-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvis.py
44 lines (31 loc) · 958 Bytes
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from PIL import Image
import cv2
from path import Path
import os
from torchvision import transforms
import torch
path = './dataset'
img0 = Image.open(os.path.join(path,'test2/A/02151.jpg'))
img1 = Image.open(os.path.join(path,'test2/B/02151.jpg'))
trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img0 = trans(img0)
img0 = img0.unsqueeze(0)
img1 = trans(img1)
img1 = img1.unsqueeze(0)
img0,img1 = img0.cuda(), img1.cuda()
net = torch.load("/home/yons/zhengxin/ATCDnet/model/ATCDNet_2020-03-06_49.pth")###
output = net(img0,img1)
print(output.shape)
probs = torch.max(output,1)[1]
mask = probs.cpu().numpy().reshape(256,256)
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
if mask[i][j] == 1:
mask[i][j] = 255
else:
mask[i][j] = 0
mask = mask.astype(int)
cv2.imwrite(f'./result/result_vis.jpg',mask)