假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
想上第 n
级台阶,可从第 n-1
级台阶爬一级上去,也可从第 n-2
级台阶爬两级上去,即:f(n) = f(n-1) + f(n-2)
。递推求解即可。
class Solution:
def climbStairs(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return b
class Solution {
public int climbStairs(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = a + b;
a = b;
b = c;
}
return b;
}
}
class Solution {
public:
int climbStairs(int n) {
int a = 0, b = 1;
for (int i = 0; i < n; ++i) {
int c = a + b;
a = b;
b = c;
}
return b;
}
};
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function (n) {
let a = 0,
b = 1;
for (let i = 0; i < n; ++i) {
const c = a + b;
a = b;
b = c;
}
return b;
};
func climbStairs(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, a + b
}
return b
}