-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path747Isomorphism.agda
538 lines (409 loc) · 14.3 KB
/
747Isomorphism.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
module 747Isomorphism where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; cong-app; sym) -- added last
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Nat.Properties using (+-comm; +-suc; +-identityʳ) -- added last
-- Function composition.
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(g ∘ f) x = g (f x)
_∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
g ∘′ f = λ x → g (f x)
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- Another definition of addition.
_+′_ : ℕ → ℕ → ℕ -- split on n instead, get different code
m +′ zero = m
m +′ suc n = suc (m +′ n)
same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n
same-app m zero = sym (+-identityʳ m)
same-app m (suc n) rewrite +-suc m n | same-app m n = refl
same : _+′_ ≡ _+_ -- this requires extensionality
same = extensionality (λ x → extensionality (λ x₁ → same-app x x₁))
-- Isomorphism.
infix 0 _≃_
record _≃_ (A B : Set) : Set where
constructor mk-≃ -- This has been added, not in PLFA
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
-- Equivalent to the following:
data _≃′_ (A B : Set): Set where
mk-≃′ : ∀ (to : A → B) →
∀ (from : B → A) →
∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) →
∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) →
A ≃′ B
to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B)
to′ (mk-≃′ f g g∘f f∘g) = f
from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A)
from′ (mk-≃′ f g g∘f f∘g) = g
from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (x : A)
→ from′ A≃B (to′ A≃B x) ≡ x)
from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f
to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (y : B)
→ to′ A≃B (from′ A≃B y) ≡ y)
to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g
-- End of equivalent formulation (records are faster!)
-- Properties of isomorphism.
-- Reflexivity.
≃-refl : ∀ {A : Set}
-----
→ A ≃ A
-- in empty hole, split on result, get copatterns (not in PLFA)
to ≃-refl x = x
from ≃-refl x = x
from∘to ≃-refl x = refl
to∘from ≃-refl x = refl
-- Symmetry.
≃-sym : ∀ {A B : Set}
→ A ≃ B
-----
→ B ≃ A
to (≃-sym A≃B) = from A≃B
from (≃-sym A≃B) = to A≃B
from∘to (≃-sym A≃B) = to∘from A≃B
to∘from (≃-sym A≃B) = from∘to A≃B
-- Transitivity.
≃-trans : ∀ {A B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
to (≃-trans A≃B B≃C) = to B≃C ∘ to A≃B
from (≃-trans A≃B B≃C) = from A≃B ∘ from B≃C
from∘to (≃-trans A≃B B≃C) x rewrite from∘to B≃C (to A≃B x)
= from∘to A≃B x
to∘from (≃-trans A≃B B≃C) x rewrite to∘from A≃B (from B≃C x)
= to∘from B≃C x
-- Isomorphism is an equivalence relation.
-- We can create syntax for equational reasoning.
module ≃-Reasoning where
infix 1 ≃-begin_
infixr 2 _≃⟨_⟩_
infix 3 _≃-∎
≃-begin_ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≃ B
≃-begin A≃B = A≃B
_≃⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C
_≃-∎ : ∀ (A : Set)
-----
→ A ≃ A
A ≃-∎ = ≃-refl
open ≃-Reasoning
-- Embedding (weaker than isomorphism)
infix 0 _≲_
record _≲_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
open _≲_
≲-refl : ∀ {A : Set} → A ≲ A
≲-refl =
record
{ to = λ z → z
; from = λ z → z
; from∘to = λ x → refl
}
≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C
≲-trans A≲B B≲C =
record
{ to = λ{x → to B≲C (to A≲B x)}
; from = λ{y → from A≲B (from B≲C y)}
; from∘to = λ{x →
begin
from A≲B (from B≲C (to B≲C (to A≲B x)))
≡⟨ cong (from A≲B) (from∘to B≲C (to A≲B x)) ⟩
from A≲B (to A≲B x)
≡⟨ from∘to A≲B x ⟩
x
∎}
}
≲-antisym : ∀ {A B : Set}
→ (A≲B : A ≲ B)
→ (B≲A : B ≲ A)
→ (to A≲B ≡ from B≲A)
→ (from A≲B ≡ to B≲A)
-------------------
→ A ≃ B
≲-antisym A≲B B≲A to≡from from≡to =
record
{ to = to A≲B
; from = from A≲B
; from∘to = from∘to A≲B
; to∘from = λ{y →
begin
to A≲B (from A≲B y)
≡⟨ cong (to A≲B) (cong-app from≡to y) ⟩
to A≲B (to B≲A y)
≡⟨ cong-app to≡from (to B≲A y) ⟩
from B≲A (to B≲A y)
≡⟨ from∘to B≲A y ⟩
y
∎}
}
-- Tabular reasoning for embedding.
module ≲-Reasoning where
infix 1 ≲-begin_
infixr 2 _≲⟨_⟩_
infix 3 _≲-∎
≲-begin_ : ∀ {A B : Set}
→ A ≲ B
-----
→ A ≲ B
≲-begin A≲B = A≲B
_≲⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≲ B
→ B ≲ C
-----
→ A ≲ C
A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C
_≲-∎ : ∀ (A : Set)
-----
→ A ≲ A
A ≲-∎ = ≲-refl
open ≲-Reasoning
-- PLFA exercise: Isomorphism implies embedding.
≃-implies-≲ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≲ B
≃-implies-≲ (mk-≃ to₁ from₁ from∘to₁ to∘from₁) =
record
{ to = to₁
; from = from₁
; from∘to = from∘to₁
}
-- PLFA exercise: propositional equivalence (weaker than embedding).
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_ -- added
-- This is also an equivalence relation.
⇔-refl : ∀ {A : Set}
-----
→ A ⇔ A
⇔-refl = record { to = λ z → z ; from = λ z → z }
⇔-sym : ∀ {A B : Set}
→ A ⇔ B
-----
→ B ⇔ A
⇔-sym A⇔B = record { to = from A⇔B ; from = to A⇔B }
⇔-trans : ∀ {A B C : Set}
→ A ⇔ B
→ B ⇔ C
-----
→ A ⇔ C
⇔-trans A⇔B B⇔C =
record
{ to = λ z → to B⇔C (to A⇔B z)
; from = λ z → from A⇔B (from B⇔C z)
}
-- 747/PLFA extended exercise: Canonical bitstrings.
-- Modified and extended from Bin-predicates exercise in PLFA Relations.
-- Copied from 747Naturals.
data Bin-ℕ : Set where
bits : Bin-ℕ
_x0 : Bin-ℕ → Bin-ℕ
_x1 : Bin-ℕ → Bin-ℕ
dbl : ℕ → ℕ
dbl zero = zero
dbl (suc n) = suc (suc (dbl n))
-- Copy your versions of 'inc', 'tob', and 'fromb' over from earlier files.
-- You may choose to change the definitions here to make proofs easier.
-- But make sure to test them if you do!
-- You may also copy over any theorems that prove useful.
inc : Bin-ℕ → Bin-ℕ
inc bits = bits x1
inc (m x0) = m x1
inc (m x1) = (inc m) x0
tob : ℕ → Bin-ℕ
tob zero = bits
tob (suc n) = inc (tob n)
dblb : Bin-ℕ → Bin-ℕ
dblb bits = bits
dblb (m x0) = (dblb m) x0
dblb (m x1) = (inc (dblb m)) x0
fromb : Bin-ℕ → ℕ
fromb bits = 0
fromb (n x0) = 2 * fromb n
fromb (n x1) = suc ( 2 * fromb n )
-- The reason that we couldn't prove ∀ {n : Bin-ℕ} → tob (fromb n) ≡ n
-- is because of the possibility of leading zeroes in a Bin-ℕ value.
-- 'bits x0 x0 x1' is such a value that gives a counterexample.
-- However, the theorem is true is true for n without leading zeroes.
-- We define a predicate to be able to state this in a theorem.
-- A value of type One n is evidence that n has a leading one.
data One : Bin-ℕ → Set where
[bitsx1] : One (bits x1)
_[x0] : ∀ {n : Bin-ℕ} → One n → One (n x0)
_[x1] : ∀ {n : Bin-ℕ} → One n → One (n x1)
-- Here's a proof that 'bits x1 x0 x0' has a leading one.
_ : One (bits x1 x0 x0)
_ = [bitsx1] [x0] [x0]
-- There is no value of type One (bits x0 x0 x1).
-- But we can't state and prove this yet, because we don't know
-- how to express negation. That comes in the Connectives chapter.
-- A canonical binary representation is either zero or has a leading one.
data Can : Bin-ℕ → Set where
[zero] : Can bits
[pos] : ∀ {n : Bin-ℕ} → One n → Can n
-- Some obvious examples:
_ : Can bits
_ = [zero]
_ : Can (bits x1 x0)
_ = [pos] ([bitsx1] [x0])
one-implies-can : ∀ {n : Bin-ℕ} → One n → Can n
one-implies-can on = [pos] on
-- The Bin-predicates exercise in PLFA Relations gives three properties of canonicity.
-- The first is that the increment of a canonical number is canonical.
-- Most of the work is done in the following lemma.
-- 747/PLFA exercise: IncCanOne (2 points)
-- The increment of a canonical number has a leading one.
one-inc : ∀ {n : Bin-ℕ} → Can n → One (inc n)
one-inc [zero] = [bitsx1]
one-inc ([pos] [bitsx1]) = [bitsx1] [x0]
one-inc ([pos] (on [x0])) = on [x1]
one-inc ([pos] (on [x1])) = one-inc ([pos] on) [x0]
-- The first canonicity property is now an easy corollary.
-- 747/PLFA exercise: OneInc (1 point)
can-inc : ∀ {n : Bin-ℕ} → Can n → Can (inc n)
can-inc cn = [pos] (one-inc cn)
-- The second canonicity property is that converting a unary number
-- to binary produces a canonical number.
-- 747/PLFA exercise: CanToB (1 point)
to-can : ∀ (n : ℕ) → Can (tob n)
to-can zero = [zero]
to-can (suc n) = can-inc (to-can n)
-- The third canonicity property is that converting a canonical number
-- from binary and back to unary produces the same number.
-- This takes more work, and some helper lemmas from 747Induction.
-- You will need to discover which ones.
-- 747/PLFA exercise: OneDblbX0 (1 point)
-- This helper function relates binary double to the x0 constructor,
-- for numbers with a leading one.
dblb-x0 : ∀ {n : Bin-ℕ} → One n → dblb n ≡ n x0
dblb-x0 [bitsx1] = refl
dblb-x0 (on [x0]) rewrite dblb-x0 on = refl
dblb-x0 (on [x1]) rewrite dblb-x0 on = refl
dblb-x1 : ∀ {n : Bin-ℕ} → One n → inc (dblb n) ≡ n x1
dblb-x1 [bitsx1] = refl
dblb-x1 (on [x0]) rewrite dblb-x0 on = refl
dblb-x1 (on [x1]) rewrite dblb-x0 on = refl
-- We can now prove the third property for numbers with a leading one.
-- 747/PLFA exercise: OneToFrom (3 points)
dbl-addition : ∀ {n : ℕ} → dbl n ≡ n + n
dbl-addition {zero} = refl
dbl-addition {suc n} rewrite +-suc n n | dbl-addition {n} = refl
dblb∘inc : ∀ (m : Bin-ℕ) → dblb (inc m) ≡ inc (inc (dblb m))
dblb∘inc bits = refl
dblb∘inc (m x0) = refl
dblb∘inc (m x1) rewrite dblb∘inc m = refl
to∘dbl : ∀ (m : ℕ) → tob (dbl m) ≡ dblb (tob m)
to∘dbl zero = refl
to∘dbl (suc m) rewrite dblb∘inc (tob m) | to∘dbl m = refl
one-to∘from : ∀ {n : Bin-ℕ} → One n → tob (fromb n) ≡ n
one-to∘from [bitsx1] = refl
one-to∘from {.(n x0)} (_[x0] {n} on) rewrite +-identityʳ (fromb n)
| sym (dblb-x0 {n} on)
| sym (dbl-addition {fromb n})
| to∘dbl (fromb n)
| one-to∘from {n} on = refl
one-to∘from (_[x1] {n} on) rewrite +-identityʳ (fromb n)
| sym (dblb-x1 {n} on)
| sym (dbl-addition {fromb n})
| to∘dbl (fromb n)
| one-to∘from {n} on = refl
-- The third property is now an easy corollary.
-- 747/PLFA exercise: CanToFrom (1 point)
can-to∘from : ∀ {n : Bin-ℕ} → Can n → tob (fromb n) ≡ n
can-to∘from [zero] = refl
can-to∘from ([pos] x) = one-to∘from x
-- 747/PLFA exercise: OneUnique (2 points)
-- Proofs of positivity are unique.
one-unique : ∀ {n : Bin-ℕ} → (x y : One n) → x ≡ y
one-unique [bitsx1] [bitsx1] = refl
one-unique (ox [x0]) (oy [x0])
with one-unique ox oy
... | refl = refl
one-unique (ox [x1]) (oy [x1])
with one-unique ox oy
... | refl = refl
-- 747/PLFA exercise: CanUnique (1 point)
-- Proofs of canonicity are unique.
can-unique : ∀ {n : Bin-ℕ} → (x y : Can n) → x ≡ y
can-unique [zero] [zero] = refl
can-unique ([pos] cx) ([pos] cy)
with one-unique cx cy
... | refl = refl
-- Do we have an isomorphism between ℕ (unary) and canonical binary representations?
-- Can is not a set, but a family of sets, so it doesn't quite fit
-- into our framework for isomorphism.
-- But we can roll all the values into one set which is isomorphic to ℕ.
-- A CanR value wraps up a Bin-ℕ and proof it has a canonical representation.
data CanR : Set where
wrap : ∀ (n : Bin-ℕ) → Can n → CanR
-- We can show that there is an isomorphism between ℕ and CanR.
-- 747/PLFA exercise: IsoNCanR (3 points)
-- 747 exercise: FromInc (1 point)
from∘inc : ∀ (m : Bin-ℕ) → fromb (inc m) ≡ suc (fromb m)
from∘inc bits = refl
from∘inc (m x0) = refl
from∘inc (m x1) rewrite +-identityʳ (fromb (inc m))
| +-identityʳ (fromb m)
| from∘inc m
| +-suc (fromb m) (fromb m) = refl
-- 747 exercise: FromToB (1 point)
from∘tob : ∀ (m : ℕ) → fromb (tob m) ≡ m
from∘tob zero = refl
from∘tob (suc m) rewrite from∘inc (tob m) | from∘tob m = refl
iso-ℕ-CanR : ℕ ≃ CanR
to iso-ℕ-CanR n = wrap (tob n) (to-can n)
from iso-ℕ-CanR (wrap bin cbin) = fromb bin
from∘to iso-ℕ-CanR n = from∘tob n
to∘from iso-ℕ-CanR (wrap bin cbin)
with to-can (fromb bin) | can-to∘from cbin
... | tcfbin | ctfcbin
rewrite
ctfcbin
| can-unique cbin tcfbin
= refl
-- Can we get an isomorphism between ℕ and some binary encoding,
-- without the awkwardness of non-canonical values?
-- Yes: we use digits 1 and 2, instead of 0 and 1 (multiplier/base is still 2).
-- This is known as bijective binary numbering.
-- The counting sequence goes <empty>, 1, 2, 11, 12, 21, 22, 111...
data Bij-ℕ : Set where
bits : Bij-ℕ
_x1 : Bij-ℕ → Bij-ℕ
_x2 : Bij-ℕ → Bij-ℕ
-- There is an isomorphism between ℕ and Bij-ℕ.
-- The proof largely follows the outline of what we did above,
-- and is left as an optional exercise.
-- See PLFA for remarks on standard library definitions similar to those here.
-- Unicode introduced in this chapter:
{-
∘ U+2218 RING OPERATOR (\o, \circ, \comp)
λ U+03BB GREEK SMALL LETTER LAMBDA (\lambda, \Gl)
≃ U+2243 ASYMPTOTICALLY EQUAL TO (\~-)
≲ U+2272 LESS-THAN OR EQUIVALENT TO (\<~)
⇔ U+21D4 LEFT RIGHT DOUBLE ARROW (\<=>)
-}