-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjust-for-test.py
49 lines (38 loc) · 1.4 KB
/
just-for-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import matplotlib.pyplot as plt
from transformers import BertTokenizer,BertConfig,TFBertModel
'''
x=[1,2,3,4,5]
y=[2,4,6,8,10]
plt.plot(x,y)
plt.title('示例')
plt.show()'''
'''
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
a=tf.constant([1.2,2.3,3.6],shape=[3],name='a')
b=tf.constant([1.2,2.3,3.6],shape=[3],name='b')
c=a+b
session=tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
print(session.run(c))'''
#测试gpu是否启用
from transformers import BertModel, BertTokenizer
import torch
# 加载预训练的BERT模型和分词器
model_name = 'bert-base-uncased'
bert_model = BertModel.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained(model_name)
# 输入文本
input_text = "Hello, how are you?"
input_ids = tokenizer.encode(input_text, add_special_tokens=True)
input_ids = torch.tensor(input_ids).unsqueeze(0) # 添加batch维度
# 通过BERT模型获取隐藏状态
with torch.no_grad():
last_hidden_state, pooled_output = bert_model(input_ids)
# 添加一个全连接层作为解码器
decoder = torch.nn.Linear(bert_model.config.hidden_size, tokenizer.vocab_size)
decoder_output = decoder(last_hidden_state)
# 使用softmax函数获取每个词的概率分布
probs = torch.nn.functional.softmax(decoder_output, dim=-1)
# 生成文本
generated_text = tokenizer.decode(torch.argmax(probs, dim=-1).squeeze())
print(generated_text)