-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscratch_2.py
80 lines (71 loc) · 2.09 KB
/
scratch_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# %%
import torch
from utils import *
from transformer_lens import *
sd = torch.load("/workspace/Crosscoders/checkpoints/version_2/17.pt")
model = HookedTransformer.from_pretrained("gpt2-small")
normalisation_factor = torch.tensor(
[
1.8281,
2.0781,
2.2031,
2.4062,
2.5781,
2.8281,
3.1562,
3.6875,
4.3125,
5.4062,
7.8750,
16.5000,
],
device="cuda:0",
dtype=torch.float32,
)
# %%
def fold_scale_into_sd(sd, normalisation_factor):
d = {}
print(sd.keys())
d["W_enc"] = sd["W_enc"] / normalisation_factor[:, None, None]
d["W_dec"] = sd["W_dec"] * normalisation_factor[None, :, None]
d["b_enc"] = sd["b_enc"]
d["b_dec"] = sd["b_dec"] * normalisation_factor[:, None]
return d
d = fold_scale_into_sd(sd, normalisation_factor)
for k in sd.keys():
print(k, sd[k].shape, d[k].shape)
# %%
cfg = json.load(open("/workspace/Crosscoders/checkpoints/version_2/17_cfg.json", "r"))
cc = CrossCoder(cfg, model)
cc_normed = CrossCoder(cfg, model)
cc_normed.load_state_dict(d)
# %%
data = load_dataset("stas/openwebtext-10k")
# %%
s = data["train"][0]["text"]
tokens = model.to_tokens(s)
print(tokens.shape)
# %%
resids = get_stacked_resids(model, tokens, drop_bos=True)
resids.shape
# %%
resids = resids.squeeze(0)
recons = cc(resids)
recons_normed = cc_normed(resids)
print(resids.norm(), (resids - recons).norm(), (resids - recons_normed).norm())
# %%
cfg = json.load(open("/workspace/Crosscoders/checkpoints/version_12/1_cfg.json", "r"))
sd = torch.load("/workspace/Crosscoders/checkpoints/version_12/1.pt")
sd_normed = fold_scale_into_sd(sd, normalisation_factor)
name = "lambda_2_64k"
json.dump(cfg, open(f"/workspace/Crosscoders/checkpoints/{name}_cfg.json", "w"))
torch.save(sd_normed, f"/workspace/Crosscoders/checkpoints/{name}.pt")
# %%
cc_new = CrossCoder.load(name, model)
print(cc_new.get_losses(resids))
print(cc.get_losses(resids))
print(cc_normed.get_losses(resids))
# %%
import huggingface_hub
upload_folder_to_hf(f"/workspace/Crosscoders/checkpoints/", "crosscoders-gpt2-small")
# %%