-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmlflow_neptune_plugin.py
90 lines (70 loc) · 3 KB
/
mlflow_neptune_plugin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality
# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
import logging
import sys
import warnings
from urllib.parse import urlparse
import mlflow
import mlflow.sklearn
import numpy as np
import pandas as pd
from mlflow.models.signature import infer_signature
from neptune import ANONYMOUS_API_TOKEN
from neptune_mlflow_plugin import create_neptune_tracking_uri
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
# (Neptune) Create Neptune tracking URI
neptune_uri = create_neptune_tracking_uri(
api_token=ANONYMOUS_API_TOKEN, # Replace with your own
project="common/mlflow-integration", # Replace with your own
tags=["mlflow", "plugin", "script"], # (optional) use your own
)
# (Neptune) Use Neptune tracking URI to log MLflow runs
mlflow.set_tracking_uri(neptune_uri)
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
if __name__ == "__main__":
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine-quality csv file from the URL
csv_url = (
"https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
raise Exception(f"Unable to download training data. Error: {e}")
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
alpha = 0.5
l1_ratio = 0.5
with mlflow.start_run():
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print("Elasticnet model (alpha={:f}, l1_ratio={:f}):".format(alpha, l1_ratio))
print(f" RMSE: {rmse}")
print(f" MAE: {mae}")
print(f" R2: {r2}")
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
predictions = lr.predict(train_x)
signature = infer_signature(train_x, predictions)
# Model registry does not work with Neptune URI
mlflow.sklearn.log_model(lr, "model", signature=signature)