|
| 1 | +import argparse |
| 2 | +import time |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch.nn.parallel |
| 6 | +import torch.optim |
| 7 | +from sklearn.metrics import confusion_matrix |
| 8 | + |
| 9 | +from dataset import TSNDataSet |
| 10 | +from models import TSN |
| 11 | +from transforms import * |
| 12 | +from ops import ConsensusModule |
| 13 | + |
| 14 | +import os |
| 15 | + |
| 16 | +# options |
| 17 | +parser = argparse.ArgumentParser( |
| 18 | + description="Standard video-level testing") |
| 19 | +parser.add_argument('dataset', type=str, choices=['ucf101', 'hmdb51', 'kinetics', 'something']) |
| 20 | +parser.add_argument('modality', type=str, choices=['RGB', 'Flow', 'RGBDiff']) |
| 21 | +parser.add_argument('test_list', type=str) |
| 22 | +parser.add_argument('weights', type=str) |
| 23 | +parser.add_argument('result_file', type=str) |
| 24 | +parser.add_argument('--arch', type=str, default="resnet101") |
| 25 | +parser.add_argument('--save_scores', type=str, default=None) |
| 26 | +parser.add_argument('--test_segments', type=int, default=25) |
| 27 | +parser.add_argument('--max_num', type=int, default=-1) |
| 28 | +parser.add_argument('--test_crops', type=int, default=10) |
| 29 | +parser.add_argument('--input_size', type=int, default=224) |
| 30 | +parser.add_argument('--crop_fusion_type', type=str, default='avg', |
| 31 | + choices=['avg', 'max', 'topk']) |
| 32 | +parser.add_argument('--k', type=int, default=3) |
| 33 | +parser.add_argument('--dropout', type=float, default=0.7) |
| 34 | +parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
| 35 | + help='number of data loading workers (default: 4)') |
| 36 | +parser.add_argument('--gpus', nargs='+', type=int, default=None) |
| 37 | +parser.add_argument('--flow_prefix', type=str, default='') |
| 38 | +parser.add_argument('--rgb_prefix', type=str, default='') |
| 39 | +parser.add_argument('--out_list_path', type=str, default='data/') |
| 40 | + |
| 41 | +args = parser.parse_args() |
| 42 | + |
| 43 | +if args.dataset == 'ucf101': |
| 44 | + num_class = 101 |
| 45 | +elif args.dataset == 'hmdb51': |
| 46 | + num_class = 51 |
| 47 | +elif args.dataset == 'kinetics': |
| 48 | + num_class = 400 |
| 49 | +elif args.dataset == 'something': |
| 50 | + num_class = 174 |
| 51 | +else: |
| 52 | + raise ValueError('Unknown dataset '+args.dataset) |
| 53 | + |
| 54 | +net = TSN(num_class, 1, args.modality, |
| 55 | + base_model=args.arch, |
| 56 | + consensus_type=args.crop_fusion_type, |
| 57 | + dropout=args.dropout) |
| 58 | + |
| 59 | +checkpoint = torch.load(args.weights) |
| 60 | +print("model epoch {} best prec@1: {}".format(checkpoint['epoch'], checkpoint['best_prec1'])) |
| 61 | + |
| 62 | +# list element type: tuple |
| 63 | +base_dict = {'.'.join(k.split('.')[1:]): v for k,v in list(checkpoint['state_dict'].items())} |
| 64 | +net.load_state_dict(base_dict) |
| 65 | + |
| 66 | +if args.test_crops == 1: |
| 67 | + cropping = torchvision.transforms.Compose([ |
| 68 | + GroupScale(net.scale_size), |
| 69 | + GroupCenterCrop(net.input_size), |
| 70 | + ]) |
| 71 | +elif args.test_crops == 10: |
| 72 | + cropping = torchvision.transforms.Compose([ |
| 73 | + GroupOverSample(net.input_size, net.scale_size) |
| 74 | + ]) |
| 75 | +else: |
| 76 | + raise ValueError("Only 1 and 10 crops are supported while we got {}".format(args.test_crops)) |
| 77 | + |
| 78 | +data_loader = torch.utils.data.DataLoader( |
| 79 | + TSNDataSet("", args.test_list, num_segments=args.test_segments, |
| 80 | + new_length=1 if args.modality == "RGB" else 5, |
| 81 | + modality=args.modality, |
| 82 | + image_tmpl=args.rgb_prefix+"{:05d}.jpg" if args.modality in ['RGB', 'RGBDiff'] else args.flow_prefix+"{}_{:05d}.jpg", |
| 83 | + test_mode=True, |
| 84 | + transform=torchvision.transforms.Compose([ |
| 85 | + cropping, |
| 86 | + Stack(roll=args.arch == 'BNInception'), |
| 87 | + ToTorchFormatTensor(div=args.arch != 'BNInception'), |
| 88 | + GroupNormalize(net.input_mean, net.input_std), |
| 89 | + ])), |
| 90 | + batch_size=1, shuffle=False, |
| 91 | + num_workers=args.workers * 2, pin_memory=True) |
| 92 | + |
| 93 | +if args.gpus is not None: |
| 94 | + devices = [args.gpus[i] for i in range(args.workers)] |
| 95 | +else: |
| 96 | + devices = list(range(args.workers)) |
| 97 | + |
| 98 | + |
| 99 | +net = torch.nn.DataParallel(net.cuda(devices[0]), device_ids=devices) |
| 100 | +net.eval() |
| 101 | + |
| 102 | +data_gen = enumerate(data_loader) |
| 103 | + |
| 104 | +total_num = len(data_loader.dataset) |
| 105 | +output = [] |
| 106 | + |
| 107 | + |
| 108 | +def eval_video(video_data): |
| 109 | + i, data, label = video_data |
| 110 | + num_crop = args.test_crops |
| 111 | + |
| 112 | + if args.modality == 'RGB': |
| 113 | + length = 3 |
| 114 | + elif args.modality == 'Flow': |
| 115 | + length = 10 |
| 116 | + elif args.modality == 'RGBDiff': |
| 117 | + length = 18 |
| 118 | + else: |
| 119 | + raise ValueError("Unknown modality "+args.modality) |
| 120 | + |
| 121 | + input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)), |
| 122 | + volatile=True) |
| 123 | + rst = net(input_var).data.cpu().numpy().copy() |
| 124 | + return i, rst.reshape((num_crop, args.test_segments, num_class)).mean(axis=0).reshape( |
| 125 | + (args.test_segments, 1, num_class) |
| 126 | + ), label[0] |
| 127 | + |
| 128 | + |
| 129 | +proc_start_time = time.time() |
| 130 | +max_num = args.max_num if args.max_num > 0 else len(data_loader.dataset) |
| 131 | + |
| 132 | +for i, (data, label) in data_gen: |
| 133 | + if i >= max_num: |
| 134 | + break |
| 135 | + rst = eval_video((i, data, label)) |
| 136 | + output.append(rst[1:]) |
| 137 | + cnt_time = time.time() - proc_start_time |
| 138 | + print('video {} done, total {}/{}, average {} sec/video'.format(i, i+1, |
| 139 | + total_num, |
| 140 | + float(cnt_time) / (i+1))) |
| 141 | + |
| 142 | +video_pred = [np.argmax(np.mean(x[0], axis=0)) for x in output] |
| 143 | + |
| 144 | +video_ids = [x[1] for x in output] |
| 145 | + |
| 146 | +category_lines = open(os.path.join(args.out_list_path, '{}_category.txt'.format(args.dataset))).readlines() |
| 147 | +categories = [line.rstrip() for line in category_lines] |
| 148 | + |
| 149 | +test_results = ["{};{}".format(video_ids[i], categories[int(video_pred[i])]) for i in range(len(output))] |
| 150 | + |
| 151 | +open(os.path.join(args.result_file),'w').write('\n'.join(test_results)) |
| 152 | + |
| 153 | +# cf = confusion_matrix(video_labels, video_pred).astype(float) |
| 154 | + |
| 155 | +# cls_cnt = cf.sum(axis=1) |
| 156 | +# cls_hit = np.diag(cf) |
| 157 | + |
| 158 | +# cls_acc = cls_hit / cls_cnt |
| 159 | + |
| 160 | +# print(cls_acc) |
| 161 | + |
| 162 | +# print('Accuracy {:.02f}%'.format(np.mean(cls_acc) * 100)) |
| 163 | + |
| 164 | +# if args.save_scores is not None: |
| 165 | + |
| 166 | +# # reorder before saving |
| 167 | +# name_list = [x.strip().split()[0] for x in open(args.test_list)] |
| 168 | + |
| 169 | +# order_dict = {e:i for i, e in enumerate(sorted(name_list))} |
| 170 | + |
| 171 | +# reorder_output = [None] * len(output) |
| 172 | +# reorder_label = [None] * len(output) |
| 173 | + |
| 174 | +# for i in range(len(output)): |
| 175 | +# idx = order_dict[name_list[i]] |
| 176 | +# reorder_output[idx] = output[i] |
| 177 | +# reorder_label[idx] = video_labels[i] |
| 178 | + |
| 179 | +# np.savez(args.save_scores, scores=reorder_output, labels=reorder_label) |
| 180 | + |
| 181 | + |
0 commit comments