-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheuristics.py
57 lines (41 loc) · 2.17 KB
/
heuristics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import math
def get_best_attribute(data_subset, attribute_subset, heuristic):
if heuristic == 'information gain':
return select_by_information_gain(data_subset, attribute_subset)
else:
return select_by_variance_impurity(data_subset, attribute_subset)
def select_by_information_gain(data_subset, attribute_subset):
all_attribute_information_gains = {attr: information_gain(data_subset, attr) for attr in attribute_subset}
return max(all_attribute_information_gains, key=all_attribute_information_gains.get)
def select_by_variance_impurity(data_subset, attribute_subset):
all_attribute_information_gains = {attr: impurity_gain(data_subset, attr) for attr in attribute_subset}
return max(all_attribute_information_gains, key=all_attribute_information_gains.get)
def information_gain(data_subset, attr):
p_0 = [x.get(attr) for x in data_subset].count('0') / len(data_subset)
p_1 = 1 - p_0
zeros = [x for x in data_subset if x.get(attr) is '0']
ones = [x for x in data_subset if x.get(attr) is '1']
return entropy(data_subset) - p_0 * entropy(zeros) - p_1 * entropy(ones)
def impurity_gain(data_subset, attr):
p_0 = [x.get(attr) for x in data_subset].count('0') / len(data_subset)
p_1 = 1 - p_0
zeros = [x for x in data_subset if x.get(attr) is '0']
ones = [x for x in data_subset if x.get(attr) is '1']
return variance_impurity(data_subset) - (p_0 * variance_impurity(zeros) + p_1 * variance_impurity(ones))
def entropy(data_subset):
if len(data_subset) == 0:
return 0.0
else:
p_pos = [x.get('Class') for x in data_subset].count('1') / len(data_subset)
p_neg = 1 - p_pos
if p_pos == 0.0 or p_neg == 0.0:
return 0.0
else:
return -p_pos * math.log(p_pos, 2) - p_neg * math.log(p_neg, 2)
def variance_impurity(data_subset):
if len(data_subset) == 0:
return 0.0
else:
percent_positive_data = [x.get('Class') for x in data_subset].count('1') / len(data_subset)
percent_negative_data = 1 - percent_positive_data
return percent_positive_data * percent_negative_data