-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame.py
882 lines (798 loc) · 28.6 KB
/
game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
#!/usr/bin/python
# from Tkinter import *
from mtTkinter import *
import tkFont
import random
class Board:
"""
Represents the board state, including properties of each space in the board and what spaces are occupied.
"""
def __init__(self,game,grid):
"""
Class constructor.
:param game: contains display settings
:type game: Game
:param grid: grid of board spaces
:type grid: 2-D array
"""
self.rows = len(grid)
self.cols = len(grid[0])
borderWidth = game.borderWidth
gridlineWidth = game.gridlineWidth
self.grid = grid
self.occupied = [[grid[r][c] == ' ' for c in range(self.cols)] for r in range(self.rows)]
self.size = sum([sum([1 for c in range(self.cols) if not self.occupied[r][c]]) for r in range(self.rows)])
# Logic for uniform square spaces on board and centered board on canvas.
self.xMargin = self.yMargin = borderWidth
block_height = (game.canvasHeight-2*borderWidth)/self.rows
block_width = (game.boardWidth-2*borderWidth)/self.cols
self.blockSize = min(block_height,block_width)
if block_height < block_width:
self.xMargin += ((game.boardWidth-2*borderWidth)-self.blockSize*self.cols)/2
else:
self.yMargin += ((game.canvasHeight-2*borderWidth)-self.blockSize*self.rows)/2
# Check for symmetry
self.horizontalSymmetry = equivalentGrids(flipHorizontally(grid),grid)
self.verticalSymmetry = equivalentGrids(flipVertically(grid),grid)
self.rotationalSymmetry = [equivalentGrids(rotateNTimes(grid,n+1),grid) for n in range(3)]
def validMove(self,tile,r,c):
"""
Determines whether the given tile may be placed on the board at row *r* and col *c*.
:param tile: tile to check
:type tile: Tile
:param r: row at which to check if tile can be placed
:type r: int
:param c: col at which to check if tile can be placed
:type c: int
"""
if r < 0 or c < 0: return False
for row in range(len(tile.grid)):
for col in range(len(tile.grid[0])):
if tile.grid[row][col] != ' ':
if c+col >= len(self.grid[0]) or r+row >= len(self.grid) or self.occupied[r+row][c+col] or self.grid[r+row][c+col] != tile.grid[row][col]:
return False
return True
def placeTile(self,tile,r,c):
"""
Places tile and updates the board accordingly.
:param tile: the tile being placed
:type tile: Tile
:param r: row at which to play tile
:type r: int
:param c: col at which to play tile
:type c: int
"""
for row in range(len(tile.grid)):
for col in range(len(tile.grid[0])):
if tile.grid[row][col] != ' ':
self.occupied[r+row][c+col] = True
tile.placeTile(r,c)
def removeTile(self,tile):
"""
Takes tile off of board.
:param tile: the tile to be removed from the board and despawned
:type tile: Tile
"""
for row in range(len(tile.grid)):
for col in range(len(tile.grid[0])):
if tile.grid[row][col] != ' ':
self.occupied[tile.row+row][tile.col+col] = False
tile.despawnTile()
def clear(self):
"""
Resets the board so that no spaces are occupied.
"""
self.occupied = [[self.grid[r][c] == ' ' for c in range(self.cols)] for r in range(self.rows)]
def nextEmptySpace(self, startrow, startcol):
"""
Returns the next empty spaced, scanning the board top to bottom, left to right.
:param startrow: the row to start scanning from
:type startrow: int
:param startcol: the col to start scanning from
:type startcol: int
:returns: (row,col) tuple corresponding to first empty space in the board
:rtype: tuple(int,int)
"""
row = startrow
col = startcol
while self.occupied[row][col]:
col += 1
if col >= self.cols:
col = 0
row += 1
if row >= self.rows:
print row
printGrid(self.occupied)
return -1,-1
return row,col
class TileBuilder:
"""
Helper class used to create the tiles.
"""
def __init__(self,v):
"""
Class constructor.
:param v: the character to be stored in the cell
:type v: char
"""
self.value = v
self.north = None
self.east = None
self.south = None
self.west = None
self.grid = [[v]]
class Tile:
"""
Represents the tiles in the game.
"""
def __init__(self):
"""
Class constructor.
"""
self.grid = None
self.spawned = False # Boolean for whether tile should be drawn in pile/board
self.col = -1 # coordinate of top left element of grid on board; -1 means not on board
self.row = -1 # coordinate of top left element of grid on board; -1 means not on board
self.x = -1 # coordinate on canvas; -1 means not on board
self.y = -1 # coordinate on canvas; -1 means not on board
def spawnTile(self,game):
"""
Takes the tile out of the tile list and moves it to a random spot in the pile (not on the board).
:param game: the game containing board and tile information
:type game: Game
"""
self.spawned = True
self.col = -1
self.row = -1
self.x = game.boardWidth+game.separatorWidth+game.borderWidth + int(random.random()*(game.pileWidth-2*game.borderWidth-len(self.grid[0])*game.board.blockSize))
self.y = game.borderWidth + int(random.random()*(game.canvasHeight-2*game.borderWidth-len(self.grid)*game.board.blockSize))
def despawnTile(self):
"""
Returns tile to tile list and resets both board and game coordinates.
"""
self.spawned = False
self.col = -1
self.row = -1
self.x = 0
self.y = 0
def placeTile(self,r,c):
"""
Spawns the tile and updates its board coordinates.
:param r: row coordinate
:type r: int
:param c: row coordinate
:type c: int
"""
self.spawned = True
self.row = r
self.col = c
def drawInList(self,x,y,game,canvas,blockSize):
"""
Draws this tile in the tile list. If the tile is spawned, it is drawn in grayscale.
:param x: describes top-left of block of tile list in which to draw the tile
:type x: int
:param y: describes top-left of block of tile list in which to draw the tile
:type y: int
:param game: the game containing board and tile information
:type game: Game
:param canvas: the canvas on which to draw the tile list
:type canvas: TKinter.Canvas
:param blockSize: the desired size of the blocks within the tile list, which is calculated outside the function in order to have uniformity across the tile list
:type blockSize: int
"""
grid = self.grid
board = game.board
# Center tile
width = (game.tilelistWidth-2*game.tilelistBorderWidth)*game.tilelistImageAreaFactor
x += (width - blockSize*len(grid[0]))/2
y += (width - blockSize*len(grid))/2
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = x+col*blockSize
y1 = y+row*blockSize
x2 = x1+blockSize
y2 = y1+blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill='black',width=game.gridlineWidth,outline='black')
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
color1 = game.tileColors[self.key] if not self.spawned else toGrayScale(game.tileColors[self.key])
color2 = game.boardColors[c] if not self.spawned else toGrayScale(game.boardColors[c])
x1 = x+col*blockSize
y1 = y+row*blockSize
x2 = x1+blockSize
y2 = y1+blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill=color1,width=0)
canvas.create_rectangle(x1+blockSize*1/5,y1+blockSize*1/5,x2-blockSize*1/5,y2-blockSize*1/5,fill=color2,width=0)
class TileBucket:
"""
Container for all tiles.
"""
def __init__(self,game,tiles):
"""
Class constructor.
"""
self.tiles = tiles
largestTileDim = max([max(len(tiles[x].grid),len(tiles[x].grid[0])) for x in tiles])
self.blockSize = (game.tilelistWidth-2*game.tilelistBorderWidth)*game.tilelistImageAreaFactor / largestTileDim
def drawTileList(self,game,canvas):
"""
Draws tile list. Spawned tiles are grayed out.
:param game: contains drawing constants
:type game: Game
:param canvas: the canvas on which to draw the tileBucket
:type canvas: TKinter.Canvas
"""
size = game.tilelistWidth
bw = game.tilelistBorderWidth
tiles = self.tiles
canvas.config(scrollregion=(0,0,size,size*len(tiles)+bw-bw*len(tiles)))
canvas.create_rectangle(0,0,size,size*len(tiles)+bw-bw*len(tiles),fill=game.bgColor,width=0)
count = 0
for key in tiles:
tile = tiles[key]
bgColor = game.bgColor if not tile.spawned else toGrayScale(game.bgColor)
canvas.create_rectangle(bw/2,count*size+bw/2-bw*count,size-bw/2,(count+1)*size-bw/2-bw*count,fill=bgColor,width=bw)
x = bw+(size-2*bw)*(1-game.tilelistImageAreaFactor)/2
y = bw+(size-2*bw)*(1-game.tilelistImageAreaFactor)/2-bw*count+size*count
tile.drawInList(x,y,game,canvas,self.blockSize)
count+=1
def despawnTiles(self):
"""
Despawns all tiles
"""
for tileKey in self.tiles:
self.tiles[tileKey].despawnTile()
def export(self):
"""
Gets the state info for all of the tiles.
:returns: a dictionary of the state info for the tiles
:rtype: dict
"""
# Export must include tile order and rotation for each tile
tileInfo = {}
for key in self.tiles:
# do not add tiles that are not spawned
tile = self.tiles[key]
tileInfo[key] = (tile.row,tile.col,tile.x,tile.y,tile.spawned,tile.distinctGrids.index(tile.grid))
return tileInfo
class Game:
"""
Manager for graphics and board/tile state.
"""
def __init__(self,settings={}):
"""
Class constructor.
:param settings: optional parameter containing settings for how the game should be displayed; defaults to {}
:type settings: dict
"""
self.root = Tk()
self.initializeSettings(settings)
# root.state('zoomed') # Maximized window
# root.attributes('-fullscreen', True) # Fullscreen window
topFrame = Frame(self.root); topFrame.pack(side=TOP)
middleFrame = Frame(self.root); middleFrame.pack()
solnFrame = Frame(self.root); solnFrame.pack(fill=X)
self.bottomFrame = Frame(self.root); self.bottomFrame.pack(side=BOTTOM)
# Top frame
label = Label(topFrame, text='Geometric Puzzle', font=('Helvetica', 20, 'bold'))
label.pack()
# Middle frame
# canvas containing board and pile
self.canvas1 = Canvas(middleFrame, width=self.canvasWidth, height=self.canvasHeight, bd=0, highlightthickness=0)
self.canvas1.pack(side=LEFT)
# canvas containing tile list
scrollbar = Scrollbar(middleFrame)
self.canvas2 = Canvas(middleFrame, width = self.tilelistWidth, bd=0, highlightthickness=0)
self.canvas2.pack(side=LEFT, fill=Y)
scrollbar.pack(side=LEFT, fill=Y)
scrollbar.config(command=self.canvas2.yview)
self.canvas2.config(yscrollcommand=scrollbar.set)
# canvas containing solutions
scrollbar2 = Scrollbar(solnFrame, orient = HORIZONTAL)
self.canvas3 = Canvas(solnFrame, height = self.solnListHeight, bd=0, highlightthickness=0)
self.canvas3.pack(side=TOP, fill=X)
scrollbar2.pack(side=BOTTOM, fill=X)
scrollbar2.config(command=self.canvas3.xview)
self.canvas3.config(xscrollcommand=scrollbar2.set)
def initializeSettings(self,settings):
"""
Initializes graphics constants and variables. If the settings parameter is empty, then default values are used.
"""
self.settings = settings
self.boardWidth = settings['BOARD_WIDTH'] if 'BOARD_WIDTH' in settings else 300
self.separatorWidth = settings['SEPARATOR_WIDTH'] if 'SEPARATOR_WIDTH' in settings else 25
self.pileWidth = settings['PILE_WIDTH'] if 'PILE_WIDTH' in settings else 400
self.tilelistWidth = settings['TILELIST_WIDTH'] if 'TILELIST_WIDTH' in settings else 100
self.canvasHeight = settings['CANVAS_HEIGHT'] if 'CANVAS_HEIGHT' in settings else 300
self.canvasWidth = settings['CANVAS_WIDTH'] if 'CANVAS_WIDTH' in settings else (self.boardWidth + self.separatorWidth + self.pileWidth)
self.borderWidth = settings['BORDER_WIDTH'] if 'BORDER_WIDTH' in settings else 40
self.gridlineWidth = settings['GRIDLINE_WIDTH'] if 'GRIDLINE_WIDTH' in settings else 6
self.tilelistBorderWidth = settings['TILELIST_BORDER_WIDTH'] if 'TILELIST_BORDER_WIDTH' in settings else 6
self.tilelistImageAreaFactor = settings['TILELIST_IMAGE_AREA_FACTOR'] if 'TILELIST_IMAGE_AREA_FACTOR' in settings else 0.8
self.solnListHeight = settings['SOLN_LIST_HEIGHT'] if 'SOLN_LIST_HEIGHT' in settings else 100
self.maxSolnsDrawn = settings['MAX_SOLNS_DRAWN'] if 'MAX_SOLNS_DRAWN' in settings else 36
self.bgColor = settings['BG_COLOR'] if 'BG_COLOR' in settings else '#007fff'
self.puzzleDirectory = settings['PUZZLE_DIRECTORY'] if 'PUZZLE_DIRECTORY' in settings else '/puzzles'
self.boardColors = {' ':'#000000'}
self.tileColors = {}
import os, inspect
self.files = []
count = 1
for f in os.listdir(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))+self.puzzleDirectory):
if f.endswith('.txt'):
self.files.append(('Puzzle ' + str(count) + ': ' + f.replace('.txt',''), self.puzzleDirectory[1:] + '/' + f))
count+=1
self.findJustOne = IntVar(master=self.root, value=True)
self.canFlipTiles = IntVar(master=self.root, value=True)
self.animate = IntVar(master=self.root, value=True)
self.multithread = IntVar(master=self.root, value=True)
self.selectedFile = StringVar(master=self.root, value=self.files[0][0])
self.readyToDrawSolutions = False
self.loadingOutsideMainThread = False
def load(self,fileKey):
"""
Loads the currently selected puzzle. In the event that a bad board config file is given, the user is notified via the console.
:param filekey: refers to the file containing the puzzle to be loaded
:type filekey: str
"""
validBoard = self.parseInputFile(fileKey)
self.drawBoardAndTiles()
self.tileBucket.drawTileList(self,self.canvas2)
self.solutions = []
self.canvas3.delete('all')
self.canvas3.config(scrollregion=(0,0,0,0))
if not validBoard:
self.canvas3.create_text(self.root.winfo_width()/2,self.solnListHeight/2,text='Invalid board! Not enough tiles.',font=tkFont.Font(size=30,weight='bold'))
def update(self,tileInfo = None):
"""
Redraws the board, tiles, and tile list.
:param tileInfo: if provided, used to determine tile states; otherwise, self.tileBucket is used
:type tileInfo: dict
"""
if self.loadingOutsideMainThread:
return
self.canvas1.delete("all")
self.canvas2.delete("all")
tileBucket = None
if tileInfo is None:
tileBucket = self.tileBucket
if tileInfo is not None:
tiles = {}
for key in tileInfo:
tile = Tile()
tile.row,tile.col,tile.x,tile.y,tile.spawned,rotationIndex = tileInfo[key]
tile.grid = self.tileBucket.tiles[key].distinctGrids[rotationIndex]
tile.key = key
tiles[key] = tile
tileBucket = TileBucket(self,tiles)
self.drawBoardAndTiles(tileBucket)
tileBucket.drawTileList(self,self.canvas2)
if self.readyToDrawSolutions:
self.readyToDrawSolutions = False
self.drawSolutions()
def drawBoardAndTiles(self,tileBucket = None):
"""
Draws both the board and the tiles have been placed on the board.
:param tileBucket: used to determine if and where tiles should be drawn on the board
:type tileBucket: TileBucket
"""
# Draw border
self.canvas1.create_rectangle(0,0,self.canvasWidth,self.canvasHeight,fill=self.bgColor,width=0)
self.canvas1.create_rectangle(self.boardWidth,0,self.boardWidth+self.separatorWidth,self.canvasHeight,fill='#000000',width=0)
if tileBucket is None:
tileBucket = self.tileBucket
self.drawBoard()
for key in tileBucket.tiles:
tile = tileBucket.tiles[key]
if tile.spawned:
if tile.col != -1 and tile.row != -1:
self.drawTileOnBoard(tile)
else:
self.drawTileOnCanvas(tile)
def drawTileOnCanvas(self,tile):
"""
Draws a tile that has been spawned, but not placed on the board, based on the tile.x and tile.y.
:param tile: the tile to be drawn
:type tile: Tile
"""
w = self.gridlineWidth
bw = self.tilelistBorderWidth
grid = tile.grid
canvas = self.canvas1
board = self.board
global boardColors
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = tile.x+col*board.blockSize
y1 = tile.y+row*board.blockSize
x2 = x1+board.blockSize
y2 = y1+board.blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill='black',width=w,outline='black')
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = tile.x+col*board.blockSize
y1 = tile.y+row*board.blockSize
x2 = x1+board.blockSize
y2 = y1+board.blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill=self.tileColors[tile.key],width=0)
canvas.create_rectangle(x1+board.blockSize*1/5,y1+board.blockSize*1/5,x2-board.blockSize*1/5,y2-board.blockSize*1/5,fill=self.boardColors[c],width=0)
def drawTileOnBoard(self,tile):
"""
Draws a tile that has been both spawned and placed on the board based on its tile.row and tile.col.
:param tile: the tile to be drawn
:type tile: Tile
"""
board = self.board
canvas = self.canvas1
grid = tile.grid
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = board.xMargin+tile.col*board.blockSize+col*board.blockSize
y1 = board.yMargin+tile.row*board.blockSize+row*board.blockSize
x2 = x1+board.blockSize
y2 = y1+board.blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill='black',width=self.gridlineWidth,outline='black')
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = board.xMargin+tile.col*board.blockSize+col*board.blockSize
y1 = board.yMargin+tile.row*board.blockSize+row*board.blockSize
x2 = x1+board.blockSize
y2 = y1+board.blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill=self.tileColors[tile.key],width=0)
canvas.create_rectangle(x1+board.blockSize*1/5,y1+board.blockSize*1/5,x2-board.blockSize*1/5,y2-board.blockSize*1/5,fill=self.boardColors[c],width=0)
def drawSolutions(self):
"""
Draws solutions that have been found and added to the solutions list.
"""
self.canvas3.delete("all")
size = self.solnListHeight
bw = self.tilelistBorderWidth
canvas = self.canvas3
board = self.board
solns = self.solutions
if len(solns) == 0:
canvas.create_text(self.root.winfo_width()/2,size/2,text='No solutions!',font=tkFont.Font(size=30,weight='bold'))
canvas.config(scrollregion=(0,0,size*len(solns)+bw-bw*len(solns),size))
count = 0
for tileInfo in solns:
bgColor = self.bgColor
canvas.create_rectangle(count*size+bw/2-bw*count,bw/2,(count+1)*size-bw/2-bw*count,size-bw/2,fill=bgColor,width=bw)
x = bw+(size-2*bw)*(1-self.tilelistImageAreaFactor)/2-bw*count+size*count
y = bw+(size-2*bw)*(1-self.tilelistImageAreaFactor)/2
# draw board
blockSize = (size-2*bw)*(self.tilelistImageAreaFactor)/max(len(board.grid),len(board.grid[0]))
# center grids
x += ((size-2*bw)*(self.tilelistImageAreaFactor) - blockSize*len(board.grid[0]))/2
y += ((size-2*bw)*(self.tilelistImageAreaFactor) - blockSize*len(board.grid))/2
# board background
canvas.create_rectangle(x,y,x+blockSize*len(board.grid[0]),y+blockSize*len(board.grid),fill='black',width=3,outline='black')
# draw tiles
tiles = {}
for key in tileInfo:
tile = Tile()
tile.row,tile.col,tile.x,tile.y,tile.spawned,rotationIndex = tileInfo[key]
tile.grid = self.tileBucket.tiles[key].distinctGrids[rotationIndex]
tiles[key] = tile
for key in tiles:
tile = tiles[key]
if tile.row == -1 or tile.col == -1:
continue
grid = tile.grid
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = x+tile.col*blockSize+col*blockSize
y1 = y+tile.row*blockSize+row*blockSize
x2 = x1+blockSize
y2 = y1+blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill='black',width=2,outline='black')
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
if c != ' ':
x1 = x+tile.col*blockSize+col*blockSize
y1 = y+tile.row*blockSize+row*blockSize
x2 = x1+blockSize
y2 = y1+blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill=self.tileColors[key],width=0)
count+=1
def drawBoard(self):
"""
Draws the board.
"""
canvas = self.canvas1
board = self.board
grid = board.grid
for row in range(0,len(grid)):
for col in range(0,len(grid[0])):
c = grid[row][col]
x1 = board.xMargin+col*board.blockSize
y1 = board.yMargin+row*board.blockSize
x2 = x1+board.blockSize
y2 = y1+board.blockSize
canvas.create_rectangle(x1,y1,x2,y2,fill=self.boardColors[c],width=self.gridlineWidth,outline='black')
def clearBoard(self):
"""
Resets board and despawns all tiles.
"""
self.board.clear()
self.tileBucket.despawnTiles()
def parseInputFile(self, filekey):
"""
Interprets the board configurations in the text file referred to by the fileKey. Each body of text is taken to be a tile where the largest tile is the board.
:param filekey: refers to the file containing the puzzle to be read and loaded
:type filekey: str
:returns: True if the board config file was valid; False otherwise
:rtype: bool:
"""
self.boardColors = {' ':"#000000"}
self.tileColors = {}
tiles = {}
filepath = dict(self.files)[filekey]
f = open(filepath,'r')
inputGrid = [[c for c in line[0:len(line)-1]] for line in f]
largestTileId = -1
largestTileSize = -1
count = 0
for i in range(len(inputGrid)):
for j in range(len(inputGrid[i])):
c = inputGrid[i][j]
if c != ' ':
if c not in self.boardColors:
self.boardColors[c] = randomColor()
tiles[count],size = buildTile(inputGrid,i,j)
if (largestTileSize == -1 or size > largestTileSize):
largestTileId = count
largestTileSize = size
count+=1
boardGrid = gridFromTile(tiles[largestTileId])
self.board = Board(self,boardGrid)
del tiles[largestTileId]
for key in tiles:
tile = Tile()
tile.grid = gridFromTile(tiles[key])
tile.size = sum([sum([1 for ch in tile.grid[r] if ch != ' ']) for r in range(len(tile.grid))])
tile.key = key
self.tileColors[key] = randomColor()
grid = tile.grid
distinctGrids = []
for n in range(4):
temp = [[grid[y][x] for x in range(len(grid[0]))] for y in range(len(grid))]
if temp not in distinctGrids:
distinctGrids.append(temp)
grid = rotateClockwise(grid)
if self.canFlipTiles.get():
grid = flipHorizontally(grid)
for n in range(4):
temp = [[grid[y][x] for x in range(len(grid[0]))] for y in range(len(grid))]
if temp not in distinctGrids:
distinctGrids.append(temp)
grid = rotateClockwise(grid)
grid = flipHorizontally(grid)
tile.distinctGrids = distinctGrids
tiles[key] = tile
self.tileBucket = TileBucket(self,tiles)
self.tileBucket.tileGroups = groupTiles(tiles)
self.tileBucket.size = sum([tiles[key].size for key in tiles])
for tileGroup in self.tileBucket.tileGroups:
mainTile = None
for tileKey in tileGroup:
if mainTile is None:
mainTile = self.tileBucket.tiles[tileKey]
else:
self.tileBucket.tiles[tileKey].distinctGrids = mainTile.distinctGrids
# validate board
if self.tileBucket.size < self.board.size:
return False
return True
def printGrid(grid):
"""
Prints grid.
:param grid: grid to be printed
:type grid: 2-D array
"""
for l in grid:
print l
print
def printTile(tile):
"""
Prints tile.
:param tile: tile to be printed
:type tile: Tile
"""
printGrid(tile.grid)
def gridFromTile(tile):
"""
Extracts grid from given tile builder.
:param tile: tile to extract grid from
:type tile: TileBuilder
:returns: grid represented by given tile
:rtype: 2-D array
"""
# Tile points intitially to furthest left item in top
# row based on parsing strategy used to read file.
min_i = 0
max_i = 0
min_j = 0
max_j = 0
points = []
visited = {tile:None}
tileStack = [(tile,0,0)]
while len(tileStack) > 0:
t,i,j = tileStack.pop()
points.append((t.value,i,j))
if t.north is not None and t.north not in visited:
tileStack.append((t.north,i-1,j))
min_i = min(min_i,i-1)
if t.south is not None and t.south not in visited:
tileStack.append((t.south,i+1,j))
max_i = max(max_i,i+1)
if t.west is not None and t.west not in visited:
tileStack.append((t.west,i,j-1))
min_j = min(min_j,j-1)
if t.east is not None and t.east not in visited:
tileStack.append((t.east,i,j+1))
max_j = max(max_j,j+1)
visited[t] = None
grid = [[' ' for j in range(max_j-min_j+1)] for i in range(max_i-min_i+1)]
for v,i,j in points:
grid[i-min_i][j-min_j] = v
return grid
def buildTile(grid,i,j,size=0):
"""
Creates a tile builder describing the shape of the tile. Starts at the i-th row and j-th col and consumes every tile square within 1 space.
:param grid: the array of the file being loaded
:type grid: 2-D array
:param i: row to start building from
:type i: int
:param j: col to start building from
:type j: int
:returns: tile builder and tile size
:rtype: TileBuilder and int
"""
tile = TileBuilder(grid[i][j])
grid[i][j] = ' '
size += 1
# North
if i>0 and j<len(grid[i-1]) and grid[i-1][j] != ' ':
tile.north,size = buildTile(grid,i-1,j,size)
# South
if i+1<len(grid) and j<len(grid[i+1]) and grid[i+1][j] != ' ':
tile.south,size = buildTile(grid,i+1,j,size)
# West
if j>0 and grid[i][j-1] != ' ':
tile.west,size = buildTile(grid,i,j-1,size)
# East
if j+1<len(grid[i]) and grid[i][j+1] != ' ':
tile.east,size = buildTile(grid,i,j+1,size)
return tile,size
def randomColor():
"""
Gives a random color.
:returns: a random color
:rtype: color formatted as '#RRGGBB'
"""
hexDigits = ['0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f']
return '#'+''.join([random.choice(hexDigits) for x in range(6)])
def toGrayScale(rgb):
"""
Converts rgb to grayscale. Red, green, and blue are weighted according to cognitive research into how human vision weights each of the basic colors.
:param rgb: color to be converted to grayscale, formatted as '#RRGGBB'
:type rgb: str
:returns: grayscale color
:rtype: color formatted as '#RRGGBB'
"""
r = int(rgb[1:3],16)
g = int(rgb[3:5],16)
b = int(rgb[6:8],16)
gray = int(0.299*r+0.587*g+0.114*b)
grayHex = '{:02x}'.format(gray)
return '#'+grayHex+grayHex+grayHex
def groupTiles(tiles):
"""
Groups together non-distinct tiles.
:param tiles: the dict containing the all tiles on the board
"""
groups = {}
for tileKey1 in tiles:
group = []
for tileKey2 in tiles:
if tiles[tileKey1].grid in tiles[tileKey2].distinctGrids:
group.append(tileKey2)
groups[min(group)] = group
return [tuple(groups[g]) for g in groups]
def copyGrid(grid):
"""
Creates a copy of grid in a new array so that future modifications do not affect the old grid.
:param grid: the array that is being copied
:type grid: 2-D array
:returns: a deepcopy of grid
:rtype: 2-D array
"""
return [[cell for cell in row] for row in grid]
def flipHorizontally(grid):
"""
Creates a copy of grid that is reflected across the y-axis.
:param grid: the array that is being flipped
:type grid: 2-D array
:returns: a horizontally flipped version of grid
:rtype: 2-D array
"""
g = copyGrid(grid)
g = [[c for c in reversed(row)] for row in g]
return g
def flipVertically(grid):
"""
Creates a copy of grid that is reflected across the x-axis.
:param grid: the array that is being flipped
:type grid: 2-D array
:returns: a vertically flipped version of grid
:rtype: 2-D array
"""
g = transpose(flipHorizontally(transpose(copyGrid(grid))))
return g
def transpose(grid):
"""
Creates a transposed copy of grid.
:param grid: the array that is being transposed
:type grid: 2-D array
:returns: a version of grid that has had the rows and columns swapped
:rtype: 2-D array
"""
g = [[c for c in row] for row in zip(*copyGrid(grid))]
return g
def rotateClockwise(grid): # transpose and flip
"""
Creates a clockwise-rotated copy of grid. This is accomplished by noting the fact that a clockwise rotation can be accomplished with a transpose followed by a horizontal flip.
:param grid: the array that is being rotated
:type grid: 2-D array
:returns: a version of grid that has been rotated clockwise
:rtype: 2-D array
"""
g = transpose(copyGrid(grid))
g = flipHorizontally(g)
return g
def rotateNTimes(grid,n):
"""
Creates a copy of grid that has been rotated clockwise N times.
:param grid: the array that is being transposed
:type grid: 2-D array
:param n: the number of times to rotate the grid
:type n: int
:returns: a version of grid that has had the rows and columns swapped
:rtype: 2-D array
"""
g = copyGrid(grid)
for i in range(n):
g = rotateClockwise(g)
return g
def equivalentGrids(grid1,grid2):
"""
Determines whether grid1 and grid2 share equality in all cells.
:param grid1: the array that is being transposed
:type grid1: 2-D array
:param grid2: the array that is being transposed
:type grid2: 2-D array
:returns: whether or not the given grids are equivalent
:rtype: bool
"""
if len(grid1) != len(grid2) or len(grid1[0]) != len(grid2[0]):
return False
for r in range(len(grid1)):
for c in range(len(grid1[0])):
if grid1[r][c] != grid2[r][c]:
return False
return True