-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
214 lines (190 loc) · 8.46 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Benchmark script for LightGlue on real images
from pathlib import Path
import argparse
import matplotlib.pyplot as plt
from collections import defaultdict
import time
import numpy as np
import torch
from lightglue import LightGlue, SuperPoint
from lightglue.utils import load_image
import torch._dynamo
torch.set_grad_enabled(False)
def measure(matcher, data, device='cuda', r=100):
timings = np.zeros((r, 1))
if device.type == 'cuda':
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
# warmup
for _ in range(10):
_ = matcher(data)
# measurements
with torch.no_grad():
for rep in range(r):
if device.type == 'cuda':
starter.record()
_ = matcher(data)
ender.record()
# sync gpu
torch.cuda.synchronize()
curr_time = starter.elapsed_time(ender)
else:
start = time.perf_counter()
_ = matcher(data)
curr_time = (time.perf_counter() - start) * 1e3
timings[rep] = curr_time
mean_syn = np.sum(timings) / r
std_syn = np.std(timings)
return {'mean': mean_syn, 'std': std_syn}
def print_as_table(d, title, cnames):
print()
header = f'{title:30} '+' '.join([f'{x:>7}' for x in cnames])
print(header)
print('-'*len(header))
for k, l in d.items():
print(f'{k:30}', ' '.join([f'{x:>7.1f}' for x in l]))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Benchmark script for LightGlue')
parser.add_argument('--device', choices=['auto', 'cuda', 'cpu', 'mps'],
default='auto', help='device to benchmark on')
parser.add_argument('--compile', action='store_true',
help='Compile LightGlue runs')
parser.add_argument('--no_flash', action='store_true',
help='disable FlashAttention')
parser.add_argument('--no_prune_thresholds', action='store_true',
help='disable pruning thresholds (i.e. always do pruning)')
parser.add_argument('--add_superglue', action='store_true',
help='add SuperGlue to the benchmark (requires hloc)')
parser.add_argument('--measure', default='time',
choices=['time', 'log-time', 'throughput'])
parser.add_argument('--repeat', '--r', type=int, default=100,
help='repetitions of measurements')
parser.add_argument('--num_keypoints', nargs="+", type=int,
default=[256, 512, 1024, 2048, 4096],
help='number of keypoints (list separated by spaces)')
parser.add_argument('--matmul_precision', default='highest',
choices=['highest', 'high', 'medium'])
parser.add_argument('--save', default=None, type=str,
help='path where figure should be saved')
args = parser.parse_intermixed_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.device != 'auto':
device = torch.device(args.device)
print('Running benchmark on device:', device)
images = Path('assets')
inputs = {
'easy': (load_image(images / 'DSC_0411.JPG'),
load_image(images / 'DSC_0410.JPG')),
'difficult': (load_image(images / 'sacre_coeur1.jpg'),
load_image(images / 'sacre_coeur2.jpg')),
}
configs = {
'LightGlue-full': {
'depth_confidence': -1,
'width_confidence': -1,
},
# 'LG-prune': {
# 'width_confidence': -1,
# },
# 'LG-depth': {
# 'depth_confidence': -1,
# },
'LightGlue-adaptive': {}
}
if args.compile:
configs = {**configs, **{k+'-compile': v for k, v in configs.items()}}
sg_configs = {
# 'SuperGlue': {},
'SuperGlue-fast': {'sinkhorn_iterations': 5}
}
torch.set_float32_matmul_precision(args.matmul_precision)
results = {k: defaultdict(list) for k, v in inputs.items()}
extractor = SuperPoint(max_num_keypoints=None, detection_threshold=-1)
extractor = extractor.eval().to(device)
figsize = (len(inputs)*4.5, 4.5)
fig, axes = plt.subplots(1, len(inputs), sharey=True, figsize=figsize)
axes = axes if len(inputs) > 1 else [axes]
fig.canvas.manager.set_window_title(f'LightGlue benchmark ({device.type})')
for title, ax in zip(inputs.keys(), axes):
ax.set_xscale('log', base=2)
bases = [2**x for x in range(7, 16)]
ax.set_xticks(bases, bases)
ax.grid(which='major')
if args.measure == 'log-time':
ax.set_yscale('log')
yticks = [10**x for x in range(6)]
ax.set_yticks(yticks, yticks)
mpos = [10**x * i for x in range(6) for i in range(2, 10)]
mlabel = [10**x * i if i in [2, 5] else None for x in range(6) for i in range(2, 10)]
ax.set_yticks(mpos, mlabel, minor=True)
ax.grid(which='minor', linewidth=0.2)
ax.set_title(title)
ax.set_xlabel("# keypoints")
if args.measure == 'throughput':
ax.set_ylabel("Throughput [pairs/s]")
else:
ax.set_ylabel("Latency [ms]")
for name, conf in configs.items():
print('Run benchmark for:', name)
torch.cuda.empty_cache()
matcher = LightGlue(
features='superpoint', flash=not args.no_flash, **conf)
if args.no_prune_thresholds:
matcher.pruning_keypoint_thresholds = {
k: -1 for k in matcher.pruning_keypoint_thresholds}
matcher = matcher.eval().to(device)
if name.endswith('compile'):
import torch._dynamo
torch._dynamo.reset() # avoid buffer overflow
matcher.compile()
for (pair_name, ax) in zip(inputs.keys(), axes):
image0, image1 = [x.to(device) for x in inputs[pair_name]]
runtimes = []
for num_kpts in args.num_keypoints:
extractor.conf['max_num_keypoints'] = num_kpts
feats0 = extractor.extract(image0)
feats1 = extractor.extract(image1)
runtime = measure(matcher,
{'image0': feats0, 'image1': feats1},
device=device, r=args.repeat)['mean']
results[pair_name][name].append(
1000/runtime if args.measure == 'throughput' else runtime)
ax.plot(args.num_keypoints, results[pair_name][name], label=name,
marker='o')
del matcher, feats0, feats1
if args.add_superglue:
from hloc.matchers.superglue import SuperGlue
for name, conf in sg_configs.items():
print('Run benchmark for:', name)
matcher = SuperGlue(conf)
matcher = matcher.eval().to(device)
for (pair_name, ax) in zip(inputs.keys(), axes):
image0, image1 = [x.to(device) for x in inputs[pair_name]]
runtimes = []
for num_kpts in args.num_keypoints:
extractor.conf['max_num_keypoints'] = num_kpts
feats0 = extractor.extract(image0)
feats1 = extractor.extract(image1)
data = {
'image0': image0[None],
'image1': image1[None],
**{k+'0': v for k, v in feats0.items()},
**{k+'1': v for k, v in feats1.items()}
}
data['scores0'] = data['keypoint_scores0']
data['scores1'] = data['keypoint_scores1']
data['descriptors0'] = data['descriptors0'].transpose(-1, -2).contiguous()
data['descriptors1'] = data['descriptors1'].transpose(-1, -2).contiguous()
runtime = measure(matcher, data, device=device, r=args.repeat)['mean']
results[pair_name][name].append(
1000/runtime if args.measure == 'throughput' else runtime)
ax.plot(args.num_keypoints, results[pair_name][name], label=name,
marker='o')
del matcher, data, image0, image1, feats0, feats1
for name, runtimes in results.items():
print_as_table(runtimes, name, args.num_keypoints)
axes[0].legend()
fig.tight_layout()
if args.save:
plt.savefig(args.save, dpi=fig.dpi)
plt.show()