-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathserver-enrichGo.R
274 lines (197 loc) · 10.7 KB
/
server-enrichGo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
myValues = reactiveValues()
observe({
enrichGoReactive()
})
enrichGoReactive <- eventReactive(input$initGo,{
withProgress(message = "Processing , please wait",{
isolate({
# remove notifications if they exist
removeNotification("errorNotify")
removeNotification("errorNotify1")
removeNotification("errorNotify2")
removeNotification("warnNotify")
removeNotification("warnNotify2")
validate(need(tryCatch({
df <- inputDataReactive()$data
# we want the log2 fold change
original_gene_list <- df[[input$log2fcColumn]]
# name the vector
names(original_gene_list) <- df[[input$geneColumn]]
# omit any NA values
gene_list<-na.omit(original_gene_list)
# sort the list in decreasing order (required for clusterProfiler)
gene_list = sort(gene_list, decreasing = TRUE)
myValues$gene_list = gene_list
# Exctract significant results
# ALLOW USERS TO EDIT 0.05 AS A PARAMETER
#sig_genes_df = subset(df, padj < input$padjCutoff)
sig_genes_df = df[df[,input$padjColumn] < input$padjCutoff,]
sig_genes_df = na.omit(sig_genes_df)
# From significant results, we want to filter on log2fold change
genes <- sig_genes_df[[input$log2fcColumn]]
# Name the vector
names(genes) <- sig_genes_df[[input$geneColumn]]
# omit NA values
genes <- na.omit(genes)
# filter on min log2fold change (PARAMETER)
genes <- names(genes)[abs(genes) > input$logfcCuttoff]
setProgress(value = 0.3, detail = "Performing Go enrichment analysis, please wait ...")
go_enrich <- enrichGO(gene = genes,
universe = names(gene_list),
OrgDb = input$organismDb,
keyType = input$keytype,
minGSSize = input$minGSSize,
maxGSSize = input$maxGSSize,
readable = T,
ont = input$ontology,
pvalueCutoff = input$pvalCuttoff,
qvalueCutoff = input$qvalCuttoff,
pAdjustMethod = input$pAdjustMethod)
if(nrow(go_enrich) < 1)
{
showNotification(id="warnNotify", "No gene can be mapped ...", type = "warning", duration = NULL)
showNotification(id="warnNotify2", "Tune the parameters and try again.", type = "warning", duration = NULL)
return(NULL)
}
updateNumericInput(session, "showCategory_bar", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_dot", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_enrichmap", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_goplot", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_cnet", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_bar_kegg", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_dot_kegg", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_enrichmap_kegg", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
#updateNumericInput(session, "showCategory_goplot", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
updateNumericInput(session, "showCategory_cnet_kegg", max = nrow(go_enrich@result) , min = 0, value = ifelse(nrow(go_enrich@result) > 0, 5,0))
## KEGG enrich
# Convert gene IDs for enrichKEGG function
# We will lose some genes here because not all IDs will be converted
myValues$convWarningMessage = capture.output(ids<-bitr(names(original_gene_list), fromType = input$keytype, toType = "ENTREZID", OrgDb=input$organismDb), type = "message")
# remove duplicate IDS (here I use "ENSEMBL", but it should be whatever was selected as keyType)
dedup_ids = ids[!duplicated(ids[c(input$keytype)]),]
# Create a new dataframe df2 which has only the genes which were successfully mapped using the bitr function above
df2 = df[df[[input$geneColumn]] %in% dedup_ids[,input$keytype],]
# Create a new column in df2 with the corresponding ENTREZ IDs
df2$Y = dedup_ids$ENTREZID
# Create a vector of the gene unuiverse
kegg_gene_list <- df2[[input$log2fcColumn]]
# Name vector with ENTREZ ids
names(kegg_gene_list) <- df2$Y
# omit any NA values
kegg_gene_list<-na.omit(kegg_gene_list)
# sort the list in decreasing order (required for clusterProfiler)
kegg_gene_list = sort(kegg_gene_list, decreasing = TRUE)
myValues$kegg_gene_list = kegg_gene_list
# Exctract significant results from df2
# ALLOW USERS TO EDIT 0.05 AS A PARAMETER
#kegg_sig_genes_df = subset(df2, padj < input$padjCutoff)
kegg_sig_genes_df = df2[df2[,input$padjColumn] < input$padjCutoff,]
kegg_sig_genes_df = na.omit(kegg_sig_genes_df)
# From significant results, we want to filter on log2fold change
kegg_genes <- kegg_sig_genes_df[[input$log2fcColumn]]
# Name the vector with the CONVERTED ID!
names(kegg_genes) <- kegg_sig_genes_df$Y
# omit NA values
kegg_genes <- na.omit(kegg_genes)
# filter on log2fold change (PARAMETER)
kegg_genes <- names(kegg_genes)[abs(kegg_genes) > input$logfcCuttoff]
setProgress(value = 0.6, detail = "Performing KEGG enrichment analysis, please wait ...")
organismsDbKegg = c("org.Hs.eg.db"="hsa","org.Mm.eg.db"="mmu","org.Rn.eg.db"="rno",
"org.Sc.sgd.db"="sce","org.Dm.eg.db"="dme","org.At.tair.db"="ath",
"org.Dr.eg.db"="dre","org.Bt.eg.db"="bta","org.Ce.eg.db"="cel",
"org.Gg.eg.db"="gga","org.Cf.eg.db"="cfa","org.Ss.eg.db"="ssc",
"org.Mmu.eg.db"="mcc","org.EcK12.eg.db"="eck","org.Xl.eg.db"="xla",
"org.Pt.eg.db"="ptr","org.Ag.eg.db"="aga","org.Pf.plasmo.db"="pfa",
"org.EcSakai.eg.db"="ecs")
kegg_enrich <- enrichKEGG(gene=kegg_genes,
universe=names(kegg_gene_list),
organism=organismsDbKegg[input$organismDb],
pvalueCutoff =input$pvalCuttoff,
qvalueCutoff = input$qvalCuttoff,
keyType = "ncbi-geneid",
minGSSize = input$minGSSize,
maxGSSize = input$maxGSSize)
myValues$organismKegg = organismsDbKegg[input$organismDb]
updateSelectInput(session, "geneid_type", choices = gene.idtype.list, selected = input$keytype)
updateSelectizeInput(session,'pathwayIds', choices=kegg_enrich@result$ID)
}, error = function(e) {
myValues$status = paste("Error: ",e$message)
showNotification(id="errorNotify", myValues$status, type = "error", duration = NULL)
showNotification(id="errorNotify1", "Make sure the right organism was selected", type = "error", duration = NULL)
showNotification(id="errorNotify2", "Make sure the corresponding required columns are correctly selected", type = "error", duration = NULL)
return(NULL)
}
),
"Error. Check!"))
})
#if()
shinyjs::show(selector = "a[data-value=\"wordcloudTab\"]")
shinyjs::show(selector = "a[data-value=\"pathviewTab\"]")
shinyjs::show(selector = "a[data-value=\"keggPlotsTab\"]")
shinyjs::show(selector = "a[data-value=\"goplotsTab\"]")
shinyjs::show(selector = "a[data-value=\"enrichKeggTab\"]")
shinyjs::show(selector = "a[data-value=\"enrichGoTab\"]")
return(list('go_enrich'=go_enrich, 'kegg_enrich' = kegg_enrich))
})
})
output$enrichGoTable <- renderDataTable({
enrichGo <- enrichGoReactive()
if(!is.null(enrichGo)){
resultDF = enrichGo$go_enrich@result
if(isFALSE(input$showGeneidGo))
resultDF = resultDF[,-which(names(resultDF) == "geneID")]
DT::datatable(resultDF, options = list(scrollX = TRUE))
}
},
options = list(scrollX = TRUE))
output$downloadEnrichGoCSV <- downloadHandler(
filename = function() {paste0("enrichgo",".csv")},
content = function(file) {
write.csv(enrichGoReactive()$go_enrich@result, file, row.names=TRUE)}
)
output$enrichGoAvailable <-
reactive({
return(!is.null(enrichGoReactive()$go_enrich))
})
outputOptions(output, 'enrichGoAvailable', suspendWhenHidden=FALSE)
output$enrichKEGGTable <- renderDataTable({
enrichKEGG <- enrichGoReactive()
if(!is.null(enrichKEGG)){
resultDF = enrichKEGG$kegg_enrich@result
if(isFALSE(input$showGeneidKegg))
resultDF = resultDF[,-which(names(resultDF) == "geneID")]
DT::datatable(resultDF, options = list(scrollX = TRUE))
}
},
options = list(scrollX = TRUE))
output$downloadEnrichKEGGCSV <- downloadHandler(
filename = function() {paste0("enrichKEGG",".csv")},
content = function(file) {
write.csv(enrichGoReactive()$kegg_enrich@result, file, row.names=TRUE)}
)
output$enrichKEGGAvailable <-
reactive({
return(!is.null(enrichGoReactive()$kegg_enrich))
})
outputOptions(output, 'enrichKEGGAvailable', suspendWhenHidden=FALSE)
output$warningText <- renderText({
outputText = myValues$convWarningMessage
if(length(outputText) == 3)
outputText[3] = paste0('<strong>',outputText[3],'</strong>')
paste("<p>",outputText,"</p>")
})
observeEvent(input$gotoGoPlots, {
GotoTab('goplotsTab')
})
observeEvent(input$gotoKeggPlots, {
GotoTab('keggPlotsTab')
})
observeEvent(input$gotoPathview, {
GotoTab('pathviewTab')
})
observeEvent(input$gotoWordcloud, {
GotoTab('wordcloudTab')
})
observeEvent(input$gotoWordcloud1, {
GotoTab('wordcloudTab')
})