-
Notifications
You must be signed in to change notification settings - Fork 2
/
vnsgm.R
executable file
·387 lines (334 loc) · 16.3 KB
/
vnsgm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#' Vertex Nomination via Seeded Graph Matching
#'
#' Finds the seeds in an \eqn{h}-hop induced nbd of \eqn{G_1} around the
#' VOI, x,that is, finds induced subgraph generated by vertices that are
#' within a path of length \eqn{h} the VOI, and then finds an \eqn{ell}-hop
#' induced nbd of \eqn{G_1} around the seeds within the \eqn{h}-hop nbd of
#' x, and an \eqn{ell}-hop induced nbd of \eqn{G_2} around the corresponding
#' seeds. Then, matches these induced subgraphs via \code{multiStart}.
#'
#' @param x vector of indices for vertices of interest (voi) in \eqn{G_1}
#' @param seeds a numeric matrix, the \eqn{m \times 2}{m*2} matching vertex table,
#' where m is the number of seeds.
#' @param g1 \eqn{G_1} in \code{igraph} object where voi is known
#' @param g2 \eqn{G_2} in \code{igraph}
#' @param h \eqn{h}-hop for distance from voi to other vertices to create
#' \eqn{h}-hop induced subgraph of \eqn{G_1}
#' @param ell \eqn{ell}-hop for distance from seeds to other vertices
#' to create \eqn{ell}-hop induced subgraph of \eqn{G_1}
#' @param R number of restarts for \code{multiStart}
#' @param gamma to be used with \code{multiStart}, max tolerance
#' for alpha, how far away from the barycenter user is willing to go for
#' the initialization of \code{sgm} on any given iteration
#' @param maxiter the number of maxiters for the Frank-Wolfe algorithm.
#' @param pad a scalar value for padding for sgm (cases where two graphs
#' have different number of vertices); defaulted to 0
#' @param verbose logical verbose outputs
#' @param plotF boolean to plot the probability matrix
#'
#' @return \code{VOI} Vertex of Interest
#' @return \code{seeds} \code{s} seeds
#' @return \code{Sx1} \eqn{S_x} the seeds within an h-path, i.e. in the
#' h-neighborhood, of VOI x in \eqn{G_1}
#' @return \code{Sx2} \eqn{S'_x} the corresponding seeds of \eqn{S_x} in \eqn{G_2}
#' @return \code{candidates_for_matching} labels for the candidates for
#' matching VOIs in \eqn{G_2}
#' @return \code{G1_vertices} vertices within ell-neighborhood of S_x in \eqn{G_1}
#' (vertices used in vertex nomination for VOIs)
#' @return \code{G2_vertices} vertices within ell-neighborhood of S'_x in \eqn{G_2}
#' (including candidates x' for matching VOIs x in \eqn{G_1})
#' @return \code{P} matrix \eqn{P(i,j)} is the proportion of times that vertex \eqn{j} in
#' the induced subgraph of \eqn{G_2} was mapped to vertex \eqn{i} in the induced subgraph of \eqn{G_1}.
#' Then the \eqn{i-th} and \eqn{j-th} elements of the labels vector tells you which vertices these actually were
#' in \eqn{G_1} and \eqn{G_2}, respectively.
#'
#' @import igraph
#' @import plyr
#' @author Youngser Park <[email protected]>, Kemeng Zhang <[email protected]>
#'
#' @references Patsolic, Heather G.; Park, Youngser; Lyzinski, Vince; Priebe, Carey E. (2017).
#' Vertex Nomination Via Local Neighborhood Matching
#' Online: \url{https://arxiv.org/abs/1705.00674}
#'
#' Fishkind, D. E., Adali, S., Priebe, C. E. (2012). Seeded Graph Matching
#' Online: \url{http://arxiv.org/abs/1209.0367}
#' @export
# Matches Graphs given a seeding of vertex correspondences
vnsgm <- function(x,seeds,g1,g2,h,ell,R,gamma,maxiter=20,pad=0,verbose=FALSE,plotF=FALSE) {
vn.validateInput(x,seeds,g1,g2,h,ell,R,gamma,maxiter,pad,verbose,plotF)
A <- as.matrix(get.adjacency(g1))
B <- as.matrix(get.adjacency(g2))
nv1<-nrow(A)
nv2<-nrow(B)
nv<-max(nv1,nv2)
nsx1 <- setdiff(1:nv1,c(seeds[,1],x))
vec <- c(seeds[,1],x,nsx1)
AA <- A[vec,vec]
ga <- graph_from_adjacency_matrix(AA,mode="undirected")
ns2 <- setdiff(1:nv2,seeds[,2])
vec2 <- c(seeds[,2],ns2)
BB <- B[vec2,vec2]
gb <- graph_from_adjacency_matrix(BB,mode="undirected")
s <- nrow(seeds)
voi <- (s+1):(s+length(x))
vn <- vnsgm.ordered(voi,s,ga,gb,h,ell,R,gamma,maxiter,pad,verbose,plotF=FALSE)
Sx1 = vec[vn$Sx1]
Sx2 = vec2[vn$Sx2]
Cx2 = vec2[vn$candidates_for_matching]
ind1 = vec[sort(vn$G1_vertices)]
ind2 = vec2[sort(vn$G2_vertices)]
P_matrix = vn$P
row.names(P_matrix) = ind1
colnames(P_matrix) = ind2
matched.seed = intersect(seeds[,1],ind1)
P_matrix = P_matrix[order(ind1),order(ind2)]
if (plotF == TRUE) {
gg = plotP(P_matrix,matched.seed,ind1,ind2,x)
print(gg)
}
return(list(VOI=x, seeds=seeds, Sx1=Sx1, Sx2=Sx2, candidates_for_matching=Cx2, G1_vertices=ind1, G2_vertices=ind2, P=P_matrix))
}
#' Vertex Nomination via Seeded Graph Matching
#'
#' Finds the seeds in an \eqn{h}-hop induced nbd of \eqn{G_1} around the
#' VOI, x,that is, finds induced subgraph generated by vertices that are
#' within a path of length \eqn{h} the VOI, and then finds an \eqn{ell}-hop
#' induced nbd of \eqn{G_1} around the seeds within the \eqn{h}-hop nbd of
#' x, and an \eqn{ell}-hop induced nbd of \eqn{G_2} around the corresponding
#' seeds. Then, matches these induced subgraphs via \code{multiStart}.
#' Assume first \eqn{s} vertices in two graphs are matched seeds.
#'
#' @param x vector of indices for vertices of interest (voi) in \eqn{G_1}
#' @param s the number of seeds.
#' @param g1 \eqn{G_1} in \code{igraph} object where voi is known
#' @param g2 \eqn{G_2} in \code{igraph}
#' @param h \eqn{h}-hop for distance from voi to other vertices to create
#' \eqn{h}-hop induced subgraph of \eqn{G_1}
#' @param ell \eqn{ell}-hop for distance from seeds to other vertices
#' to create \eqn{ell}-hop induced subgraph of \eqn{G_1}
#' @param R number of restarts for \code{multiStart}
#' @param gamma to be used with \code{multiStart}, max tolerance
#' for alpha, how far away from the barycenter user is willing to go for
#' the initialization of \code{sgm} on any given iteration
#' @param maxiter the number of maxiters for the Frank-Wolfe algorithm.
#' @param pad a scalar value for padding for sgm (cases where two graphs
#' have different number of vertices); defaulted to 0
#' @param verbose logical verbose outputs
#' @param plotF boolean to plot the probability matrix
#'
#' @return \code{VOI} Vertex of Interest
#' @return \code{seeds} \code{s} seeds
#' @return \code{Sx1} \eqn{S_x} the seeds within an h-path, i.e. in the
#' h-neighborhood, of VOI x in \eqn{G_1}
#' @return \code{Sx2} \eqn{S'_x} the corresponding seeds of \eqn{S_x} in \eqn{G_2}
#' @return \code{candidates_for_matching} labels for the candidates for
#' matching VOIs in \eqn{G_2}
#' @return \code{G1_vertices} vertices within ell-neighborhood of S_x in \eqn{G_1}
#' (vertices used in vertex nomination for VOIs)
#' @return \code{G2_vertices} vertices within ell-neighborhood of S'_x in \eqn{G_2}
#' (including candidates x' for matching VOIs x in \eqn{G_1})
#' @return \code{P} matrix \eqn{P(i,j)} is the proportion of times that vertex \eqn{j} in
#' the induced subgraph of \eqn{G_2} was mapped to vertex \eqn{i} in the induced subgraph of \eqn{G_1}.
#' Then the \eqn{i-th} and \eqn{j-th} elements of the labels vector tells you which vertices these actually were
#' in \eqn{G_1} and \eqn{G_2}, respectively.
#'
#' @author Youngser Park <[email protected]>, Kemeng Zhang <[email protected]>
#'
#' @references Patsolic, Heather G.; Park, Youngser; Lyzinski, Vince; Priebe, Carey E. (2017).
#' Vertex Nomination Via Local Neighborhood Matching
#' Online: \url{https://arxiv.org/abs/1705.00674}
#'
#' Fishkind, D. E., Adali, S., Priebe, C. E. (2012). Seeded Graph Matching
#' Online: \url{http://arxiv.org/abs/1209.0367}
#' @export
vnsgm.ordered <- function(x,s,g1,g2,h,ell,R,gamma,maxiter=20,pad=0,verbose=FALSE,plotF=FALSE) {
vn.validateInput.ordered(x,s,g1,g2,h,ell,R,gamma,maxiter,pad,verbose,plotF)
# Note, V = {x,S,W,J}
# sanity check
# W <- intersect(V(g1),V(g2))
# J1 <- setdiff(V(g1),W); m1 <- length(J1)
# J2 <- setdiff(V(g2),W); m2 <- length(J2)
# W <- setdiff(W,x) # exclude x from W
# W <- setdiff(W,S)
# stopifnot(1+s+length(W)+m1 == vcount(g1))
# stopifnot(1+s+length(W)+m2 == vcount(g2))
# end of sanity check
S = 1:s
if (length(x) == 1) {
min.hop = min(distances(g1,x)[,S])
} else {
min.hop = min(apply(distances(g1,x)[,S],1,min))
}
possible = TRUE
if (!is.finite(min.hop)) {
possible = FALSE
warning("The seeds is not within reach from vertex of interest. vnsgm failed to nominate matches for x.")
}
if (h < min.hop) {
h = min.hop
warning("The seeds is not within h neighborhood from voi. Please choose a value of h no smaller than ", min.hop)
}
if (possible) {
# make h-hop nbhd for x in A
Nh <- unlist(ego(g1,h,nodes=x,mindist=1)) # mindist=0: close, 1: open
Sx1 <- Sx2 <- NULL
Sx1 <- sort(intersect(Nh,S)); sx1 <- length(Sx1)
Sx2 <- sort(intersect(V(g2),Sx1)); sx2 <- length(Sx2)
# Find induced subgraph which is ell-neighbors of Sx1 & Sx2
Gx1 <- sort(unique(unlist(ego(g1,ell,nodes=Sx1,mindist=0)))) # mindist=0: close, 1: open
Gx2 <- sort(unique(unlist(ego(g2,ell,nodes=Sx2,mindist=0)))) # mindist=0: close, 1: open
# Candidates for matching VOI in the second graph
Cx2 <- setdiff(Gx2,S)
#Vertices in both graphs for nominating VOIs
ind1 <- c(Sx1,x,setdiff(Gx1,c(Sx1,x)))
ind2 <- c(Sx2,setdiff(Gx2,Sx2))
if (verbose) {
cat("seed = ", Sx1, ", matching ", ind1, " and ", ind2, "\n")
}
A <- as.matrix(g1[][ind1,ind1])
B <- as.matrix(g2[][ind2,ind2])
P <- multiStart(A,B,R,length(Sx1),gamma,pad=pad,iter=maxiter)
matched.seed = intersect(S,ind1)
num.matched.seed = length(matched.seed)
m = length(ind1)
n = length(ind2)
P_trunc = P[1:m,1:n]
P.df = as.data.frame(P_trunc)
row.names(P.df) = ind1
colnames(P.df) = ind2
P_matrix = P.df[order(ind1),order(ind2)]
P_matrix[1:num.matched.seed,] = 0
P_matrix[,1:num.matched.seed] = 0
P_matrix[1:num.matched.seed,1:num.matched.seed] = diag(num.matched.seed)
if (plotF) {
gg = plotP(P_matrix,matched.seed,ind1,ind2,x)
print(gg)
}
} else {
ind1 <- ind2 <- P <- Cx2 <- NULL
}
return(list(VOI=x, seeds=S, Sx1=Sx1, Sx2=Sx2, candidates_for_matching=Cx2, G1_vertices=ind1, G2_vertices=ind2, P=P_matrix))
}
plotP <- function(P,Seed,G1_vertices,G2_vertices,x)
{
P$vertex = sort(G1_vertices)
P$vertex = as.factor(sort(G1_vertices))
x.f = as.factor(x)
P.m <- suppressMessages(melt(P))
P.s <- plyr::ddply(P.m, .(variable), transform,
rescale = scale(value))
P.s$Category <- P.s$vertex
seed.set = as.factor(Seed)
set1 = setdiff(G1_vertices,x.f)
set2 = setdiff(set1,seed.set)
set3 = setdiff(set1,set2)
set4 = setdiff(G1_vertices,set1)
levels(P.s$Category) <- list("VOI" = set4,
"Seed" = set3,
"Other" = set2)
P.s$rescale = (P.s$rescale-min(P.s$rescale))/(max(P.s$rescale)-min(P.s$rescale))
gg = ggplot(P.s, aes(variable, vertex)) +
geom_tile(aes(alpha = rescale,fill = Category), colour = "white") +
scale_alpha(range=c(0,1)) +
xlab("Vertices of Graph 2") + ylab("Vertices of Graph 1") +
labs(title = "Proportion of times Vertices in Graph 1 Matched to Vertices in Graph 2",
alpha = "Proportion") +
scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
theme_classic(base_size = 9) +
theme(axis.ticks = element_blank(),
axis.text.x = element_text(angle = 0, hjust = 0))
return(gg)
}
# Unordered function validation.
vn.validateInput <- function(x,seeds,g1,g2,h,ell,R,gamma,maxiter,pad,verbose,plotF) {
# VOIs x
if (!is.vector(x)) { stop("Error: Input 'x' must be a numeric vector.") }
if (class(x) != "numeric") { stop("Error: Input 'x' must be a numeric vector.") }
# Graphs
if (class(g1) == "dgCMatrix") { g1 = igraph::graph_from_adjacency_matrix(g1) }
if (class(g1) == "matrix") { g1 = igraph::graph_from_adjacency_matrix(g1) }
if (class(g1) != 'igraph') { stop("Input object 'g1' is not an igraph object.") }
if (class(g2) == "dgCMatrix") { g2 = igraph::graph_from_adjacency_matrix(g2) }
if (class(g2) == "matrix") { g2 = igraph::graph_from_adjacency_matrix(g2) }
if (class(g2) != 'igraph') { stop("Input object 'g2' is not an igraph object.") }
# Seeds
if (class(seeds) != "matrix" || ncol(seeds) != 2 || !all(seeds%%1 == 0)) {
stop("Error: Input 'seeds' must be an m by 2 matrix of corresponding seed indices.")
}
if (nrow(seeds) > vcount(g1)) { stop("Error: Number of seeds is greater than number of vertices in g1.") }
if (nrow(seeds) > vcount(g2)) { stop("Error: Number of seeds is greater than number of vertices in g2.") }
# VOIs x and Seeds non-overlap
if (sum(is.element(x, seeds[,1])) != 0) { stop("Error: Input 'x' contains elements from 'seeds'.")}
# h
if (!is.numeric(h)) { stop("Error: Input 'h' must be a positive number.")}
if (length(h) != 1) { stop("Error: Input 'h' must be a positive number.")}
if (h <= 0) { stop("Error: Input 'h' must be a positive number.")}
# ell
if (!is.numeric(ell)) { stop("Error: Input 'ell' must be a positive number.")}
if (length(ell) != 1) { stop("Error: Input 'ell' must be a positive number.")}
if (ell <= 0) { stop("Error: Input 'ell' must be a positive number.")}
# R
if (!is.numeric(R)) { stop("Error: Input 'R' must be a number.")}
if (length(R) != 1) { stop("Error: Input 'R' must be a number.")}
if (R <= 0) { stop("Error: Input 'R' must be a positive number.")}
# gamma
if (!is.numeric(gamma)) { stop("Error: Input 'gamma' must be a number.")}
if (length(gamma) != 1) { stop("Error: Input 'gamma' must be a number.")}
if (gamma < 0 || gamma > 1) { stop("Error: Input 'gamma' must be between 0 and 1.")}
# maxiter
if (!is.numeric(maxiter)) { stop("Error: Input 'maxiter' must be a positive number.")}
if (length(maxiter) != 1) { stop("Error: Input 'maxiter' must be a positive number.")}
if (maxiter <= 0) { stop("Error: Input 'maxiter' must be a positive number.")}
# Padding
if (!is.numeric(pad)) { stop("Error: Input 'pad' must be a number.")}
# Verbosity
if (!is.logical(verbose)) { stop("Error: Input 'verbose' must be a logical.")}
# plotF
if (!is.logical(plotF)) { stop("Error: Input 'plotF' must be a logical.")}
}
# Ordered function validation.
vn.validateInput.ordered <- function(x,s,g1,g2,h,ell,R,gamma,maxiter,pad,verbose,plotF) {
# VOIs x
if (!is.vector(x)) { stop("Error: Input 'x' must be a numeric vector.") }
if (!(class(x) == "numeric" || class(x) == "integer")) { stop("Error: Input 'x' must be a numeric vector.") }
# s
if (!is.numeric(s)) { stop("Error: Input 's' must be a positive number.")}
if (length(s) != 1) { stop("Error: Input 's' must be a positive number.")}
if (s <= 0) { stop("Error: Input 's' must be a positive number.")}
# VOIs x and Seeds non-overlap
if (sum(x < s) != 0) { stop("Error: Input 'x' contains elements from 'seeds'.")}
# Graphs
if (class(g1) == "dgCMatrix") { g1 = igraph::graph_from_adjacency_matrix(g1) }
if (class(g1) == "matrix") { g1 = igraph::graph_from_adjacency_matrix(g1) }
if (class(g1) != 'igraph') { stop("Input object 'g1' is not an igraph object.") }
if (class(g2) == "dgCMatrix") { g2 = igraph::graph_from_adjacency_matrix(g2) }
if (class(g2) == "matrix") { g2 = igraph::graph_from_adjacency_matrix(g2) }
if (class(g2) != 'igraph') { stop("Input object 'g2' is not an igraph object.") }
# h
if (!is.numeric(h)) { stop("Error: Input 'h' must be a positive number.")}
if (length(h) != 1) { stop("Error: Input 'h' must be a positive number.")}
if (h <= 0) { stop("Error: Input 'h' must be a positive number.")}
# ell
if (!is.numeric(ell)) { stop("Error: Input 'ell' must be a positive number.")}
if (length(ell) != 1) { stop("Error: Input 'ell' must be a positive number.")}
if (ell <= 0) { stop("Error: Input 'ell' must be a positive number.")}
# R
if (!is.numeric(R)) { stop("Error: Input 'R' must be a number.")}
if (length(R) != 1) { stop("Error: Input 'R' must be a number.")}
if (R <= 0) { stop("Error: Input 'R' must be a positive number.")}
# gamma
if (!is.numeric(gamma)) { stop("Error: Input 'gamma' must be a number.")}
if (length(gamma) != 1) { stop("Error: Input 'gamma' must be a number.")}
if (gamma < 0 || gamma > 1) { stop("Error: Input 'gamma' must be between 0 and 1.")}
# maxiter
if (!is.numeric(maxiter)) { stop("Error: Input 'maxiter' must be a positive number.")}
if (length(maxiter) != 1) { stop("Error: Input 'maxiter' must be a positive number.")}
if (maxiter <= 0) { stop("Error: Input 'maxiter' must be a positive number.")}
# Padding
if (!is.numeric(pad)) { stop("Error: Input 'pad' must be a number.")}
# Verbosity
if (!is.logical(verbose)) { stop("Error: Input 'verbose' must be a logical.")}
# plotF
if (!is.logical(plotF)) { stop("Error: Input 'plotF' must be a logical.")}
}