-
Notifications
You must be signed in to change notification settings - Fork 0
/
t2t-decode-multi.py
242 lines (204 loc) · 8.4 KB
/
t2t-decode-multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# coding=utf-8
# Copyright 2020 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Decode from trained T2T models.
This binary performs inference using the Estimator API.
Example usage to decode from dataset:
t2t-decoder \
--data_dir ~/data \
--problem=algorithmic_identity_binary40 \
--model=transformer
--hparams_set=transformer_base
Set FLAGS.decode_interactive or FLAGS.decode_from_file for alternative decode
sources.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from tensor2tensor.bin import t2t_trainer
from tensor2tensor.data_generators import problem # pylint: disable=unused-import
from tensor2tensor.data_generators import text_encoder
from tensor2tensor.utils import decoding
from tensor2tensor.utils import registry
from tensor2tensor.utils import trainer_lib
from tensor2tensor.utils import usr_dir
import tensorflow.compat.v1 as tf
flags = tf.flags
FLAGS = flags.FLAGS
# Additional flags in bin/t2t_trainer.py and utils/flags.py
flags.DEFINE_string("checkpoint_path", None,
"Path to the model checkpoint. Overrides output_dir.")
flags.DEFINE_bool("keep_timestamp", False,
"Set the mtime of the decoded file to the "
"checkpoint_path+'.index' mtime.")
flags.DEFINE_bool("decode_interactive", False,
"Interactive local inference mode.")
flags.DEFINE_integer("decode_shards", 1, "Number of decoding replicas.")
flags.DEFINE_string("score_file", "", "File to score. Each line in the file "
"must be in the format input \t target.")
flags.DEFINE_bool("decode_in_memory", False, "Decode in memory.")
flags.DEFINE_bool("disable_grappler_optimizations", False,
"Disable Grappler if need be to avoid tensor format errors.")
flags.DEFINE_string("data_config", None, "Path to data config file of the network, containing language list.")
flags.DEFINE_string("tgt_language", None, "Target language for decoding.")
def get_language_index():
import json
with open(FLAGS.data_config) as fp: # TODO: do we need that?
langs = json.load(fp)['languages']
return langs
def patch_encoder_with_language():
idx = get_language_index()
langs = get_language_index()
def encode(self, s, tgt_language=FLAGS.tgt_language):
inputs = self.real_encode(s)
if tgt_language is not None:
inputs.insert(0, 2 + langs.index(tgt_language))
return inputs
text_encoder.SubwordTextEncoder.real_encode = text_encoder.SubwordTextEncoder.encode
text_encoder.SubwordTextEncoder.encode = encode
print("Encoder patched with target language!")
# def patch_tpu():
def create_hparams():
hparams_path = None
if FLAGS.output_dir:
hparams_path = os.path.join(FLAGS.output_dir, "hparams.json")
return trainer_lib.create_hparams(
FLAGS.hparams_set,
FLAGS.hparams,
data_dir=os.path.expanduser(FLAGS.data_dir),
problem_name=FLAGS.problem,
hparams_path=hparams_path)
def create_decode_hparams():
decode_hp = decoding.decode_hparams(FLAGS.decode_hparams)
decode_hp.shards = FLAGS.decode_shards
decode_hp.shard_id = FLAGS.worker_id
decode_in_memory = FLAGS.decode_in_memory or decode_hp.decode_in_memory
decode_hp.decode_in_memory = decode_in_memory
decode_hp.decode_to_file = FLAGS.decode_to_file
decode_hp.decode_reference = FLAGS.decode_reference
return decode_hp
def decode(estimator, hparams, decode_hp):
"""Decode from estimator. Interactive, from file, or from dataset."""
if FLAGS.decode_interactive:
if estimator.config.use_tpu:
raise ValueError("TPU can only decode from dataset.")
decoding.decode_interactively(estimator, hparams, decode_hp,
checkpoint_path=FLAGS.checkpoint_path)
elif FLAGS.decode_from_file:
decoding.decode_from_file(estimator, FLAGS.decode_from_file, hparams,
decode_hp, FLAGS.decode_to_file,
checkpoint_path=FLAGS.checkpoint_path)
if FLAGS.checkpoint_path and FLAGS.keep_timestamp:
ckpt_time = os.path.getmtime(FLAGS.checkpoint_path + ".index")
os.utime(FLAGS.decode_to_file, (ckpt_time, ckpt_time))
else:
decoding.decode_from_dataset(
estimator,
FLAGS.problem,
hparams,
decode_hp,
decode_to_file=FLAGS.decode_to_file,
dataset_split="test" if FLAGS.eval_use_test_set else None,
checkpoint_path=FLAGS.checkpoint_path)
def score_file(filename):
"""Score each line in a file and return the scores."""
# Prepare model.
hparams = create_hparams()
encoders = registry.problem(FLAGS.problem).feature_encoders(FLAGS.data_dir)
has_inputs = "inputs" in encoders
# Prepare features for feeding into the model.
if has_inputs:
inputs_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_inputs = tf.reshape(inputs_ph, [1, -1, 1, 1]) # Make it 4D.
targets_ph = tf.placeholder(dtype=tf.int32) # Just length dimension.
batch_targets = tf.reshape(targets_ph, [1, -1, 1, 1]) # Make it 4D.
if has_inputs:
features = {"inputs": batch_inputs, "targets": batch_targets}
else:
features = {"targets": batch_targets}
# Prepare the model and the graph when model runs on features.
model = registry.model(FLAGS.model)(hparams, tf.estimator.ModeKeys.EVAL)
_, losses = model(features)
saver = tf.train.Saver()
with tf.Session() as sess:
# Load weights from checkpoint.
if FLAGS.checkpoint_path is None:
ckpts = tf.train.get_checkpoint_state(FLAGS.output_dir)
ckpt = ckpts.model_checkpoint_path
else:
ckpt = FLAGS.checkpoint_path
saver.restore(sess, ckpt)
# Run on each line.
with tf.gfile.Open(filename) as f:
lines = f.readlines()
results = []
for line in lines:
tab_split = line.split("\t")
if len(tab_split) > 2:
raise ValueError("Each line must have at most one tab separator.")
if len(tab_split) == 1:
targets = tab_split[0].strip()
else:
targets = tab_split[1].strip()
inputs = tab_split[0].strip()
# Run encoders and append EOS symbol.
targets_numpy = encoders["targets"].encode(
targets) + [text_encoder.EOS_ID]
if has_inputs:
inputs_numpy = encoders["inputs"].encode(inputs) + [text_encoder.EOS_ID]
# Prepare the feed.
if has_inputs:
feed = {inputs_ph: inputs_numpy, targets_ph: targets_numpy}
else:
feed = {targets_ph: targets_numpy}
# Get the score.
np_loss = sess.run(losses["training"], feed)
results.append(np_loss)
return results
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
trainer_lib.set_random_seed(FLAGS.random_seed)
usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
patch_encoder_with_language() # !!!
if FLAGS.score_file:
filename = os.path.expanduser(FLAGS.score_file)
if not tf.gfile.Exists(filename):
raise ValueError("The file to score doesn't exist: %s" % filename)
results = score_file(filename)
if not FLAGS.decode_to_file:
raise ValueError("To score a file, specify --decode_to_file for results.")
write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w")
for score in results:
write_file.write("%.6f\n" % score)
write_file.close()
return
hp = create_hparams()
decode_hp = create_decode_hparams()
run_config = t2t_trainer.create_run_config(hp)
if FLAGS.disable_grappler_optimizations:
run_config.session_config.graph_options.rewrite_options.disable_meta_optimizer = True
# summary-hook in tf.estimator.EstimatorSpec requires
# hparams.model_dir to be set.
hp.add_hparam("model_dir", run_config.model_dir)
estimator = trainer_lib.create_estimator(
FLAGS.model,
hp,
run_config,
decode_hparams=decode_hp,
use_tpu=FLAGS.use_tpu)
decode(estimator, hp, decode_hp)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()