-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoronoiBoost.py
449 lines (330 loc) · 18.3 KB
/
voronoiBoost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
from geovoronoi import voronoi_regions_from_coords
import networkx as nx
import pickle
import numpy as np
import pandas as pd
import math
from shapely.geometry import shape as Shape
from shapely.geometry import Point, Polygon, MultiPolygon, mapping
import json
from sortedcontainers import SortedSet
import itertools
from scipy.spatial import ConvexHull
from shapely.geometry import MultiPoint
from shapely import affinity
import mapply
import lzma
mapply.init(
n_workers=40,
chunk_size=20,
progressbar=False
)
def earth_distance(origin, destination):
lon1, lat1 = origin
lon2, lat2 = destination
radius = 6371000 # meters!!!!
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
math.sin(dlon / 2) * math.sin(dlon / 2))
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = radius * c
return round(d, 2)
class VoronoiBoost:
def __init__(self, sites, border, model_path):
self.taus = [.25, .5, .75, .85, .95]
self.taus_scales = {}
self.border = border
self.sites = np.array(sites)
self.n = len(sites)
self.ids = list(range(len(sites)))
self.lats = [site[0] for site in sites]
self.lons = [site[1] for site in sites]
self.model_path = model_path
self.df_bs = pd.DataFrame(data={
'id': self.ids,
'lon': self.lons,
'lat': self.lats,
})
self.g_delaunay = nx.Graph()
self.model = None
self.selected_features = [
'mean_d_neighbors_6_1_div',
'mean_d_neighbors_8_1_div',
'mean_d_neighbors_10_1_div',
'mean_distance_6_1_div',
'mean_distance_8_1_div',
'mean_distance_10_1_div',
'min_d_neighbors_8',
'convex_hull_width_8_1_div',
'mean_area_neighbors_4_1_div',
'mean_area_neighbors_6_1_div',
'mean_area_neighbors_8_1_div',
'mean_d_t_barc_v_10_1_div',
'd_v_max',
'v_diameter_v_width_div',
]
def load_model(self):
print('Loading model 📦...')
fd = lzma.open(self.model_path, 'rb')
self.model = pickle.load(fd)
fd.close()
return self.model
def compute_voronoi_tessellation(self):
print('Computing Voronoi Tessellation 💻...')
region_polys, region_pts = voronoi_regions_from_coords(self.sites, self.border)
# Check that the Voronoi polygons are valid
if len(region_pts) != self.n:
# show a sample of the points that were assigned to more than one polygon
print(list(filter(lambda k_v: len(k_v[1]) > 1, region_pts.items()))[0:10])
raise Exception('Number of sites and assignments do not match 😨')
else:
print(f'Voronoi Tessellation successful 🤩.')
voronois = [0 for i in range(self.n)]
for voronoi_index, pts_index, in region_pts.items():
pts_index = pts_index[0] # only one point per polygon
voronois[pts_index] = region_polys[voronoi_index]
# if multiple polygons are returned, keep only the one that contains the BS
for index, (lat, lon, voronoi) in enumerate(zip(self.lats, self.lons, voronois)):
if voronoi.type == 'Polygon':
continue
# else is a MultiPolygon
for polygon in voronoi:
if Point(lat, lon).within(polygon):
voronois[index] = polygon
self.df_bs['voronoi'] = voronois
return list(self.df_bs['voronoi'])
def compute_delaunay(self):
print('Computing Delaunay Graph 💻...')
map_node_coords = {}
vertexs = {}
# set of voronois that share a vertex
for bs in self.df_bs.to_dict(orient='records'):
bs_id = bs['id']
lat, lon = bs['lat'], bs['lon']
voronoi = bs['voronoi']
voronoi_lats = voronoi.exterior.coords.xy[0]
voronoi_lons = voronoi.exterior.coords.xy[1]
for lat, lon in zip(voronoi_lats, voronoi_lons):
vertex = (lat, lon)
if vertex not in vertexs:
vertexs[vertex] = SortedSet()
vertexs[vertex].add(bs_id)
# add nodes to the graph
for bs in self.df_bs.to_dict(orient='records'):
bs_id = bs['id']
lat, lon = bs['lat'], bs['lon']
self.g_delaunay.add_node(bs_id, lat=lat, lon=lon)
# add edges to the graph
for vertex in vertexs:
# all pair of BSs that share a vertex
# given that self.g_delaunay is undirected, we only need to add one edge
for pair in itertools.combinations(vertexs[vertex], r=2):
node_1 = pair[0]
node_2 = pair[1]
node_1_coord = self.sites[node_1]
node_2_coord = self.sites[node_2]
distance = earth_distance(node_1_coord, node_2_coord)
self.g_delaunay.add_edge(node_1, node_2, weight=distance)
print(f'Delaunay Graph computed 🤩.')
return self.g_delaunay
def get_average_d_neighbors(self, node_id, level):
neighbors_level_down = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level-1).keys())
neighbors_level = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level).keys())
neighbors_level_exclusive = set(neighbors_level) - set(neighbors_level_down)
if len(neighbors_level_exclusive) == 0:
if len(neighbors_level) == self.n:
min_distance, mean_distance = self.get_average_d_neighbors(node_id, level-1)
return min_distance, mean_distance
else:
min_distance, mean_distance = self.get_average_d_neighbors(node_id, level+1)
return min_distance, mean_distance
site = self.sites[node_id]
distances = []
for node_id_neighbor in neighbors_level_exclusive:
site_neighbor = self.sites[node_id_neighbor]
distance = earth_distance(site, site_neighbor)
distances.append(distance)
min_distance = min(distances)
mean_distance = np.mean(distances)
return min_distance, mean_distance
def get_distance_between_neighbors_level(self, node_id, level):
neighbors_level_down = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level-1).keys())
neighbors_level = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level).keys())
# set of exclusive neighbors in level i
neighbors_level_exclusive = set(neighbors_level) - set(neighbors_level_down)
# if in this level the number of neighboords dont allow to compute the feature, go to the next level
if len(neighbors_level_exclusive) < 2:
if len(neighbors_level) == self.n:
mean_distance = self.get_distance_between_neighbors_level(node_id, level-1)
return mean_distance
else:
mean_distance = self.get_distance_between_neighbors_level(node_id, level+1)
return mean_distance
# set of all possible pairs of neighbors
neighbors_level_pairs = list(itertools.combinations(neighbors_level_exclusive, 2))
distances = []
for node_id_1, node_id_2 in neighbors_level_pairs:
site_1 = self.sites[node_id_1]
# if node_id_2 in set(self.g_delaunay.neighbors(node_id_1)): # if node_id_2 is neighbor of node_id_1 and viceversa
site_2 = self.sites[node_id_2]
distance = earth_distance(site_1, site_2)
distances.append(distance)
if len(distances) == 0:
raise Exception('No pair of neighbors in level i 😨')
mean_distance = np.mean(distances)
return mean_distance
def get_d_vk(self, node_id): # distance to vertexs k (k=3)
site = self.sites[node_id]
bs = self.df_bs[self.df_bs['id'] == node_id].iloc[0]
voronoi = bs['voronoi']
voronoi_lats, voronoi_lons = voronoi.exterior.coords.xy
vertexs = list(zip(voronoi_lats, voronoi_lons))
distances = [earth_distance(site, vertex) for vertex in vertexs]
v_max = max(distances)
v_mean = np.mean(distances)
return v_max
def get_voronoi_diameter_width(self, node_id):
bs = self.df_bs[self.df_bs['id'] == node_id].iloc[0]
voronoi = bs['voronoi']
minimum_rotated_rectangle = voronoi.minimum_rotated_rectangle
lats, lons = minimum_rotated_rectangle.exterior.coords.xy
side_1 = earth_distance((lats[0], lons[0]), (lats[1], lons[1]))
side_2 = earth_distance((lats[1], lons[1]), (lats[2], lons[2]))
voronoi_diameter = max([side_1, side_2]) # diameter
voronoi_width = min([side_1, side_2]) # width
return voronoi_diameter, voronoi_width
def get_average_area_neighbors(self, node_id, level):
# TODO: train model with latlon area
neighbors_level = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level).keys())
voronoi_areas = []
for node_id_neighbor in neighbors_level:
bs = self.df_bs[self.df_bs['id'] == node_id_neighbor].iloc[0]
voronoi = bs['voronoi']
voronoi_areas.append(voronoi.area)
mean_area = np.mean(voronoi_areas)
return mean_area
def get_convex_hull_area_perimeter_diameter_width(self, node_id, level):
neighbors_level = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level).keys())
points = []
for node_id_neighbor in neighbors_level:
points.append(self.sites[node_id_neighbor])
# if in this level the number of neighboords dont allow to compute the feature, go to the next level
if len(points) < 3:
hull_width = self.get_convex_hull_area_perimeter_diameter_width(node_id, level+1)
return hull_width
hull = ConvexHull(points)
hull = MultiPoint(hull.points).convex_hull
minimum_rotated_rectangle = hull.minimum_rotated_rectangle
lons, lats = minimum_rotated_rectangle.exterior.coords.xy
side_1 = earth_distance((lats[0], lons[0]), (lats[1], lons[1]))
side_2 = earth_distance((lats[1], lons[1]), (lats[2], lons[2]))
hull_diameter = max([side_1, side_2]) # diameter
hull_width = min([side_1, side_2]) # width
return hull_width
def get_average_d_t_barc_v(self, node_id, level):
neighbors_level = list(nx.single_source_shortest_path_length(self.g_delaunay, node_id, cutoff=level).keys())
distances_to_centroid = []
for node_id_neighbor in neighbors_level:
site = self.sites[node_id_neighbor]
bs = self.df_bs[self.df_bs['id'] == node_id_neighbor].iloc[0]
voronoi = bs['voronoi']
voronoi_centroid = np.array(voronoi.centroid.coords[0])
distance_to_centroid = earth_distance(site, voronoi_centroid)
distances_to_centroid.append(distance_to_centroid)
mean_distance_to_centroid = np.mean(distances_to_centroid)
return mean_distance_to_centroid
def get_features(self):
print('Computing features 🤖...')
self.df_bs[['min_d_neighbors_1', 'mean_d_neighbors_1']] = self.df_bs.mapply(lambda row: self.get_average_d_neighbors(row['id'], 1), axis=1, result_type='expand')
self.df_bs[['min_d_neighbors_6', 'mean_d_neighbors_6']] = self.df_bs.mapply(lambda row: self.get_average_d_neighbors(row['id'], 6), axis=1, result_type='expand')
self.df_bs[['min_d_neighbors_8', 'mean_d_neighbors_8']] = self.df_bs.mapply(lambda row: self.get_average_d_neighbors(row['id'], 8), axis=1, result_type='expand')
self.df_bs[['min_d_neighbors_10', 'mean_d_neighbors_10']] = self.df_bs.mapply(lambda row: self.get_average_d_neighbors(row['id'], 10), axis=1, result_type='expand')
self.df_bs['mean_d_neighbors_6_1_div'] = self.df_bs['mean_d_neighbors_6']/self.df_bs['mean_d_neighbors_1']
self.df_bs['mean_d_neighbors_8_1_div'] = self.df_bs['mean_d_neighbors_8']/self.df_bs['mean_d_neighbors_1']
self.df_bs['mean_d_neighbors_10_1_div'] = self.df_bs['mean_d_neighbors_10']/self.df_bs['mean_d_neighbors_1']
self.df_bs['mean_distance_1'] = self.df_bs.mapply(lambda row: self.get_distance_between_neighbors_level(row['id'], 1), axis=1)
self.df_bs['mean_distance_6'] = self.df_bs.mapply(lambda row: self.get_distance_between_neighbors_level(row['id'], 6), axis=1)
self.df_bs['mean_distance_8'] = self.df_bs.mapply(lambda row: self.get_distance_between_neighbors_level(row['id'], 8), axis=1)
self.df_bs['mean_distance_10'] = self.df_bs.mapply(lambda row: self.get_distance_between_neighbors_level(row['id'], 10), axis=1)
self.df_bs['mean_distance_6_1_div'] = self.df_bs['mean_distance_6']/self.df_bs['mean_distance_1']
self.df_bs['mean_distance_8_1_div'] = self.df_bs['mean_distance_8']/self.df_bs['mean_distance_1']
self.df_bs['mean_distance_10_1_div'] = self.df_bs['mean_distance_10']/self.df_bs['mean_distance_1']
self.df_bs['d_v_max'] = self.df_bs.mapply(lambda row: self.get_d_vk(row['id']), axis=1)
self.df_bs[['v_diameter', 'v_width']] = self.df_bs.mapply(lambda row: self.get_voronoi_diameter_width(row['id']), axis=1, result_type='expand')
self.df_bs['v_diameter_v_width_div'] = self.df_bs.mapply(lambda row: row['v_diameter']/row['v_width'], axis=1)
self.df_bs['mean_area_neighbors_1'] = self.df_bs.mapply(lambda row: self.get_average_area_neighbors(row['id'], 1), axis=1)
self.df_bs['mean_area_neighbors_4'] = self.df_bs.mapply(lambda row: self.get_average_area_neighbors(row['id'], 4), axis=1)
self.df_bs['mean_area_neighbors_6'] = self.df_bs.mapply(lambda row: self.get_average_area_neighbors(row['id'], 6), axis=1)
self.df_bs['mean_area_neighbors_8'] = self.df_bs.mapply(lambda row: self.get_average_area_neighbors(row['id'], 8), axis=1)
self.df_bs['mean_area_neighbors_4_1_div'] = self.df_bs['mean_area_neighbors_4'] / self.df_bs['mean_area_neighbors_1']
self.df_bs['mean_area_neighbors_6_1_div'] = self.df_bs['mean_area_neighbors_6'] / self.df_bs['mean_area_neighbors_1']
self.df_bs['mean_area_neighbors_8_1_div'] = self.df_bs['mean_area_neighbors_8'] / self.df_bs['mean_area_neighbors_1']
self.df_bs['convex_hull_width_1'] = self.df_bs.mapply(lambda row: self.get_convex_hull_area_perimeter_diameter_width(row['id'], 1), axis=1)
self.df_bs['convex_hull_width_8'] = self.df_bs.mapply(lambda row: self.get_convex_hull_area_perimeter_diameter_width(row['id'], 8), axis=1)
self.df_bs['convex_hull_width_8_1_div'] = self.df_bs['convex_hull_width_8']/self.df_bs[f'convex_hull_width_1']
self.df_bs['mean_d_t_barc_v_1'] = self.df_bs.mapply(lambda row: self.get_average_d_t_barc_v(row['id'], 1), axis=1)
self.df_bs['mean_d_t_barc_v_10'] = self.df_bs.mapply(lambda row: self.get_average_d_t_barc_v(row['id'], 10), axis=1)
self.df_bs['mean_d_t_barc_v_10_1_div'] = self.df_bs['mean_d_t_barc_v_10']/self.df_bs['mean_d_t_barc_v_1']
print('Features computed 🤓.')
self.df_bs = self.df_bs[ ['id', 'lon', 'lat', 'voronoi'] + self.selected_features ].copy()
return self.df_bs
def get_prediction(self):
print('Predicting 🤖...')
for tau in self.taus:
tau_column = f'tau_{tau}'
self.df_bs[tau_column] = tau
input = self.df_bs[ [f'tau_{tau}'] +
self.selected_features ].to_numpy()
self.df_bs[f'pred_opt_scale_{tau}'] = self.model.predict(input)
return self.df_bs
def _get_correct_scales(self, row):
taus_scales = []
for tau in self.taus:
pred_opt_scale_tau = row[f'pred_opt_scale_{tau}']
pred_opt_scale_tau = round(pred_opt_scale_tau, 3)
taus_scales.append((tau, pred_opt_scale_tau))
#reverse
taus_scales = taus_scales[::-1]
taus_scales_decrease = [taus_scales[0]]
for index in range(len(taus_scales)-1):
if taus_scales[index+1][1] < taus_scales[index][1]:
taus_scales_decrease.append(taus_scales[index+1])
# reverse again
taus_scales = taus_scales_decrease[::-1]
all_taus = len(self.taus) == len(taus_scales)
return taus_scales, all_taus
def get_corrected_scales(self):
print('Correcting scales ➕...')
self.df_bs[['taus_scales', 'all_taus']] = self.df_bs.mapply(lambda row: self._get_correct_scales(row),
axis=1,
result_type='expand')
print('Scales corrected ✅.')
return self.df_bs
def _get_voronois_overlap(self, row):
voronoi = row['voronoi']
taus_scales = row['taus_scales']
taus = [tau_scale[0] for tau_scale in taus_scales]
voronois_scaled = []
for tau, scale in taus_scales:
voronoi_scaled = affinity.scale(voronoi, scale, scale)
voronois_scaled.append(voronoi_scaled)
return list(zip(voronois_scaled, taus))
def get_voronois_overlap(self):
print('Computing Voronois overlap 🤓...')
self.df_bs['voronoi_boost'] = self.df_bs.mapply(lambda row: self._get_voronois_overlap(row), axis=1)
print('Voronois overlap computed ✅.')
return self.df_bs
def compute_voronoiBoost(self):
print('Computing VoronoiBoost 🤓...')
self.compute_voronoi_tessellation()
self.compute_delaunay()
self.get_features()
self.load_model()
self.get_prediction()
self.get_corrected_scales()
self.get_voronois_overlap()
self.df_bs = self.df_bs[['id', 'lat', 'lon', 'voronoi', 'voronoi_boost']].copy()
print('VoronoiBoost computed ✅.')
return self.df_bs