-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_trigram.py
148 lines (113 loc) · 3.59 KB
/
nn_trigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import matplotlib
import random
import torch.nn.functional as F
words = open('data/names.txt').read().splitlines()
train = random.sample(words, int(0.8 * len(words))) # 80% train - 10% dev - 10% test
dev = random.sample(list(set(words) - set(train)), int(0.1 * len(words)))
test = list(set(words) - set(train) - set(dev))
# 2D array
chars = sorted(list(set(''.join(words))))
# conversion
stoi = {s:i+1 for i,s in enumerate(chars)}
stoi['.'] = 0
itos = {i:s for s,i in stoi.items()}
# create the training set of trigrams
xs, ys = [], [] # inputs, targets
for w in train:
chs = ['.'] + list(w) + ['.']
for ch1, ch2, ch3 in zip(chs, chs[1:], chs[2:]):
ix1 = stoi[ch1]
ix2 = stoi[ch2]
ix3 = stoi[ch3]
xs.append((ix1, ix2))
ys.append(ix3)
xs = torch.tensor(xs)
ys = torch.tensor(ys)
num = xs.shape[0]
# create the dev set of trigrams
xsd, ysd = [], [] # inputs, targets
for w in dev:
chs = ['.'] + list(w) + ['.']
for ch1, ch2, ch3 in zip(chs, chs[1:], chs[2:]):
ix1 = stoi[ch1]
ix2 = stoi[ch2]
ix3 = stoi[ch3]
xsd.append((ix1, ix2))
ysd.append(ix3)
xsd = torch.tensor(xsd)
ysd = torch.tensor(ysd)
numd = xsd.shape[0]
# create the test set of trigrams
xst, yst = [], [] # inputs, targets
for w in test:
chs = ['.'] + list(w) + ['.']
for ch1, ch2, ch3 in zip(chs, chs[1:], chs[2:]):
ix1 = stoi[ch1]
ix2 = stoi[ch2]
ix3 = stoi[ch3]
xst.append((ix1, ix2))
yst.append(ix3)
xst = torch.tensor(xst)
yst = torch.tensor(yst)
numt = xst.shape[0]
# init the network
W = torch.randn((27 * 2, 27), requires_grad=True) # generates 27 neurons weights for each of the 27 inputs
## TRAINING LOOP ##
for _ in range(200):
## FORWARD PASS ##
xenc = F.one_hot(xs, num_classes=27).float() # creates tensor with 0s and one 1 at xs' position
xenc = xenc.view(num, -1)
logits = xenc @ W
counts = logits.exp()
probs = counts / counts.sum(1, keepdim=True)
loss = -probs[torch.arange(num), ys].log().mean() # loss
## BACKWARD PASS ##
W.grad = None
loss.backward()
W.data += -50 * W.grad
print(loss.item())
print('----')
# evaluate on dev
for _ in range(200):
## FORWARD PASS ##
xenc = F.one_hot(xsd, num_classes=27).float() # creates tensor with 0s and one 1 at xs' position
xenc = xenc.view(numd, -1)
logits = xenc @ W
counts = logits.exp()
probs = counts / counts.sum(1, keepdim=True)
loss = -probs[torch.arange(numd), ysd].log().mean() + 0.1*(W**2).mean() # loss
## BACKWARD PASS ##
W.grad = None
loss.backward()
W.data += -50 * W.grad
print(loss.item())
# evaluate on test
t_loss = 0
num_loss = 0
for _ in range(200):
## FORWARD PASS ##
xenc = F.one_hot(xst, num_classes=27).float() # creates tensor with 0s and one 1 at xs' position
xenc = xenc.view(numt, -1)
logits = xenc @ W
counts = logits.exp()
probs = counts / counts.sum(1, keepdim=True)
loss = -probs[torch.arange(numt), yst].log().mean() # loss
t_loss += loss.item()
num_loss += 1
print(f"test loss: {t_loss / num_loss}")
for i in range(20):
out = []
ix1, ix2 = 0, 0
while True:
xenc = F.one_hot(torch.tensor([ix1, ix2]), num_classes=27).float()
xenc = xenc.view(1, -1)
logits = xenc @ W
counts = logits.exp()
p = counts / counts.sum(1, keepdim=True)
ix3 = torch.multinomial(p[0], num_samples=1, replacement=True).item() # predict
out.append(itos[ix3])
if ix3 == 0:
break
ix1, ix2 = ix2, ix3
print(''.join(out))