|
| 1 | +using System; |
| 2 | +using System.Collections.Generic; |
| 3 | +using System.Linq; |
| 4 | +using System.Security.Cryptography; |
| 5 | +using System.Text; |
| 6 | +using System.Threading.Tasks; |
| 7 | + |
| 8 | +namespace TgSharp.Core.MTProto.Crypto |
| 9 | +{ |
| 10 | + /* |
| 11 | + * AES-256-CTR Implementation |
| 12 | + * Original implementation by OpenSSL, ported to C# |
| 13 | + */ |
| 14 | + public class AesCtr |
| 15 | + { |
| 16 | + // The input encrypted as though 128bit counter mode is being used. The extra |
| 17 | + // state information to record how much of the 128bit block we have used is |
| 18 | + // contained in number, and the encrypted counter is kept in encryptedCount. Both |
| 19 | + // *num and ecount_buf must be initialised with zeros before the first call to |
| 20 | + // CRYPTO_ctr128_encrypt(). |
| 21 | + // |
| 22 | + // This algorithm assumes that the counter is in the x lower bits of the IV |
| 23 | + // (ivec), and that the application has full control over overflow and the rest |
| 24 | + // of the IV. This implementation takes NO responsibility for checking that |
| 25 | + // the counter doesn't overflow into the rest of the IV when incremented. |
| 26 | + |
| 27 | + public static void Ctr128Encrypt(byte[] input, byte[] key, ref byte[] ivec, ref byte[] encryptedCount, ref int number, byte[] output) |
| 28 | + { |
| 29 | + int n; |
| 30 | + n = number; |
| 31 | + |
| 32 | + int outputPos = 0, inputPos = 0; |
| 33 | + int len = input.Length; |
| 34 | + |
| 35 | + while (n != 0 && len != 0) |
| 36 | + { |
| 37 | + output[outputPos++] = (byte)(input[inputPos++] ^ encryptedCount[n]); |
| 38 | + --len; |
| 39 | + n = (n + 1) % 16; |
| 40 | + } |
| 41 | + |
| 42 | + while (len >= 16) |
| 43 | + { |
| 44 | + encryptedCount = EncryptBlock(ivec, key); |
| 45 | + Ctr128Inc(ivec); |
| 46 | + for (n = 0; n < 16; n += sizeof(ulong)) |
| 47 | + { |
| 48 | + var xoredResult = BitConverter.GetBytes(BitConverter.ToUInt64(input, inputPos + n) ^ BitConverter.ToUInt64(encryptedCount, n)); |
| 49 | + Buffer.BlockCopy(xoredResult, 0, output, outputPos + n, 8); |
| 50 | + } |
| 51 | + len -= 16; |
| 52 | + outputPos += 16; |
| 53 | + inputPos += 16; |
| 54 | + n = 0; |
| 55 | + } |
| 56 | + |
| 57 | + if (len != 0) |
| 58 | + { |
| 59 | + encryptedCount = EncryptBlock(ivec, key); |
| 60 | + Ctr128Inc(ivec); |
| 61 | + while (len-- != 0) |
| 62 | + { |
| 63 | + output[outputPos + n] = (byte)(input[inputPos + n] ^ encryptedCount[n]); |
| 64 | + ++n; |
| 65 | + } |
| 66 | + } |
| 67 | + number = n; |
| 68 | + } |
| 69 | + |
| 70 | + // increment counter (128-bit int) by 1 |
| 71 | + private static void Ctr128Inc(byte[] counter) |
| 72 | + { |
| 73 | + uint n = 16, c = 1; |
| 74 | + |
| 75 | + do |
| 76 | + { |
| 77 | + --n; |
| 78 | + c += counter[n]; |
| 79 | + counter[n] = (byte)c; |
| 80 | + c >>= 8; |
| 81 | + } while (n != 0); |
| 82 | + } |
| 83 | + |
| 84 | + private static byte[] EncryptBlock(byte[] toEncrypt, byte[] key) |
| 85 | + { |
| 86 | + using (var aes = new RijndaelManaged()) |
| 87 | + { |
| 88 | + aes.Key = key; |
| 89 | + aes.Mode = CipherMode.ECB; |
| 90 | + aes.Padding = PaddingMode.None; |
| 91 | + ICryptoTransform cTransform = aes.CreateEncryptor(); |
| 92 | + return cTransform.TransformFinalBlock(toEncrypt, 0, toEncrypt.Length); |
| 93 | + } |
| 94 | + } |
| 95 | + } |
| 96 | +} |
0 commit comments