diff --git a/README.md b/README.md index 456ad9c..4200fde 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,26 @@ +# LightGlue_CIUS +Test using `meta_count` image pairs +```sh +conda activate superpoint # activate the conda env +python match_test.py # to save the matches plot +python match_test_loop.py # to make statistics of the matching time +``` +- The image matched is shown below, seems good: +

+ match_show +
+ The match result in meta count. +

+ +- Average time cost of 640*480 image with 540 keypoints is 110ms using device: RTX 2070 SUPER and i7-9700K CPU @ 3.60GHz × 8 + +## TODO: +Since there is no C++ version of LightGlue, we will wait official update the C++ version with TensorRT + +--- + + +

LightGlue ⚡️
Local Feature Matching at Light Speed

diff --git a/assets/10_1683599558_070450.jpg b/assets/10_1683599558_070450.jpg new file mode 100644 index 0000000..08e796c Binary files /dev/null and b/assets/10_1683599558_070450.jpg differ diff --git a/assets/10_1683599558_173581.jpg b/assets/10_1683599558_173581.jpg new file mode 100644 index 0000000..7d8eed4 Binary files /dev/null and b/assets/10_1683599558_173581.jpg differ diff --git a/assets/match_test.png b/assets/match_test.png new file mode 100644 index 0000000..40f5231 Binary files /dev/null and b/assets/match_test.png differ diff --git a/match_test.py b/match_test.py new file mode 100644 index 0000000..03a086c --- /dev/null +++ b/match_test.py @@ -0,0 +1,92 @@ +from operator import truediv +from lightglue import LightGlue, SuperPoint, DISK +from lightglue.utils import load_image, rbd + +# wzy add >>>> +import cv2 +from pathlib import Path +import argparse +import random +import numpy as np +import matplotlib.cm as cm +import torch + +from utils import (compute_pose_error, compute_epipolar_error, + estimate_pose, make_matching_plot, + error_colormap, AverageTimer, pose_auc, read_image, + rotate_intrinsics, rotate_pose_inplane, + scale_intrinsics) + +torch.set_grad_enabled(False) +# wzy add <<<< + + +# SuperPoint+LightGlue +extractor = SuperPoint(max_num_keypoints=2048).eval().cuda() # load the extractor +matcher = LightGlue(features='superpoint').eval().cuda() # load the matcher + +# or DISK+LightGlue +# extractor = DISK(max_num_keypoints=2048).eval().cuda() # load the extractor +# matcher = LightGlue(features='disk').eval().cuda() # load the matcher + +# load each image as a torch.Tensor on GPU with shape (3,H,W), normalized in [0,1] +image0 = load_image('/home/zph/projects/LightGlue/assets/10_1683599558_173581.jpg').cuda() +image1 = load_image('/home/zph/projects/LightGlue/assets/10_1683599558_070450.jpg').cuda() + +timer = AverageTimer(newline=True) +# extract local features +feats0 = extractor.extract(image0) # auto-resize the image, disable with resize=None +feats1 = extractor.extract(image1) + +# match the features +matches01 = matcher({'image0': feats0, 'image1': feats1}) +feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]] # remove batch dimension +matches = matches01['matches'] # indices with shape (K,2) +points0 = feats0['keypoints'][matches[..., 0]] # coordinates in image #0, shape (K,2) +points1 = feats1['keypoints'][matches[..., 1]] # coordinates in image #1, shape (K,2) +print('number of points0: ', len(points0)) +# print(points0) + +# convert CUDA to CPU +image0 = image0.cpu().numpy().transpose((1, 2, 0)) # CxHxW to HxWxC +image1 = image1.cpu().numpy().transpose((1, 2, 0)) # CxHxW to HxWxC +# print(image0) +# print(image0.shape) + +# cv2.imshow("image0",image0) +# cv2.waitKey(0) +# image0 = cv2.cvtColor(image0, cv2.COLOR_BGR2GRAY) +# image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) + +matches = matches.cpu().numpy() +points0 = points0.cpu().numpy() +points1 = points1.cpu().numpy() +# print(points0) + +do_viz = True +fast_viz = False +opencv_display = True +show_keypoints = True +viz_path = '/home/zph/projects/LightGlue/assets/match_test.png' +mconf = np.ones(len(points0)) + + +if do_viz: + # Visualize the matches. + color = cm.jet(mconf) + text = [ + 'LightGlue', + 'Matches: {}'.format(len(points0)), + ] + + # Display extra parameter info. + small_text = [ + 'Image Pair: {}:{}'.format('kun0', 'kun1'), + ] + + make_matching_plot( + image0, image1, points0, points1, points0, points1, color, + text, viz_path, show_keypoints, + fast_viz, opencv_display, 'Matches', small_text) + + timer.update('viz_match') diff --git a/match_test_loop.py b/match_test_loop.py new file mode 100644 index 0000000..79f388f --- /dev/null +++ b/match_test_loop.py @@ -0,0 +1,87 @@ +from operator import truediv +from time import time +from lightglue import LightGlue, SuperPoint, DISK +from lightglue.utils import load_image, rbd + +# wzy add >>>> +import cv2 +from pathlib import Path +import argparse +import random +import numpy as np +import matplotlib.cm as cm +import torch + +from utils import (compute_pose_error, compute_epipolar_error, + estimate_pose, make_matching_plot, + error_colormap, AverageTimer, pose_auc, read_image, + rotate_intrinsics, rotate_pose_inplane, + scale_intrinsics) + +torch.set_grad_enabled(False) +# wzy add <<<< + + +# SuperPoint+LightGlue +extractor = SuperPoint(max_num_keypoints=2048).eval().cuda() # load the extractor +matcher = LightGlue(features='superpoint').eval().cuda() # load the matcher + +# or DISK+LightGlue +# extractor = DISK(max_num_keypoints=2048).eval().cuda() # load the extractor +# matcher = LightGlue(features='disk').eval().cuda() # load the matcher + +# load each image as a torch.Tensor on GPU with shape (3,H,W), normalized in [0,1] +image0 = load_image('/home/zph/projects/LightGlue/assets/10_1683599558_173581.jpg').cuda() +image1 = load_image('/home/zph/projects/LightGlue/assets/10_1683599558_070450.jpg').cuda() + +timer = AverageTimer(newline=True) +for i in range(1,20): + # extract local features + feats0 = extractor.extract(image0) # auto-resize the image, disable with resize=None + feats1 = extractor.extract(image1) + + # match the features + matches01 = matcher({'image0': feats0, 'image1': feats1}) + feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]] # remove batch dimension + matches = matches01['matches'] # indices with shape (K,2) + points0 = feats0['keypoints'][matches[..., 0]] # coordinates in image #0, shape (K,2) + points1 = feats1['keypoints'][matches[..., 1]] # coordinates in image #1, shape (K,2) + print('number of points0: ', len(points0)) + + # convert CUDA to CPU + image0_cpu = image0.cpu().numpy().transpose((1, 2, 0)) # CxHxW to HxWxC + image1_cpu = image1.cpu().numpy().transpose((1, 2, 0)) # CxHxW to HxWxC + matches = matches.cpu().numpy() + points0 = points0.cpu().numpy() + points1 = points1.cpu().numpy() +timer.update('match loop sum') +timer.print() + +do_viz = False +fast_viz = False +opencv_display = True +show_keypoints = True +viz_path = '/home/zph/projects/LightGlue/assets/match_test.png' +mconf = np.ones(len(points0)) + + +if do_viz: + # Visualize the matches. + color = cm.jet(mconf) + text = [ + 'LightGlue', + 'Keypoints: {}:{}'.format(len(points0), len(points1)), + 'Matches: {}'.format(len(points0)), + ] + + # Display extra parameter info. + small_text = [ + 'Image Pair: {}:{}'.format('kun0', 'kun1'), + ] + + make_matching_plot( + image0, image1, points0, points1, points0, points1, color, + text, viz_path, show_keypoints, + fast_viz, opencv_display, 'Matches', small_text) + + timer.update('viz_match') diff --git a/utils.py b/utils.py new file mode 100755 index 0000000..b35f23c --- /dev/null +++ b/utils.py @@ -0,0 +1,565 @@ +# %BANNER_BEGIN% +# --------------------------------------------------------------------- +# %COPYRIGHT_BEGIN% +# +# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL +# +# Unpublished Copyright (c) 2020 +# Magic Leap, Inc., All Rights Reserved. +# +# NOTICE: All information contained herein is, and remains the property +# of COMPANY. The intellectual and technical concepts contained herein +# are proprietary to COMPANY and may be covered by U.S. and Foreign +# Patents, patents in process, and are protected by trade secret or +# copyright law. Dissemination of this information or reproduction of +# this material is strictly forbidden unless prior written permission is +# obtained from COMPANY. Access to the source code contained herein is +# hereby forbidden to anyone except current COMPANY employees, managers +# or contractors who have executed Confidentiality and Non-disclosure +# agreements explicitly covering such access. +# +# The copyright notice above does not evidence any actual or intended +# publication or disclosure of this source code, which includes +# information that is confidential and/or proprietary, and is a trade +# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, +# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS +# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS +# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND +# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE +# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS +# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, +# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. +# +# %COPYRIGHT_END% +# ---------------------------------------------------------------------- +# %AUTHORS_BEGIN% +# +# Originating Authors: Paul-Edouard Sarlin +# Daniel DeTone +# Tomasz Malisiewicz +# +# %AUTHORS_END% +# --------------------------------------------------------------------*/ +# %BANNER_END% + +from pathlib import Path +import time +from collections import OrderedDict +from threading import Thread +import numpy as np +import cv2 +import torch +import matplotlib.pyplot as plt +import matplotlib +matplotlib.use('Agg') + + +class AverageTimer: + """ Class to help manage printing simple timing of code execution. """ + + def __init__(self, smoothing=0.3, newline=False): + self.smoothing = smoothing + self.newline = newline + self.times = OrderedDict() + self.will_print = OrderedDict() + self.reset() + + def reset(self): + now = time.time() + self.start = now + self.last_time = now + for name in self.will_print: + self.will_print[name] = False + + def update(self, name='default'): + now = time.time() + dt = now - self.last_time + if name in self.times: + dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name] + self.times[name] = dt + self.will_print[name] = True + self.last_time = now + + def print(self, text='Timer'): + total = 0. + print('[{}]'.format(text), end=' ') + for key in self.times: + val = self.times[key] + if self.will_print[key]: + print('%s=%.3f' % (key, val), end=' ') + total += val + print('total=%.3f sec {%.1f FPS}' % (total, 1./total), end=' ') + if self.newline: + print(flush=True) + else: + print(end='\r', flush=True) + self.reset() + + +class VideoStreamer: + """ Class to help process image streams. Four types of possible inputs:" + 1.) USB Webcam. + 2.) An IP camera + 3.) A directory of images (files in directory matching 'image_glob'). + 4.) A video file, such as an .mp4 or .avi file. + """ + def __init__(self, basedir, resize, skip, image_glob, max_length=1000000): + self._ip_grabbed = False + self._ip_running = False + self._ip_camera = False + self._ip_image = None + self._ip_index = 0 + self.cap = [] + self.camera = True + self.video_file = False + self.listing = [] + self.resize = resize + self.interp = cv2.INTER_AREA + self.i = 0 + self.skip = skip + self.max_length = max_length + if isinstance(basedir, int) or basedir.isdigit(): + print('==> Processing USB webcam input: {}'.format(basedir)) + self.cap = cv2.VideoCapture(int(basedir)) + self.listing = range(0, self.max_length) + elif basedir.startswith(('http', 'rtsp')): + print('==> Processing IP camera input: {}'.format(basedir)) + self.cap = cv2.VideoCapture(basedir) + self.start_ip_camera_thread() + self._ip_camera = True + self.listing = range(0, self.max_length) + elif Path(basedir).is_dir(): + print('==> Processing image directory input: {}'.format(basedir)) + self.listing = list(Path(basedir).glob(image_glob[0])) + for j in range(1, len(image_glob)): + image_path = list(Path(basedir).glob(image_glob[j])) + self.listing = self.listing + image_path + self.listing.sort() + self.listing = self.listing[::self.skip] + self.max_length = np.min([self.max_length, len(self.listing)]) + if self.max_length == 0: + raise IOError('No images found (maybe bad \'image_glob\' ?)') + self.listing = self.listing[:self.max_length] + self.camera = False + elif Path(basedir).exists(): + print('==> Processing video input: {}'.format(basedir)) + self.cap = cv2.VideoCapture(basedir) + self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) + num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) + self.listing = range(0, num_frames) + self.listing = self.listing[::self.skip] + self.video_file = True + self.max_length = np.min([self.max_length, len(self.listing)]) + self.listing = self.listing[:self.max_length] + else: + raise ValueError('VideoStreamer input \"{}\" not recognized.'.format(basedir)) + if self.camera and not self.cap.isOpened(): + raise IOError('Could not read camera') + + def load_image(self, impath): + """ Read image as grayscale and resize to img_size. + Inputs + impath: Path to input image. + Returns + grayim: uint8 numpy array sized H x W. + """ + grayim = cv2.imread(impath, 0) + if grayim is None: + raise Exception('Error reading image %s' % impath) + w, h = grayim.shape[1], grayim.shape[0] + w_new, h_new = process_resize(w, h, self.resize) + grayim = cv2.resize( + grayim, (w_new, h_new), interpolation=self.interp) + return grayim + + def next_frame(self): + """ Return the next frame, and increment internal counter. + Returns + image: Next H x W image. + status: True or False depending whether image was loaded. + """ + + if self.i == self.max_length: + return (None, False) + if self.camera: + + if self._ip_camera: + #Wait for first image, making sure we haven't exited + while self._ip_grabbed is False and self._ip_exited is False: + time.sleep(.001) + + ret, image = self._ip_grabbed, self._ip_image.copy() + if ret is False: + self._ip_running = False + else: + ret, image = self.cap.read() + if ret is False: + print('VideoStreamer: Cannot get image from camera') + return (None, False) + w, h = image.shape[1], image.shape[0] + if self.video_file: + self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.listing[self.i]) + + w_new, h_new = process_resize(w, h, self.resize) + image = cv2.resize(image, (w_new, h_new), + interpolation=self.interp) + image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) + else: + image_file = str(self.listing[self.i]) + image = self.load_image(image_file) + self.i = self.i + 1 + return (image, True) + + def start_ip_camera_thread(self): + self._ip_thread = Thread(target=self.update_ip_camera, args=()) + self._ip_running = True + self._ip_thread.start() + self._ip_exited = False + return self + + def update_ip_camera(self): + while self._ip_running: + ret, img = self.cap.read() + if ret is False: + self._ip_running = False + self._ip_exited = True + self._ip_grabbed = False + return + + self._ip_image = img + self._ip_grabbed = ret + self._ip_index += 1 + #print('IPCAMERA THREAD got frame {}'.format(self._ip_index)) + + + def cleanup(self): + self._ip_running = False + +# --- PREPROCESSING --- + +def process_resize(w, h, resize): + assert(len(resize) > 0 and len(resize) <= 2) + if len(resize) == 1 and resize[0] > -1: + scale = resize[0] / max(h, w) + w_new, h_new = int(round(w*scale)), int(round(h*scale)) + elif len(resize) == 1 and resize[0] == -1: + w_new, h_new = w, h + else: # len(resize) == 2: + w_new, h_new = resize[0], resize[1] + + # Issue warning if resolution is too small or too large. + if max(w_new, h_new) < 160: + print('Warning: input resolution is very small, results may vary') + elif max(w_new, h_new) > 2000: + print('Warning: input resolution is very large, results may vary') + + return w_new, h_new + + +def frame2tensor(frame, device): + return torch.from_numpy(frame/255.).float()[None, None].to(device) + + +def read_image(path, device, resize, rotation, resize_float): + image = cv2.imread(str(path), cv2.IMREAD_GRAYSCALE) + if image is None: + return None, None, None + w, h = image.shape[1], image.shape[0] + w_new, h_new = process_resize(w, h, resize) + scales = (float(w) / float(w_new), float(h) / float(h_new)) + + if resize_float: + image = cv2.resize(image.astype('float32'), (w_new, h_new)) + else: + image = cv2.resize(image, (w_new, h_new)).astype('float32') + + if rotation != 0: + image = np.rot90(image, k=rotation) + if rotation % 2: + scales = scales[::-1] + + inp = frame2tensor(image, device) + return image, inp, scales + + +# --- GEOMETRY --- + + +def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999): + if len(kpts0) < 5: + return None + + f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]]) + norm_thresh = thresh / f_mean + + kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] + kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] + + E, mask = cv2.findEssentialMat( + kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf, + method=cv2.RANSAC) + + assert E is not None + + best_num_inliers = 0 + ret = None + for _E in np.split(E, len(E) / 3): + n, R, t, _ = cv2.recoverPose( + _E, kpts0, kpts1, np.eye(3), 1e9, mask=mask) + if n > best_num_inliers: + best_num_inliers = n + ret = (R, t[:, 0], mask.ravel() > 0) + return ret + + +def rotate_intrinsics(K, image_shape, rot): + """image_shape is the shape of the image after rotation""" + assert rot <= 3 + h, w = image_shape[:2][::-1 if (rot % 2) else 1] + fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2] + rot = rot % 4 + if rot == 1: + return np.array([[fy, 0., cy], + [0., fx, w-1-cx], + [0., 0., 1.]], dtype=K.dtype) + elif rot == 2: + return np.array([[fx, 0., w-1-cx], + [0., fy, h-1-cy], + [0., 0., 1.]], dtype=K.dtype) + else: # if rot == 3: + return np.array([[fy, 0., h-1-cy], + [0., fx, cx], + [0., 0., 1.]], dtype=K.dtype) + + +def rotate_pose_inplane(i_T_w, rot): + rotation_matrices = [ + np.array([[np.cos(r), -np.sin(r), 0., 0.], + [np.sin(r), np.cos(r), 0., 0.], + [0., 0., 1., 0.], + [0., 0., 0., 1.]], dtype=np.float32) + for r in [np.deg2rad(d) for d in (0, 270, 180, 90)] + ] + return np.dot(rotation_matrices[rot], i_T_w) + + +def scale_intrinsics(K, scales): + scales = np.diag([1./scales[0], 1./scales[1], 1.]) + return np.dot(scales, K) + + +def to_homogeneous(points): + return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1) + + +def compute_epipolar_error(kpts0, kpts1, T_0to1, K0, K1): + print("1st: kpts0:", kpts0.shape) + print("K0[[0, 1], [2, 2]][None]:", K0[[0, 1], [2, 2]][None]) + print("K0[[0, 1], [0, 1]][None]:", K0[[0, 1], [0, 1]][None]) + kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] + kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] + print("2nd: kpts0:", kpts0.shape) + kpts0 = to_homogeneous(kpts0) + kpts1 = to_homogeneous(kpts1) + print("3rd: kpts0:", kpts0.shape) + + t0, t1, t2 = T_0to1[:3, 3] + t_skew = np.array([ + [0, -t2, t1], + [t2, 0, -t0], + [-t1, t0, 0] + ]) + E = t_skew @ T_0to1[:3, :3] + print("E:", E.shape) + Ep0 = kpts0 @ E.T # N x 3 + print("Ep0 size:", Ep0.shape) + print("kpts1 * Ep0:", (kpts1 * Ep0).shape) + p1Ep0 = np.sum(kpts1 * Ep0, -1) # N 把每一行求和 + print("p1Ep0:", p1Ep0.shape) + Etp1 = kpts1 @ E # N x 3 + print("Etp1:", Etp1.shape) + d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2) + + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2)) + print("d:", d.shape) + return d + + +def angle_error_mat(R1, R2): + cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2 + cos = np.clip(cos, -1., 1.) # numercial errors can make it out of bounds + return np.rad2deg(np.abs(np.arccos(cos))) + + +def angle_error_vec(v1, v2): + n = np.linalg.norm(v1) * np.linalg.norm(v2) + return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0))) + + +def compute_pose_error(T_0to1, R, t): + R_gt = T_0to1[:3, :3] + t_gt = T_0to1[:3, 3] + error_t = angle_error_vec(t, t_gt) + error_t = np.minimum(error_t, 180 - error_t) # ambiguity of E estimation + error_R = angle_error_mat(R, R_gt) + return error_t, error_R + + +def pose_auc(errors, thresholds): + sort_idx = np.argsort(errors) + errors = np.array(errors.copy())[sort_idx] + recall = (np.arange(len(errors)) + 1) / len(errors) + errors = np.r_[0., errors] + recall = np.r_[0., recall] + aucs = [] + for t in thresholds: + last_index = np.searchsorted(errors, t) + r = np.r_[recall[:last_index], recall[last_index-1]] + e = np.r_[errors[:last_index], t] + aucs.append(np.trapz(r, x=e)/t) + return aucs + + +# --- VISUALIZATION --- + + +def plot_image_pair(imgs, dpi=100, size=6, pad=.5): + n = len(imgs) + assert n == 2, 'number of images must be two' + figsize = (size*n, size*3/4) if size is not None else None + _, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi) + for i in range(n): + ax[i].imshow(imgs[i], cmap=plt.get_cmap('gray'), vmin=0, vmax=255) + ax[i].get_yaxis().set_ticks([]) + ax[i].get_xaxis().set_ticks([]) + for spine in ax[i].spines.values(): # remove frame + spine.set_visible(False) + plt.tight_layout(pad=pad) + + +def plot_keypoints(kpts0, kpts1, color='w', ps=2): + ax = plt.gcf().axes + ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) + ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) + + +def plot_matches(kpts0, kpts1, color, lw=0.5, ps=4): + fig = plt.gcf() + ax = fig.axes + fig.canvas.draw() + + transFigure = fig.transFigure.inverted() + fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0)) + fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1)) + + fig.lines = [matplotlib.lines.Line2D( + (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1, + transform=fig.transFigure, c=color[i], linewidth=lw) + for i in range(len(kpts0))] + ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) + ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) + + +def make_matching_plot(image0, image1, kpts0, kpts1, mkpts0, mkpts1, + color, text, path, show_keypoints=False, + fast_viz=False, opencv_display=False, + opencv_title='matches', small_text=[]): + + if fast_viz: + make_matching_plot_fast(image0, image1, kpts0, kpts1, mkpts0, mkpts1, + color, text, path, show_keypoints, 10, + opencv_display, opencv_title, small_text) + return + + plot_image_pair([image0, image1]) + if show_keypoints: + plot_keypoints(kpts0, kpts1, color='k', ps=4) + plot_keypoints(kpts0, kpts1, color='w', ps=2) + plot_matches(mkpts0, mkpts1, color) + + fig = plt.gcf() + txt_color = 'k' if image0[:100, :150].mean() > 200 else 'w' + fig.text( + 0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, + fontsize=15, va='top', ha='left', color=txt_color) + + txt_color = 'k' if image0[-100:, :150].mean() > 200 else 'w' + fig.text( + 0.01, 0.01, '\n'.join(small_text), transform=fig.axes[0].transAxes, + fontsize=5, va='bottom', ha='left', color=txt_color) + + plt.savefig(str(path), bbox_inches='tight', pad_inches=0) + plt.close() + + +def make_matching_plot_fast(image0, image1, kpts0, kpts1, mkpts0, + mkpts1, color, text, path=None, + show_keypoints=False, margin=10, + opencv_display=False, opencv_title='', + small_text=[]): + H0, W0 = image0.shape + H1, W1 = image1.shape + H, W = max(H0, H1), W0 + W1 + margin + + out = 255*np.ones((H, W), np.uint8) + out[:H0, :W0] = image0 + out[:H1, W0+margin:] = image1 + out = np.stack([out]*3, -1) + + if show_keypoints: + kpts0, kpts1 = np.round(kpts0).astype(int), np.round(kpts1).astype(int) + white = (255, 255, 255) + black = (0, 0, 0) + for x, y in kpts0: + cv2.circle(out, (x, y), 2, black, -1, lineType=cv2.LINE_AA) + cv2.circle(out, (x, y), 1, white, -1, lineType=cv2.LINE_AA) + for x, y in kpts1: + cv2.circle(out, (x + margin + W0, y), 2, black, -1, + lineType=cv2.LINE_AA) + cv2.circle(out, (x + margin + W0, y), 1, white, -1, + lineType=cv2.LINE_AA) + + mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int) + color = (np.array(color[:, :3])*255).astype(int)[:, ::-1] + for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color): + c = c.tolist() + cv2.line(out, (x0, y0), (x1 + margin + W0, y1), + color=c, thickness=1, lineType=cv2.LINE_AA) + # display line end-points as circles + cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA) + cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1, + lineType=cv2.LINE_AA) + + # Scale factor for consistent visualization across scales. + sc = min(H / 640., 2.0) + + # Big text. + Ht = int(30 * sc) # text height + txt_color_fg = (255, 255, 255) + txt_color_bg = (0, 0, 0) + for i, t in enumerate(text): + cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX, + 1.0*sc, txt_color_bg, 2, cv2.LINE_AA) + cv2.putText(out, t, (int(8*sc), Ht*(i+1)), cv2.FONT_HERSHEY_DUPLEX, + 1.0*sc, txt_color_fg, 1, cv2.LINE_AA) + + # Small text. + Ht = int(18 * sc) # text height + for i, t in enumerate(reversed(small_text)): + cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX, + 0.5*sc, txt_color_bg, 2, cv2.LINE_AA) + cv2.putText(out, t, (int(8*sc), int(H-Ht*(i+.6))), cv2.FONT_HERSHEY_DUPLEX, + 0.5*sc, txt_color_fg, 1, cv2.LINE_AA) + + if path is not None: + cv2.imwrite(str(path), out) + + if opencv_display: + cv2.imshow(opencv_title, out) + cv2.waitKey(1) + + return out + + +def error_colormap(x): + return np.clip( + np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)], -1), 0, 1)