-
Notifications
You must be signed in to change notification settings - Fork 29
/
Commutant.m
40 lines (35 loc) · 1.46 KB
/
Commutant.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
%% COMMUTANT Computes the commutant of a set of matrices
% This function has one required argument:
% A: a matrix, or a cell containing one or more matrices of the same size
%
% C = Commutant(A) is a cell containing an orthonormal basis (in the
% Hilbert-Schmidt inner product) for the algebra of matrices that commute
% with each matrix in the cell A. The elements of C are sparse if and
% only if the elements of A are sparse.
%
% URL: http://www.qetlab.com/Commutant
% requires: opt_args.m, PartialTranspose.m, PermuteSystems.m, spnull.m,
% Swap.m
%
% author: Nathaniel Johnston ([email protected])
% package: QETLAB
% last updated: November 12, 2014
function C = Commutant(A)
if(iscell(A)) % allow A to just be a matrix instead of a cell if they only want the commutant of one matrix
A = [A{:}].';
else
A = A.';
end
dim = size(A,2);
num_ops = length(A)/dim;
% a sneaky (and fast) way of constructing the commutant that works by
% noting that AX = XA if and only if (kron(A,I) - kron(I,A^T))x = 0, where
% x is the vectorization of X
C = reshape(spnull( kron(PartialTranspose(A,2,[num_ops,dim;1,dim]),speye(dim)) - Swap(kron(speye(dim),A),[1,2],[dim,num_ops,dim],1) ),dim,[]);
% from here on, we're just reshaping the resulting data into matrices of
% the proper size and sparsity
num_comm_ops = size(C,2)/dim;
if(~issparse(A))
C = full(C);
end
C = mat2cell(PartialTranspose(C,2,[1,dim;num_comm_ops,dim]),dim,dim*ones(1,num_comm_ops));