-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbinary_search.py
52 lines (42 loc) · 1.34 KB
/
binary_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import random
import time
def naive_search (l, target):
for i in range (len(l)):
if l[i] == target:
return i
return -1
#binary search uses divide and conquer! We shall leverage on a SORTED list
def binary_search (l, target, low=None, high=None):
if low is None:
low = 0
if high is None:
high = len(l) -1
if high < low:
return -1
midpoint = (low + high) // 2
if l[midpoint] == target:
return midpoint
elif target < l[midpoint]:
return binary_search(l, target, low, midpoint-1)
else:
return binary_search(l, target, midpoint+1, high)
if __name__=='__main__': #naive_search(l, target)
#l = [1, 3, 5, 10, 12]
#target = 10
#print(naive_search(l, target))
#print(naive_search(l, target))
length = 10000
sorted_list = set ()
while len(sorted_list) < length:
sorted_list.add(random.randint(-3*length, 3*length))
sorted_list = sorted(list(sorted_list))
start = time.time()
for target in sorted_list:
naive_search(sorted_list, target)
end = time.time()
print("Naive Search time: ", (end - start)/length, "seconds")
start = time.time()
for target in sorted_list:
binary_search(sorted_list, target)
end = time.time()
print("Binary Search time: ", (end - start)/length, "seconds")