-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEQ_reg_BKOS.m
executable file
·79 lines (72 loc) · 2.9 KB
/
EQ_reg_BKOS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
function [RLDmin, RLDmax, RLDavg, ...
RWmin, RWmax, RWavg] = EQ_reg_BKOS (Mw, fault_type)
% EQ_reg_BKOS.m
% EQ Function that uses the BKOS Regression Model to calculate
% Length and Width of Fault-Rupture
%
% Nathanael Wong Zhixin, Feng Lujia
%
% This function calculates the following fault-rupture parameters based on
% an earthquake occurring at different fault types with Moment Magnitude M
% using the Regressions calculated by Blaser, Kruger, Ohrnberger and
% Scherbaum in 2010:
% Subsurface Rupture Length (RBL) in m
% Downdip Rupture Width (RW) in m
%
% We will select the fault type based on an input variable defined within
% the function.
%
% Since we are doing forward modelling, RBL, RW and RA are all assumed to
% be functions of M via the following equations:
% log10 (RLD) = a + b * Mw
% log10 (RW) = c + d * Mw
% RA = RLD * RW
%
% where
% a and b are constants that depend on the fault type
%
% INPUT:
% -- Mw : moment magnitude of earthquake event
% -- fault_type : fault type (ie. strike-slip, dip-slip and tensile-slip)
%
% OUTPUT:
% -- RLDmin : minimum possible subsurface rupture length
% -- RLDmax : maximum possible subsurface rupture length
% -- RLDavg : average possible subsurface rupture length
% -- RWmin : minimum possible downslip rupture width
% -- RWmax : maximum possible downslip rupture width
% -- RWavg : average possible downslip rupture width
%
% FORMAT OF CALL: EQ_reg_BKOS (Moment Magnitude, Fault Type)
%
% OVERVIEW:
% 1) The function will use the input variable "fault_type" to determine the
% values of the constants input into the regression model.
%
% 2) The function will then use these constants to calculate the minimum,
% maximum and average values of the fault-rupture length and width
% according to the BKOS regression model.
%
% 3) These lengths and widths will be saved into variables which will then
% be exported to the parent function.
%%%%%%%%%%%%% USE FAULT-TYPE TO DETERMINE VALUE OF CONSTANTS %%%%%%%%%%%%%%
switch fault_type
case {1, 3}
a = -2.69; sa = 0.11; b = 0.64; sb = 0.02;
c = -1.12; sc = 0.12; d = 0.33; sd = 0.02;
case 2
a = -1.91; sa = 0.29; b = 0.52; sb = 0.04;
c = -1.120; sc = 0.25; d = 0.36; sd = 0.04;
case {4, 5, 6}
a = -2.37; sa = 0.13; b = 0.57; sb = 0.02;
c = -1.86; sc = 0.12; d = 0.46; sd = 0.02;
end
%%%%%%%%%%%%%%%%%%% CALCULATE FAULT-RUPTURE DIMENSIONS %%%%%%%%%%%%%%%%%%%%
RLDmin = 10.^(3 + (a - sa) + (b - sb).*Mw);
RLDmax = 10.^(3 + (a + sa) + (b + sb).*Mw);
RLDavg = 10.^(3 + a + b.*Mw);
RWmin = 10.^(3 + (c - sd) + (d - sd).*Mw);
RWmax = 10.^(3 + (c + sc) + (d + sd).*Mw);
RWavg = 10.^(3 + c + d.*Mw);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end