forked from aloistr/swisseph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swedate.c
588 lines (547 loc) · 19.6 KB
/
swedate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/*********************************************************
swe_date_conversion()
swe_revjul()
swe_julday()
************************************************************/
/* Copyright (C) 1997 - 2021 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU Affero General Public License (AGPL)
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the AGPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the AGPL or a compatible license.
See https://www.gnu.org/licenses/agpl-3.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.
The License grants you the right to use, copy, modify and redistribute
Swiss Ephemeris, but only under certain conditions described in the License.
Among other things, the License requires that the copyright notices and
this notice be preserved on all copies.
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
The authors of Swiss Ephemeris have no control or influence over any of
the derived works, i.e. over software or services created by other
programmers which use Swiss Ephemeris functions.
The names of the authors or of the copyright holder (Astrodienst) must not
be used for promoting any software, product or service which uses or contains
the Swiss Ephemeris. This copyright notice is the ONLY place where the
names of the authors can legally appear, except in cases where they have
given special permission in writing.
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
for promoting such software, products or services.
*/
/*
swe_date_conversion():
This function converts some date+time input {y,m,d,uttime}
into the Julian day number tjd.
The function checks that the input is a legal combination
of dates; for illegal dates like 32 January 1993 it returns ERR
but still converts the date correctly, i.e. like 1 Feb 1993.
The function is usually used to convert user input of birth data
into the Julian day number. Illegal dates should be notified to the user.
Be aware that we always use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC historical.
year -1 (astronomical) = 2 BC
etc.
Many users of Astro programs do not know about this difference.
Return: OK or ERR (for illegal date)
*********************************************************/
# include "swephexp.h"
# include "sweph.h"
static TLS AS_BOOL init_leapseconds_done = FALSE;
int CALL_CONV swe_date_conversion(int y,
int m,
int d, /* day, month, year */
double uttime, /* UT in hours (decimal) */
char c, /* calendar g[regorian]|j[ulian] */
double *tjd)
{
int rday, rmon, ryear;
double rut, jd;
int gregflag = SE_JUL_CAL;
if (c == 'g')
gregflag = SE_GREG_CAL;
rut = uttime; /* hours UT */
jd = swe_julday(y, m, d, rut, gregflag);
swe_revjul(jd, gregflag, &ryear, &rmon, &rday, &rut);
*tjd = jd;
if (rmon == m && rday == d && ryear == y) {
return OK;
} else {
return ERR;
}
}
/*************** swe_julday ********************************************
* This function returns the absolute Julian day number (JD)
* for a given calendar date.
* The arguments are a calendar date: day, month, year as integers,
* hour as double with decimal fraction.
* If gregflag = SE_GREG_CAL (1), Gregorian calendar is assumed,
* if gregflag = SE_JUL_CAL (0),Julian calendar is assumed.
The Julian day number is a system of numbering all days continously
within the time range of known human history. It should be familiar
to every astrological or astronomical programmer. The time variable
in astronomical theories is usually expressed in Julian days or
Julian centuries (36525 days per century) relative to some start day;
the start day is called 'the epoch'.
The Julian day number is a double representing the number of
days since JD = 0.0 on 1 Jan -4712, 12:00 noon (in the Julian calendar).
Midnight has always a JD with fraction .5, because traditionally
the astronomical day started at noon. This was practical because
then there was no change of date during a night at the telescope.
From this comes also the fact the noon ephemerides were printed
before midnight ephemerides were introduced early in the 20th century.
NOTE: The Julian day number must not be confused with the Julian
calendar system.
Be aware the we always use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC
year -1 (astronomical) = 2 BC
etc.
Original author: Marc Pottenger, Los Angeles.
with bug fix for year < -4711 15-aug-88 by Alois Treindl
References: Oliver Montenbruck, Grundlagen der Ephemeridenrechnung,
Verlag Sterne und Weltraum (1987), p.49 ff
related functions: swe_revjul() reverse Julian day number: compute the
calendar date from a given JD
swe_date_conversion() includes test for legal date values
and notifies errors like 32 January.
****************************************************************/
double CALL_CONV swe_julday(int year, int month, int day, double hour, int gregflag)
{
double jd;
double u,u0,u1,u2;
u = year;
if (month < 3) u -=1;
u0 = u + 4712.0;
u1 = month + 1.0;
if (u1 < 4) u1 += 12.0;
jd = floor(u0*365.25)
+ floor(30.6*u1+0.000001)
+ day + hour/24.0 - 63.5;
if (gregflag == SE_GREG_CAL) {
u2 = floor(fabs(u) / 100) - floor(fabs(u) / 400);
if (u < 0.0) u2 = -u2;
jd = jd - u2 + 2;
if ((u < 0.0) && (u/100 == floor(u/100)) && (u/400 != floor(u/400)))
jd -=1;
}
return jd;
}
/*** swe_revjul ******************************************************
swe_revjul() is the inverse function to swe_julday(), see the description
there.
Arguments are julian day number, calendar flag (0=julian, 1=gregorian)
return values are the calendar day, month, year and the hour of
the day with decimal fraction (0 .. 23.999999).
Be aware the we use astronomical year numbering for the years
before Christ, not the historical year numbering.
Astronomical years are done with negative numbers, historical
years with indicators BC or BCE (before common era).
Year 0 (astronomical) = 1 BC historical year
year -1 (astronomical) = 2 BC historical year
year -234 (astronomical) = 235 BC historical year
etc.
Original author Mark Pottenger, Los Angeles.
with bug fix for year < -4711 16-aug-88 Alois Treindl
*************************************************************************/
void CALL_CONV swe_revjul (double jd, int gregflag,
int *jyear, int *jmon, int *jday, double *jut)
{
double u0,u1,u2,u3,u4;
u0 = jd + 32082.5;
if (gregflag == SE_GREG_CAL) {
u1 = u0 + floor (u0/36525.0) - floor (u0/146100.0) - 38.0;
if (jd >= 1830691.5) u1 +=1;
u0 = u0 + floor (u1/36525.0) - floor (u1/146100.0) - 38.0;
}
u2 = floor (u0 + 123.0);
u3 = floor ( (u2 - 122.2) / 365.25);
u4 = floor ( (u2 - floor (365.25 * u3) ) / 30.6001);
*jmon = (int) (u4 - 1.0);
if (*jmon > 12) *jmon -= 12;
*jday = (int) (u2 - floor (365.25 * u3) - floor (30.6001 * u4));
*jyear = (int) (u3 + floor ( (u4 - 2.0) / 12.0) - 4800);
*jut = (jd - floor (jd + 0.5) + 0.5) * 24.0;
}
/* transform local time to UTC or UTC to local time
*
* input
* iyear ... dsec date and time
* d_timezone timezone offset
* output
* iyear_out ... dsec_out
*
* For time zones east of Greenwich, d_timezone is positive.
* For time zones west of Greenwich, d_timezone is negative.
*
* For conversion from local time to utc, use +d_timezone.
* For conversion from utc to local time, use -d_timezone.
*/
void CALL_CONV swe_utc_time_zone(
int32 iyear, int32 imonth, int32 iday,
int32 ihour, int32 imin, double dsec,
double d_timezone,
int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
int32 *ihour_out, int32 *imin_out, double *dsec_out
)
{
double tjd, d;
AS_BOOL have_leapsec = FALSE;
double dhour;
if (dsec >= 60.0) {
have_leapsec = TRUE;
dsec -= 1.0;
}
dhour = ((double) ihour) + ((double) imin) / 60.0 + dsec / 3600.0;
tjd = swe_julday(iyear, imonth, iday, 0, SE_GREG_CAL);
dhour -= d_timezone;
if (dhour < 0.0) {
tjd -= 1.0;
dhour += 24.0;
}
if (dhour >= 24.0) {
tjd += 1.0;
dhour -= 24.0;
}
swe_revjul(tjd + 0.001, SE_GREG_CAL, iyear_out, imonth_out, iday_out, &d);
*ihour_out = (int) dhour;
d = (dhour - (double) *ihour_out) * 60;
*imin_out = (int) d;
*dsec_out = (d - (double) *imin_out) * 60;
if (have_leapsec)
*dsec_out += 1.0;
}
/*
* functions for the handling of UTC
*/
/* Leap seconds were inserted at the end of the following days:*/
#define NLEAP_SECONDS 27 // ignoring end mark '0'
#define NLEAP_SECONDS_SPACE 100
static TLS int leap_seconds[NLEAP_SECONDS_SPACE] = {
19720630,
19721231,
19731231,
19741231,
19751231,
19761231,
19771231,
19781231,
19791231,
19810630,
19820630,
19830630,
19850630,
19871231,
19891231,
19901231,
19920630,
19930630,
19940630,
19951231,
19970630,
19981231,
20051231,
20081231,
20120630,
20150630,
20161231,
0 /* keep this 0 as end mark */
};
#define J1972 2441317.5
#define NLEAP_INIT 10
/* Read additional leap second dates from external file, if given.
*/
static int init_leapsec(void)
{
FILE *fp;
int ndat, ndat_last;
int tabsiz = 0;
int i;
char s[AS_MAXCH];
char *sp;
if (!init_leapseconds_done) {
init_leapseconds_done = TRUE;
tabsiz = NLEAP_SECONDS;
ndat_last = leap_seconds[NLEAP_SECONDS - 1];
/* no error message if file is missing */
if ((fp = swi_fopen(-1, "seleapsec.txt", swed.ephepath, NULL)) == NULL)
return NLEAP_SECONDS;
while(fgets(s, AS_MAXCH, fp) != NULL) {
sp = s;
while (*sp == ' ' || *sp == '\t') sp++;
sp++;
if (*sp == '#' || *sp == '\n')
continue;
ndat = atoi(s);
if (ndat <= ndat_last)
continue;
/* table space is limited. no error msg, if exceeded */
if (tabsiz >= NLEAP_SECONDS_SPACE)
return tabsiz;
leap_seconds[tabsiz] = ndat;
tabsiz++;
}
if (tabsiz > NLEAP_SECONDS) leap_seconds[tabsiz] = 0; /* end mark */
fclose(fp);
return tabsiz;
}
/* find table size */
tabsiz = 0;
for (i = 0; i < NLEAP_SECONDS_SPACE; i++) {
if (leap_seconds[i] == 0)
break;
else
tabsiz++;
}
return tabsiz;
}
/*
* Input: Clock time UTC, year, month, day, hour, minute, second (decimal).
* gregflag Calendar flag
* serr error string
* Output: An array of doubles:
* dret[0] = Julian day number TT (ET)
* dret[1] = Julian day number UT1
*
* Function returns OK or Error.
*
* - Before 1972, swe_utc_to_jd() treats its input time as UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, input time is treated as UTC.
* - If delta_t - nleap - 32.184 > 1, the input time is treated as UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) is not updated
* for a long time.
*/
int32 CALL_CONV swe_utc_to_jd(int32 iyear, int32 imonth, int32 iday, int32 ihour, int32 imin, double dsec, int32 gregflag, double *dret, char *serr)
{
double tjd_ut1, tjd_et, tjd_et_1972, dhour, d;
int iyear2, imonth2, iday2;
int i, j, ndat, nleap, tabsiz_nleap;
/*
* error handling: invalid iyear etc.
*/
tjd_ut1 = swe_julday(iyear, imonth, iday, 0, gregflag);
swe_revjul(tjd_ut1, gregflag, &iyear2, &imonth2, &iday2, &d);
if (iyear != iyear2 || imonth != imonth2 || iday != iday2) {
if (serr != NULL)
sprintf(serr, "invalid date: year = %d, month = %d, day = %d", iyear, imonth, iday);
return ERR;
}
if (ihour < 0 || ihour > 23
|| imin < 0 || imin > 59
|| dsec < 0 || dsec >= 61
|| (dsec >= 60 && (imin < 59 || ihour < 23 || tjd_ut1 < J1972))) {
if (serr != NULL)
sprintf(serr, "invalid time: %d:%d:%.2f", ihour, imin, dsec);
return ERR;
}
dhour = (double) ihour + ((double) imin) / 60.0 + dsec / 3600.0;
/*
* before 1972, we treat input date as UT1
*/
if (tjd_ut1 < J1972) {
dret[1] = swe_julday(iyear, imonth, iday, dhour, gregflag);
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
return OK;
}
/*
* if gregflag = Julian calendar, convert to gregorian calendar
*/
if (gregflag == SE_JUL_CAL) {
gregflag = SE_GREG_CAL;
swe_revjul(tjd_ut1, gregflag, &iyear, &imonth, &iday, &d);
}
/*
* number of leap seconds since 1972:
*/
tabsiz_nleap = init_leapsec();
nleap = NLEAP_INIT; /* initial difference between UTC and TAI in 1972 */
ndat = iyear * 10000 + imonth * 100 + iday;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat <= leap_seconds[i])
break;
nleap++;
}
/*
* For input dates > today:
* If leap seconds table is not up to date, we'd better interpret the
* input time as UT1, not as UTC. How do we find out?
* Check, if delta_t - nleap - 32.184 > 0.9
*/
d = swe_deltat_ex(tjd_ut1, -1, NULL) * 86400.0;
if (d - (double) nleap - 32.184 >= 1.0) {
dret[1] = tjd_ut1 + dhour / 24.0;
dret[0] = dret[1] + swe_deltat_ex(dret[1], -1, NULL);
return OK;
}
/*
* if input second is 60: is it a valid leap second ?
*/
if (dsec >= 60) {
j = 0;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat == leap_seconds[i]) {
j = 1;
break;
}
}
if (j != 1) {
if (serr != NULL)
sprintf(serr, "invalid time (no leap second!): %d:%d:%.2f", ihour, imin, dsec);
return ERR;
}
}
/*
* convert UTC to ET and UT1
*/
/* the number of days between input date and 1 jan 1972: */
d = tjd_ut1 - J1972;
/* SI time since 1972, ignoring leap seconds: */
d += (double) ihour / 24.0 + (double) imin / 1440.0 + dsec / 86400.0;
/* ET (TT) */
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
tjd_et = tjd_et_1972 + d + ((double) (nleap - NLEAP_INIT)) / 86400.0;
d = swe_deltat_ex(tjd_et, -1, NULL);
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
tjd_ut1 = tjd_et - swe_deltat_ex(tjd_ut1, -1, NULL);
dret[0] = tjd_et;
dret[1] = tjd_ut1;
return OK;
}
/*
* Input: tjd_et Julian day number, terrestrial time (ephemeris time).
* gregfalg Calendar flag
* Output: UTC year, month, day, hour, minute, second (decimal).
*
* - Before 1 jan 1972 UTC, output UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, output is UTC.
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) has not been
* updated for a long time.
*/
void CALL_CONV swe_jdet_to_utc(double tjd_et, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
{
int i;
int second_60 = 0;
int iyear2, imonth2, iday2, nleap, ndat, tabsiz_nleap;
double d, tjd, tjd_et_1972, tjd_ut, dret[10];
/*
* if tjd_et is before 1 jan 1972 UTC, return UT1
*/
tjd_et_1972 = J1972 + (32.184 + NLEAP_INIT) / 86400.0;
d = swe_deltat_ex(tjd_et, -1, NULL);
tjd_ut = tjd_et - swe_deltat_ex(tjd_et - d, -1, NULL);
tjd_ut = tjd_et - swe_deltat_ex(tjd_ut, -1, NULL);
if (tjd_et < tjd_et_1972) {
swe_revjul(tjd_ut, gregflag, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0;
return;
}
/*
* minimum number of leap seconds since 1972; we may be missing one leap
* second
*/
tabsiz_nleap = init_leapsec();
swe_revjul(tjd_ut-1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
ndat = iyear2 * 10000 + imonth2 * 100 + iday2;
nleap = 0;
for (i = 0; i < tabsiz_nleap; i++) {
if (ndat <= leap_seconds[i])
break;
nleap++;
}
/* date of potentially missing leapsecond */
if (nleap < tabsiz_nleap) {
i = leap_seconds[nleap];
iyear2 = i / 10000;
imonth2 = (i % 10000) / 100;;
iday2 = i % 100;
tjd = swe_julday(iyear2, imonth2, iday2, 0, SE_GREG_CAL);
swe_revjul(tjd+1, SE_GREG_CAL, &iyear2, &imonth2, &iday2, &d);
swe_utc_to_jd(iyear2,imonth2,iday2, 0, 0, 0, SE_GREG_CAL, dret, NULL);
d = tjd_et - dret[0];
if (d >= 0) {
nleap++;
} else if (d < 0 && d > -1.0/86400.0) {
second_60 = 1;
}
}
/*
* UTC, still unsure about one leap second
*/
tjd = J1972 + (tjd_et - tjd_et_1972) - ((double) nleap + second_60) / 86400.0;
swe_revjul(tjd, SE_GREG_CAL, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0 + second_60;
/*
* For input dates > today:
* If leap seconds table is not up to date, we'd better interpret the
* input time as UT1, not as UTC. How do we find out?
* Check, if delta_t - nleap - 32.184 > 0.9
*/
d = swe_deltat_ex(tjd_et, -1, NULL);
d = swe_deltat_ex(tjd_et - d, -1, NULL);
if (d * 86400.0 - (double) (nleap + NLEAP_INIT) - 32.184 >= 1.0) {
swe_revjul(tjd_et - d, SE_GREG_CAL, iyear, imonth, iday, &d);
*ihour = (int32) d;
d -= (double) *ihour;
d *= 60;
*imin = (int32) d;
*dsec = (d - (double) *imin) * 60.0;
}
if (gregflag == SE_JUL_CAL) {
tjd = swe_julday(*iyear, *imonth, *iday, 0, SE_GREG_CAL);
swe_revjul(tjd, gregflag, iyear, imonth, iday, &d);
}
}
/*
* Input: tjd_ut Julian day number, universal time (UT1).
* gregfalg Calendar flag
* Output: UTC year, month, day, hour, minute, second (decimal).
*
* - Before 1 jan 1972 UTC, output UT1.
* Note: UTC was introduced in 1961. From 1961 - 1971, the length of the
* UTC second was regularly changed, so that UTC remained very close to UT1.
* - From 1972 on, output is UTC.
* - If delta_t - nleap - 32.184 > 1, the output is UT1.
* Note: Like this we avoid errors greater than 1 second in case that
* the leap seconds table (or the Swiss Ephemeris version) has not been
* updated for a long time.
*/
void CALL_CONV swe_jdut1_to_utc(double tjd_ut, int32 gregflag, int32 *iyear, int32 *imonth, int32 *iday, int32 *ihour, int32 *imin, double *dsec)
{
double tjd_et = tjd_ut + swe_deltat_ex(tjd_ut, -1, NULL);
swe_jdet_to_utc(tjd_et, gregflag, iyear, imonth, iday, ihour, imin, dsec);
}