You will need to build the Docker container before using it in the Kubernetes(k8s) environment.
Different from the official Spark docker image, this Dockerfile doesn't require a Spark distribution
pre-downloaded which contains the official docker image tool
in your local machine. It will download Spark distribution inside the Dockerfile. Also, spark-rapids
plugin jar is downloaded into the SPARK_HOME/jars
directory which means user doesn't need to specify
extra --jars
option when submitting Spark applications.
command to build the container:
docker build -t <repo>:<tag> -f Dockerfile .
NOTE: Before pushing the docker image to a public repository, please make sure you have configured your Docker properly. For more information, please refer to Docker documentation.
command to push the image:
docker push <repo>:<tag>
- Installing kubectl
- Installing eksctl
- Basic understanding of AWS EKS and its permission system AWS IAM
Before executing the following command, please make sure you have configured your AWS CLI properly. Please make sure you have configured your local AWS identity(user) the same as the one you are using to browse the AWS console.
To check the identity:
- launch the AWS CloudShell then type
aws sts get-caller-identity
. - launch you local terminal then type
aws sts get-caller-identity
.
Make sure the output of the two commands are the same. Otherwise, you will not be able to see your cluster information in the AWS console.
A recommanded way to manage your EKS cluster is to create a dedicated user in your AWS account, For more information please refer to AWS IAM.
To create an EKS cluster with a GPU node group:
eksctl create cluster \
--name test-cluster \
--region us-west-2 \
--with-oidc \
--ssh-access \
--ssh-public-key <user-key-pair> \
--managed \
--nodegroup-name gpu-node-group \
--node-type g4dn.xlarge \
--nodes 2 \
--nodes-min 0 \
--nodes-max 4 \
--vpc-public-subnets <subnets-with-comma-separated>
Then you can see your cluster in the AWS console:
-
get cluster master IP address
$ kubectl cluster-info Kubernetes control plane is running at https://8440EE5F8730EDD7D8B989F704DE1DFE.gr7.us-west-2.eks.amazonaws.com CoreDNS is running at https://8440EE5F8730EDD7D8B989F704DE1DFE.gr7.us-west-2.eks.amazonaws.com/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
The master IP address is
https://8440EE5F8730EDD7D8B989F704DE1DFE.gr7.us-west-2.eks.amazonaws.com
, it will be the k8s master address when submitting Spark applications. -
create ServiceAccount and ClusterRoleBinding for the Spark application
# service account named spark kubectl create serviceaccount spark # cluster role binding for the service account kubectl create clusterrolebinding spark-role --clusterrole=edit --serviceaccount=default:spark --namespace=default
-
submit Spark applications
This Spark application will read data from a public s3 bucket then show them in the console. There is a short sleep period(300 seconds) in the application to simulate a long running Spark application. User can get access to the Spark UI during this period. User needs to set IMAGE_NAME, K8SMASTER and their aws access key and secret key accordingly in the command.
# use Spark-3.2.2 as example, it can be modified when building the docker image export SPARK_HOME=<path to>/spark-3.2.2-bin-hadoop3.2 # set your docker image path export IMAGE_NAME=<repo>:<tag> # set k8s master address export K8SMASTER=k8s://https://8440EE5F8730EDD7D8B989F704DE1DFE.gr7.us-west-2.eks.amazonaws.com:443 # use defualt namespace as an example export SPARK_NAMESPACE=default export SPARK_DRIVER_NAME=example-driver $SPARK_HOME/bin/spark-submit \ --master $K8SMASTER \ --deploy-mode cluster \ --name example-app \ --driver-memory 2G \ --conf spark.eventLog.enabled=true \ --conf spark.eventLog.dir=s3a://<s3 bucket to save the logs> \ --conf spark.executor.cores=1 \ --conf spark.executor.instances=1 \ --conf spark.executor.memory=4G \ --conf spark.executor.resource.gpu.amount=1 \ --conf spark.executor.resource.gpu.discoveryScript=/opt/spark/examples/src/main/scripts/getGpusResources.sh \ --conf spark.executor.resource.gpu.vendor=nvidia.com \ --conf spark.hadoop.fs.s3a.access.key=<your aws access key> \ --conf spark.hadoop.fs.s3a.secret.key=<your aws secret key> \ --conf spark.hadoop.fs.s3a.fast.upload=true \ --conf spark.hadoop.fs.s3a.impl=org.apache.hadoop.fs.s3a.S3AFileSystem \ --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \ --conf spark.kubernetes.container.image=$IMAGE_NAME \ --conf spark.kubernetes.driver.pod.name=$SPARK_DRIVER_NAME \ --conf spark.kubernetes.file.upload.path=s3a://<s3 bucket to staging your jar or python script> \ --conf spark.kubernetes.namespace=$SPARK_NAMESPACE \ --conf spark.plugins=com.nvidia.spark.SQLPlugin \ --conf spark.rapids.memory.pinnedPool.size=2G \ --conf spark.task.resource.gpu.amount=1 \ file:///$PWD/read-s3-test.py
Note 1: to save the Spark application logs for further analysis, please set
spark.eventLog.enabled=true
andspark.eventLog.dir=s3a://<s3 bucket to save the logs>
It's not recommended to save your logs to a local path in a k8s environment as the logs will be lost when the pod is deleted if extra volume related configurations are not set. For more information, please refer to volumes and using-kubernetes-volumes.Note 2: Spark supports application file at both local file path or the file path inside the container. Please refer to Dependency Management for more information.
After execution, check the logs of the driver pod:
$ kubectl logs example-driver ... 22/11/14 10:53:45 WARN RapidsPluginUtils: RAPIDS Accelerator 22.10.0 using cudf 22.10.0. ... 22/11/14 10:54:03 WARN GpuOverrides: ... +-----------------+ |cc_call_center_id| +-----------------+ | AAAAAAAABAAAAAAA| | AAAAAAAACAAAAAAA| | AAAAAAAACAAAAAAA| | AAAAAAAAEAAAAAAA| | AAAAAAAAEAAAAAAA| | AAAAAAAAEAAAAAAA| | AAAAAAAAHAAAAAAA| | AAAAAAAAIAAAAAAA| | AAAAAAAAIAAAAAAA| | AAAAAAAAKAAAAAAA| | AAAAAAAAKAAAAAAA| | AAAAAAAAKAAAAAAA| | AAAAAAAANAAAAAAA| | AAAAAAAAOAAAAAAA| | AAAAAAAAOAAAAAAA| | AAAAAAAAABAAAAAA| | AAAAAAAAABAAAAAA| | AAAAAAAAABAAAAAA| | AAAAAAAADBAAAAAA| | AAAAAAAAEBAAAAAA| +-----------------+ only showing top 20 rows
-
Delete the pod
kubeclt delete pod example-driver
-
Delete the cluster along with its node groups
# delete node group first as it is not allowed to delete the cluster if there are still node groups eksctl delete nodegroup --cluster <cluster name> --region <region> --name <node group name> # then it's safe to delete the cluster eksctl delete cluster --name <cluster name>
- Installing kubectl
- Installing gcloud cli
- Basic understanding of GCS GKE and its permission system GCS IAM
Before creating an GKE cluster, make sure you initialized gcloud cli and set the project and zone correctly.
User can modify the cluster configurations accordingly.
gcloud beta container \
--project <your project id> \
clusters create \
<cluster name> \
--zone "us-central1-c" \
--no-enable-basic-auth \
--cluster-version "1.23.12-gke.100" \
--release-channel "regular" \
--machine-type "n1-standard-16" \
--accelerator "type=nvidia-tesla-t4,count=1" \
--image-type "COS_CONTAINERD" \
--disk-type "pd-ssd" --disk-size "300" \
--local-ssd-count "1" \
--metadata disable-legacy-endpoints=true \
--service-account <your service account id> \
--max-pods-per-node "110" --num-nodes "1" \
--logging=SYSTEM,WORKLOAD \
--monitoring=SYSTEM \
--enable-ip-alias \
--network "projects/rapids-spark/global/networks/default" \
--subnetwork "projects/rapids-spark/regions/us-central1/subnetworks/default" \
--no-enable-intra-node-visibility \
--default-max-pods-per-node "110" \
--no-enable-master-authorized-networks \
--addons HorizontalPodAutoscaling,HttpLoadBalancing,GcePersistentDiskCsiDriver \
--enable-autoupgrade \
--enable-autorepair \
--max-surge-upgrade 1 \
--max-unavailable-upgrade 0 \
--enable-shielded-nodes \
--node-locations "us-central1-c"
gcloud container clusters get-credentials <cluster name> --zone us-central1-c --project <project id>
kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/master/nvidia-driver-installer/cos/daemonset-preloaded-latest.yaml
Similar to AWS EKS Spark submit, user can submit Spark applications to the GKE cluster by using the spark-submit
command.
For GKE, user need to set some extra configurations to make sure the Spark driver and executor pods can access the GCS bucket:
--conf spark.eventLog.enabled=true \
--conf spark.eventLog.dir=gs://<your gs bucket to save history logs> \
--conf spark.hadoop.fs.gs.auth.service.account.email=<your gcs service account email> \
--conf spark.hadoop.fs.gs.auth.service.account.private.key.id=<your gcs service account key id, saved in key.json>
--conf spark.hadoop.fs.gs.auth.service.account.private.key=<your gcs service account secret key, saved in key.json>
--conf spark.hadoop.fs.gs.impl=com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem \
--conf spark.hadoop.fs.gs.project.id=<your project id> \
--conf spark.kubernetes.file.upload.path=gs://<your gs bucket path for file staging> \
User can modify read-s3-test.py directly with your own gs bucket path and your own query to test the Spark application.
Before the Spark application is finished, you can access the Spark UI by port-forwarding the driver pod:
$ kubectl port-forward example-driver 4040:4040
Forwarding from 127.0.0.1:4040 -> 4040
Forwarding from [::1]:4040 -> 4040
...
Then you can access the Spark UI at http://localhost:4040.
kubectl delete pod example-driver
Please refer to README for more details.