-'Homeostatic'
object$limma_clusters<-as.character(a$limma_clusters)
nFeature<-scale(as.matrix(object$total_features_by_counts),scale=T,center = T)
pc.mito<-scale(as.matrix(object$pc_mito),scale = T,center = T)
individual<-as.factor(object$manifest)
cluster<-as.factor(object$limma_clusters)
cluster<-relevel(cluster, ref = 'Homeostatic')
mm <- model.matrix(~0+cluster+nFeature+pc.mito)
dc <- duplicateCorrelation(log2(cells_AUC@assays@data@listData$AUC[,colnames(object)]), design=mm, block=individual)
fit <- lmFit(log2(cells_AUC@assays@data@listData$AUC[,colnames(object)]), design=mm, block=individual, correlation=dc$consensus)
contr <- makeContrasts(contrasts = 'clusterActivated-clusterHomeostatic', levels = colnames(fit$coefficients))
tmp <- contrasts.fit(fit,contrasts = contr) #coefficients = 3)
tmp <- eBayes(tmp)
top.table <- topTable(tmp, sort.by = 'none', n = Inf)
limma_clusters_vs_homeost<-list()
limma_clusters_vs_homeost[['cluster5_vs_homeost']]<-top.table
saveRDS(limma_clusters_vs_homeost,'limma_results_clusters_vs_Homeost.RDS')
######check individual genes
#### boxplots
library(ggpubr)
results<[email protected]
results$TSPO<-object@assays$originalexp@data['TSPO',]
results$APOE<-object@assays$originalexp@data['APOE',]
results$C1QB<-object@assays$originalexp@data['C1QB',]
results$HLA_DRA<-object@assays$originalexp@data['HLA-DRA',]
results$P2RY12<-object@assays$originalexp@data['P2RY12',]
results$TMEM119<-object@assays$originalexp@data['TMEM119',]
results$new_clusters<-factor(results$new_clusters,levels = c('Non-activ','Activ'))
ggboxplot(results[results$clusters%in%c('5','3','4'),], x = "new_clusters",
y = 'APOE',
combine = TRUE,
color = "new_clusters", palette = c( '#FF0000','#00A08A'),
ylab = 'AUCell enrichment value',
xlab='Microglia subset',
add = c("jitter"), # Add jittered points
add.params = list(size = 0.1, jitter = 0.2) )+theme(legend.position = 'right')+theme(plot.title = element_text(hjust = 0.5,face = 'bold'))+
scale_x_discrete(labels=c('Homeostatic','Activated'))+NoLegend()
ggsave('APOE_cluster5_vs_homeost.tiff',height=4,width=4)
## vlnplots
object<-subset(object, subset=clusters %in%c('3','4','5'))
object$new_clusters<-factor(object$new_clusters,levels = c('Non-activ','Activ'))
[email protected]<-cbind([email protected],t(getAUC(cells_AUC)[,colnames(object)]))
VlnPlot(object = object, features = c("P2RY12"), pt.size = 0.01, group.by = 'new_clusters') + scale_x_discrete(labels=c('Homeostatic','Activated'))+NoLegend()+
labs(x='' )#,y='Gene set enrichment')
ggsave('P2RY12_vln_cluster5_vs_homeost.tiff',height=5,width=3)