From 41722825e1256642ea181167c14ff6b1e7cb5fb7 Mon Sep 17 00:00:00 2001 From: Marco Gorelli <33491632+MarcoGorelli@users.noreply.github.com> Date: Thu, 14 Mar 2024 21:36:20 +0000 Subject: [PATCH] update raedme --- README.md | 31 +++++++++++++++---------------- 1 file changed, 15 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index bdd3a3cfbf..82c4d1da50 100644 --- a/README.md +++ b/README.md @@ -44,41 +44,40 @@ There are three steps to writing dataframe-agnostic code using Narwhals: Here's an example of a dataframe agnostic function: ```python -from typing import TypeVar +from typing import Any import pandas as pd import polars as pl -from narwhals import translate_frame, get_namespace, to_native - -AnyDataFrame = TypeVar("AnyDataFrame") +import narwhals as nw def my_agnostic_function( - suppliers_native: AnyDataFrame, - parts_native: AnyDataFrame, -) -> AnyDataFrame: - suppliers = translate_frame(suppliers_native) - parts = translate_frame(parts_native) - pl = get_namespace(suppliers) + suppliers_native, + parts_native, +): + suppliers = nw.DataFrame(suppliers_native) + parts = nw.DataFrame(parts_native) result = ( suppliers.join(parts, left_on="city", right_on="city") .filter( - pl.col("color").is_in(["Red", "Green"]), - pl.col("weight") > 14, + nw.col("color").is_in(["Red", "Green"]), + nw.col("weight") > 14, ) .group_by("s", "p") .agg( - weight_mean=pl.col("weight").mean(), - weight_max=pl.col("weight").max(), + weight_mean=nw.col("weight").mean(), + weight_max=nw.col("weight").max(), ) - ) - return to_native(result) + ).with_columns(nw.col("weight_max").cast(nw.Int64)) + return nw.to_native(result) + ``` You can pass in a pandas or Polars dataframe, the output will be the same! Let's try it out: ```python + suppliers = { "s": ["S1", "S2", "S3", "S4", "S5"], "sname": ["Smith", "Jones", "Blake", "Clark", "Adams"],