-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolor_quantization.py
67 lines (50 loc) · 1.47 KB
/
color_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import sys
import re
from PIL import Image
import numpy as np
from sklearn.cluster import KMeans as SKKMeans
"""
Color-Quantization of image by K-Means algorithm
Command line argument:
origin image path.
Num of colors or 'bw' for black and white image.
The result image will be save in the origin folder.
"""
# Upload the cmd argument to variabels
assert len(sys.argv) == 3
img_path = sys.argv[1]
n_colors = sys.argv[2]
bw = False
if n_colors == 'bw': # Black and white option
n_colors = 2
bw = True
assert 0 < int(n_colors) < 256
# Upload the image and convert it to numpy array
img = Image.open(img_path)
img = np.array(img)
w, h, d = img.shape
X = img.reshape((w*h, d))
print(f"Succefly uploaded image from: \"{img_path}\"")
# Initialize K-Means model and cauterize the data
model = SKKMeans(int(n_colors), "random", 1, 100)
model.fit(X)
labels = model.labels_
print("Succefly created and fit K-Means model")
# Cluster centers
if bw:
centers = np.array([[0, 0, 0], [255, 255, 255]])
else:
centers = model.cluster_centers_
# Build new image
new_img = []
for label in labels:
new_img.append(centers[int(label)])
new_img = np.array(new_img)
new_img = new_img.reshape((w, h, d))
new_img = Image.fromarray(new_img.astype(np.uint8))
# Save the new image
pattern = r"\.[\w]+$"
form = re.search(pattern, img_path).group()
new_img_path = re.sub(pattern, "-new"+form, img_path)
new_img.save(new_img_path)
print(f"Succefly created new image at: \"{new_img_path}\"")