-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrnn.py
257 lines (185 loc) · 7.91 KB
/
srnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import sys
sys.path.append("..")
import time
import numpy as np
import librosa
import scipy.io.wavfile as wav
import torch
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from torch.utils.data import DataLoader
import torchvision
from torch.optim.lr_scheduler import StepLR,MultiStepLR,LambdaLR,ExponentialLR
from data import SpeechCommandsDataset,Pad, MelSpectrogram, Rescale,Normalize
from utils import generate_random_silence_files
dtype = torch.float
import warnings
warnings.filterwarnings("ignore")
torch.manual_seed(0)
device = torch.device("cuda:6" if torch.cuda.is_available() else "cpu")
train_data_root = "/data/speech_commands"
test_data_root = "/data/speech_commands"
training_words = os.listdir(train_data_root)
training_words = [x for x in training_words if os.path.isdir(os.path.join(train_data_root,x))]
training_words = [x for x in training_words if os.path.isdir(os.path.join(train_data_root,x)) if x[0] != "_" ]
print("{} training words:".format(len(training_words)))
print(training_words)
# generate the 12 labels
testing_words =["yes", "no", 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go']
"""
testing_words = [x for x in testing_words if os.path.isdir(os.path.join(train_data_root,x))]
testing_words = [x for x in testing_words if os.path.isdir(os.path.join(train_data_root,x))
if x[0] != "_"]
"""
print("{} testing words:".format(len(testing_words)))
print(testing_words)
label_dct = {k:i for i,k in enumerate(testing_words+ ["_silence_", "_unknown_"])}
for w in training_words:
label = label_dct.get(w)
if label is None:
label_dct[w] = label_dct["_unknown_"]
print("label_dct:")
print(label_dct)
sr = 16000
size = 16000
noise_path = os.path.join(train_data_root, "_background_noise_")
noise_files = []
for f in os.listdir(noise_path):
if f.endswith(".wav"):
full_name = os.path.join(noise_path, f)
noise_files.append(full_name)
print("noise files:")
print(noise_files)
# generate silence training and validation data
silence_folder = os.path.join(train_data_root, "_silence_")
if not os.path.exists(silence_folder):
os.makedirs(silence_folder)
# 260 validation / 2300 training
generate_random_silence_files(2560, noise_files, size, os.path.join(silence_folder, "rd_silence"))
# save 260 files for validation
silence_files = [fname for fname in os.listdir(silence_folder)]
with open(os.path.join(train_data_root, "silence_validation_list.txt"),"w") as f:
f.writelines("_silence_/"+ fname + "\n" for fname in silence_files[:260])
n_fft = int(30e-3*sr)
hop_length = int(10e-3*sr)
n_mels = 40
fmax = 4000
fmin = 20
delta_order = 2
stack = True
melspec = MelSpectrogram(sr, n_fft, hop_length, n_mels, fmin, fmax, delta_order, stack=stack)
pad = Pad(size)
rescale = Rescale()
normalize = Normalize()
transform = torchvision.transforms.Compose([pad,melspec,rescale])
def collate_fn(data):
X_batch = np.array([d[0] for d in data])
std = X_batch.std(axis=(0,2), keepdims=True)
X_batch = torch.tensor(X_batch/std)
y_batch = torch.tensor([d[1] for d in data])
return X_batch, y_batch
batch_size = 200
train_dataset = SpeechCommandsDataset(train_data_root, label_dct, transform = transform, mode="train", max_nb_per_class=None)
train_sampler = torch.utils.data.WeightedRandomSampler(train_dataset.weights,len(train_dataset.weights))
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, num_workers=8,sampler=train_sampler, collate_fn=collate_fn)
valid_dataset = SpeechCommandsDataset(train_data_root, label_dct, transform = transform, mode="valid", max_nb_per_class=None)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True, num_workers=8, collate_fn=collate_fn)
test_dataset = SpeechCommandsDataset(test_data_root, label_dct, transform = transform, mode="test")
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=8, collate_fn=collate_fn)
#####################################################################################################################3
# create network
is_bias=True
class RNN_test(nn.Module):
def __init__(self,):
super(RNN_test, self).__init__()
n = 200
# is_bias=False
#self.dense_1 = spike_dense(700,n,
# tauM = 20,tauM_inital_std=5,device=device,bias=is_bias)
self.rnn_1 = spike_rnn(40*3,n,vth= 1,dt = 1,branch = 1,device=device,bias=is_bias)
self.dense_2 = readout_layer(n,12,dt = 1,device=device,bias=is_bias)
def forward(self,input):
input.to(device)
b,channel,seq_length,input_dim = input.shape
#self.dense_1.set_neuron_state(b)
output = 0
input_s = input
for i in range(seq_length):
input_x = input_s[:,:,i,:].reshape(b,channel*input_dim)
mem_layer1,spike_layer1 = self.rnn_1.forward(input_x)
mem_layer2= self.dense_2.forward(spike_layer1)
output += mem_layer2
output = F.log_softmax(output/seq_length,dim=1)
return output#,[np.mean(np.abs(input_s.detach().cpu().numpy())),np.mean(fr_1),np.mean(fr_2)]
model = RNN_test()
criterion = nn.CrossEntropyLoss()
print("device:",device)
model.to(device)
def test(data_loader,is_show = 0):
test_acc = 0.
sum_sample = 0.
fr_ = []
for i, (images, labels) in enumerate(data_loader):
images = images.view(-1,3,101, 40).to(device)
labels = labels.view((-1)).long().to(device)
predictions= model(images)
#fr_.append(fr)
_, predicted = torch.max(predictions.data, 1)
labels = labels.cpu()
predicted = predicted.cpu().t()
test_acc += (predicted ==labels).sum()
sum_sample+=predicted.numel()
return test_acc.data.cpu().numpy()/sum_sample
def train(epochs,criterion,optimizer,scheduler=None):
acc_list = []
best_acc = 0
path = ''
for epoch in range(epochs):
train_acc = 0
sum_sample = 0
train_loss_sum = 0
for i, (images, labels) in enumerate(train_dataloader):
# if i ==0:
images = images.view(-1,3,101, 40).to(device)
labels = labels.view((-1)).long().to(device)
optimizer.zero_grad()
predictions= model(images)
_, predicted = torch.max(predictions.data, 1)
train_loss = criterion(predictions,labels)
# print(predictions,predicted)
train_loss.backward()
train_loss_sum += train_loss.item()
optimizer.step()
labels = labels.cpu()
predicted = predicted.cpu().t()
train_acc += (predicted ==labels).sum()
sum_sample+=predicted.numel()
if scheduler:
scheduler.step()
train_acc = train_acc.data.cpu().numpy()/sum_sample
valid_acc = test(test_dataloader,1)
train_loss_sum+= train_loss
acc_list.append(train_acc)
print('lr: ',optimizer.param_groups[0]["lr"])
if valid_acc>best_acc and train_acc>0.890:
best_acc = valid_acc
torch.save(model, path+str(best_acc)[:7]+'-srnn.pth')
print('epoch: {:3d}, Train Loss: {:.4f}, Train Acc: {:.4f},Valid Acc: {:.4f}'.format(epoch,
train_loss_sum/len(train_dataloader),
train_acc,valid_acc), flush=True)
return acc_list
learning_rate = 1e-2
test_acc = test(test_dataloader)
print(test_acc)
base_params = []
optimizer = torch.optim.Adam([
{'params': base_params, 'lr': learning_rate},
],
lr=learning_rate)
scheduler = StepLR(optimizer, step_size=25, gamma=.5) # 20
# epoch=0
epochs =100
acc_list = train(epochs,criterion,optimizer,scheduler)
test_acc = test(test_dataloader)
print(test_acc)