-
Notifications
You must be signed in to change notification settings - Fork 64
/
spm_MH.m
60 lines (52 loc) · 1.88 KB
/
spm_MH.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [P,F] = spm_MH(L,B,y,M)
% The Rejection-Metropolis-Hastings Algorithm
% FORMAT [P,F] = spm_MH(L,P,y)
%
% L - likelihood function: inline(P,y,M)
% B - free parameter [structure]
% Y - response [stucture]
% M - model [structure]
%
% P - Sample from posterior p(P|y,M)
% F - marginal likelihood p(y|M) using harmonic mean
%--------------------------------------------------------------------------
%
% Returns a harmonic mean estimate of the log-marginal likelihood or
% log-evidence and a sample from the posterior density of the free parameters
% of a model.
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_MH.m 1143 2008-02-07 19:33:33Z spm $
% initialise parameters
%--------------------------------------------------------------------------
P(:,1) = spm_vec(B);
% MCMC - RMH
%--------------------------------------------------------------------------
n = 2^8; % number of burn in
N = 2^16; % number of samples
for i = 1:N
% sample from proposal
%----------------------------------------------------------------------
pi = P(:,i);
pp = pi + randn(size(P,1),1)/32;
% compute importnace ratio
%----------------------------------------------------------------------
Lp = feval(L,spm_unvec(pp,B),y,M);
Li = feval(L,spm_unvec(pi,B),y,M);
r = Lp/Li;
% accept and marginal likelihood
%----------------------------------------------------------------------
if rand < r
P(:,i + 1) = pp;
F(i + 1) = Lp;
else
P(:,i + 1) = pi;
F(i + 1) = Li;
end
end
% burn in
%--------------------------------------------------------------------------
P = P(:,n:end);
F = F(n:end);
F = -log(mean(mean(F)./F)) + log(mean(F));