From f95f600c2637280e03f95e6ed57e11b627ef8db4 Mon Sep 17 00:00:00 2001 From: jhen Date: Sat, 27 Jul 2024 14:28:45 +0800 Subject: [PATCH 1/2] feat: sync llama.cpp --- android/src/main/CMakeLists.txt | 3 + android/src/main/jni.cpp | 2 +- cpp/common.cpp | 21 +- cpp/common.h | 3 +- cpp/ggml-aarch64.c | 12 +- cpp/ggml-alloc.c | 42 +- cpp/ggml-backend.c | 214 +- cpp/ggml-impl.h | 116 +- cpp/ggml-metal.m | 42 +- cpp/ggml-quants.c | 12 +- cpp/ggml.c | 858 ++++---- cpp/ggml.c.rej | 13 + cpp/ggml.h | 38 +- cpp/llama-grammar.cpp | 539 +++++ cpp/llama-grammar.h | 39 + cpp/llama-impl.h | 26 + cpp/llama-sampling.cpp | 635 ++++++ cpp/llama-sampling.h | 56 + cpp/llama-vocab.cpp | 1721 +++++++++++++++ cpp/llama-vocab.h | 130 ++ cpp/llama.cpp | 3495 ++++--------------------------- cpp/llama.h | 82 +- cpp/sampling.cpp | 6 +- cpp/unicode.cpp | 6 + cpp/unicode.h | 3 + llama.cpp | 2 +- scripts/bootstrap.sh | 24 +- scripts/ggml.c.patch | 15 + scripts/llama.cpp.patch | 12 +- 29 files changed, 4421 insertions(+), 3746 deletions(-) create mode 100644 cpp/ggml.c.rej create mode 100644 cpp/llama-grammar.cpp create mode 100644 cpp/llama-grammar.h create mode 100644 cpp/llama-impl.h create mode 100644 cpp/llama-sampling.cpp create mode 100644 cpp/llama-sampling.h create mode 100644 cpp/llama-vocab.cpp create mode 100644 cpp/llama-vocab.h create mode 100644 scripts/ggml.c.patch diff --git a/android/src/main/CMakeLists.txt b/android/src/main/CMakeLists.txt index f0ae959..2c47665 100644 --- a/android/src/main/CMakeLists.txt +++ b/android/src/main/CMakeLists.txt @@ -21,6 +21,9 @@ set( ${RNLLAMA_LIB_DIR}/unicode-data.cpp ${RNLLAMA_LIB_DIR}/unicode.cpp ${RNLLAMA_LIB_DIR}/llama.cpp + ${RNLLAMA_LIB_DIR}/llama-vocab.cpp + ${RNLLAMA_LIB_DIR}/llama-sampling.cpp + ${RNLLAMA_LIB_DIR}/llama-grammar.cpp ${RNLLAMA_LIB_DIR}/sgemm.cpp ${RNLLAMA_LIB_DIR}/ggml-aarch64.c ${RNLLAMA_LIB_DIR}/rn-llama.hpp diff --git a/android/src/main/jni.cpp b/android/src/main/jni.cpp index 558eeb6..f92cc49 100644 --- a/android/src/main/jni.cpp +++ b/android/src/main/jni.cpp @@ -161,7 +161,7 @@ Java_com_rnllama_LlamaContext_initContext( const char *lora_base_chars = env->GetStringUTFChars(lora_base_str, nullptr); if (lora_chars != nullptr && lora_chars[0] != '\0') { defaultParams.lora_adapter.push_back({lora_chars, lora_scaled}); - defaultParams.lora_base = lora_base_chars; + // defaultParams.lora_base = lora_base_chars; defaultParams.use_mmap = false; } diff --git a/cpp/common.cpp b/cpp/common.cpp index 9e2ffb3..df53149 100644 --- a/cpp/common.cpp +++ b/cpp/common.cpp @@ -700,11 +700,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i])); return true; } - if (arg == "--lora-base") { - CHECK_ARG - params.lora_base = argv[i]; - return true; - } if (arg == "--control-vector") { CHECK_ARG params.control_vectors.push_back({ 1.0f, argv[i], }); @@ -1280,6 +1275,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa CHECK_ARG params.out_file = argv[i]; params.cvector_outfile = argv[i]; + params.lora_outfile = argv[i]; return true; } if (arg == "-ofreq" || arg == "--output-frequency") { @@ -1589,9 +1585,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "*", " --override-kv KEY=TYPE:VALUE", "advanced option to override model metadata by key. may be specified multiple times.\n" "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" }); - options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" }); - options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" }); - options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" }); + options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (can be repeated to use multiple adapters)" }); + options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" }); options.push_back({ "*", " --control-vector FNAME", "add a control vector\n" "note: this argument can be repeated to add multiple control vectors" }); options.push_back({ "*", " --control-vector-scaled FNAME SCALE", @@ -1682,6 +1677,13 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations }); options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" }); + options.push_back({ "export-lora" }); + options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() }); + options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" }); + options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" }); + options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads }); + options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() }); + printf("usage: %s [options]\n", argv[0]); for (const auto & o : options) { @@ -2727,7 +2729,7 @@ std::string llama_chat_format_single(const struct llama_model * model, const llama_chat_msg & new_msg, bool add_ass) { std::ostringstream ss; - auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false); + auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false); std::vector chat_new(past_msg); // if the past_msg ends with a newline, we must preserve it in the formatted version if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') { @@ -3172,7 +3174,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l } fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); } - fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat); diff --git a/cpp/common.h b/cpp/common.h index 4540216..f905274 100644 --- a/cpp/common.h +++ b/cpp/common.h @@ -139,7 +139,6 @@ struct gpt_params { // TODO: avoid tuple, use struct std::vector> lora_adapter; // lora adapter path with user defined scale - std::string lora_base = ""; // base model path for the lora adapter std::vector control_vectors; // control vector with user defined scale @@ -266,6 +265,8 @@ struct gpt_params { std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; bool spm_infill = false; // suffix/prefix/middle pattern for infill + + std::string lora_outfile = "ggml-lora-merged-f16.gguf"; }; void gpt_params_handle_hf_token(gpt_params & params); diff --git a/cpp/ggml-aarch64.c b/cpp/ggml-aarch64.c index 12668bc..cffe357 100644 --- a/cpp/ggml-aarch64.c +++ b/cpp/ggml-aarch64.c @@ -392,7 +392,7 @@ void lm_ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void #if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) LM_GGML_ASSERT(!(lm_ggml_cpu_has_neon() && lm_ggml_cpu_has_matmul_int8()) && "__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) +#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -501,7 +501,7 @@ void lm_ggml_gemv_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); } #endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) +#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -613,7 +613,7 @@ void lm_ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) +#if defined(__ARM_FEATURE_SVE) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) if (svcntw() == 8) { const void * b_ptr = vx; const void * a_ptr = vy; @@ -753,7 +753,7 @@ void lm_ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void #if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) LM_GGML_ASSERT(!(lm_ggml_cpu_has_neon() && lm_ggml_cpu_has_matmul_int8()) && "__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance"); -#elif defined(__ARM_NEON) && defined(__aarch64__) +#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -1271,7 +1271,7 @@ void lm_ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void "__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance"); } #endif -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) +#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) const void * b_ptr = vx; const void * a_ptr = vy; float * res_ptr = s; @@ -1727,7 +1727,7 @@ void lm_ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void UNUSED(ncols_interleaved); UNUSED(blocklen); -#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) +#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__)) if (svcntw() == 8) { const void * b_ptr = vx; const void * a_ptr = vy; diff --git a/cpp/ggml-alloc.c b/cpp/ggml-alloc.c index e2195f0..3f27d17 100644 --- a/cpp/ggml-alloc.c +++ b/cpp/ggml-alloc.c @@ -91,8 +91,7 @@ void lm_ggml_tallocr_alloc(struct lm_ggml_tallocr * talloc, struct lm_ggml_tenso if (talloc->offset + size > lm_ggml_backend_buffer_get_size(talloc->buffer)) { fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", __func__, tensor->name, size, lm_ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); - LM_GGML_ASSERT(!"not enough space in the buffer"); - return; + LM_GGML_ABORT("not enough space in the buffer"); } void * addr = (char *)lm_ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; @@ -133,7 +132,7 @@ static void add_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offs return; } } - LM_GGML_ASSERT(!"out of allocated_tensors"); + LM_GGML_ABORT("out of allocated_tensors"); } static void remove_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t offset, const struct lm_ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { @@ -142,8 +141,7 @@ static void remove_allocated_tensor(struct lm_ggml_dyn_tallocr * alloc, size_t o return; } } - fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); - LM_GGML_ASSERT(!"tensor not found"); + LM_GGML_ABORT("tried to free tensor %s not found\n", tensor->name); } #endif @@ -176,8 +174,7 @@ static size_t lm_ggml_dyn_tallocr_alloc(struct lm_ggml_dyn_tallocr * alloc, size // this should never happen fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", __func__, size, max_avail); - LM_GGML_ASSERT(!"not enough space in the buffer"); - LM_GGML_UNREACHABLE(); + LM_GGML_ABORT("not enough space in the buffer"); } } @@ -443,7 +440,7 @@ void lm_ggml_gallocr_free(lm_ggml_gallocr_t galloc) { } } - free(galloc->hash_set.keys); + lm_ggml_hash_set_free(&galloc->hash_set); free(galloc->hash_values); free(galloc->bufts); free(galloc->buffers); @@ -456,7 +453,7 @@ void lm_ggml_gallocr_free(lm_ggml_gallocr_t galloc) { typedef struct lm_ggml_gallocr * lm_ggml_gallocr_t; static struct hash_node * lm_ggml_gallocr_hash_get(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * t) { - size_t i = lm_ggml_hash_find_or_insert(galloc->hash_set, t); + size_t i = lm_ggml_hash_find_or_insert(&galloc->hash_set, t); return &galloc->hash_values[i]; } @@ -565,8 +562,8 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) { static void lm_ggml_gallocr_alloc_graph_impl(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { // clear hash tables - memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct lm_ggml_tensor *)); - memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); + lm_ggml_hash_set_reset(&galloc->hash_set); + memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); // allocate leafs // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes @@ -671,21 +668,19 @@ static void lm_ggml_gallocr_alloc_graph_impl(lm_ggml_gallocr_t galloc, struct lm } bool lm_ggml_gallocr_reserve_n(lm_ggml_gallocr_t galloc, struct lm_ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { - size_t hash_size = graph->visited_hash_table.size; + size_t min_hash_size = graph->n_nodes + graph->n_leafs; + // add 25% margin to avoid hash collisions + min_hash_size += min_hash_size / 4; // initialize hash table - if (galloc->hash_set.size < hash_size) { - free(galloc->hash_set.keys); - free(galloc->hash_values); - galloc->hash_set.size = hash_size; - galloc->hash_set.keys = calloc(hash_size, sizeof(struct lm_ggml_tensor *)); - galloc->hash_values = calloc(hash_size, sizeof(struct hash_node)); + if (galloc->hash_set.size < min_hash_size) { + lm_ggml_hash_set_free(&galloc->hash_set); + galloc->hash_set = lm_ggml_hash_set_new(min_hash_size); LM_GGML_ASSERT(galloc->hash_set.keys != NULL); + + free(galloc->hash_values); + galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size); LM_GGML_ASSERT(galloc->hash_values != NULL); - } else { - // reset hash table - memset(galloc->hash_set.keys, 0, sizeof(struct lm_ggml_tensor *) * galloc->hash_set.size); - memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); } // reset allocators @@ -817,8 +812,7 @@ static void lm_ggml_gallocr_init_tensor(lm_ggml_gallocr_t galloc, struct lm_ggml } static bool lm_ggml_gallocr_node_needs_realloc(lm_ggml_gallocr_t galloc, struct lm_ggml_tensor * node, struct tensor_alloc * talloc) { - lm_ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL; - size_t node_size = (node->data || node->view_src) ? 0 : lm_ggml_backend_buft_get_alloc_size(buft, node); + size_t node_size = (node->data || node->view_src) ? 0 : lm_ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node); return talloc->size_max >= node_size; } diff --git a/cpp/ggml-backend.c b/cpp/ggml-backend.c index a8fbd1a..6853e08 100644 --- a/cpp/ggml-backend.c +++ b/cpp/ggml-backend.c @@ -1055,11 +1055,10 @@ struct lm_ggml_backend_sched { lm_ggml_backend_buffer_type_t bufts[LM_GGML_SCHED_MAX_BACKENDS]; lm_ggml_gallocr_t galloc; - // hash keys of the nodes in the graph - struct lm_ggml_hash_set hash_set; - // hash values - int * tensor_backend_id; - struct lm_ggml_tensor * (* tensor_copies)[LM_GGML_SCHED_MAX_BACKENDS][LM_GGML_SCHED_MAX_COPIES]; + // hash map of the nodes in the graph + struct lm_ggml_hash_set hash_set; + int * hv_tensor_backend_ids; // [hash_set.size] + struct lm_ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies] int * node_backend_ids; // [graph_size] int * leaf_backend_ids; // [graph_size] @@ -1068,7 +1067,7 @@ struct lm_ggml_backend_sched { int * prev_leaf_backend_ids; // [graph_size] // copy of the graph with modified inputs - struct lm_ggml_cgraph * graph; + struct lm_ggml_cgraph graph; // graph splits struct lm_ggml_backend_sched_split * splits; @@ -1087,19 +1086,16 @@ struct lm_ggml_backend_sched { lm_ggml_backend_sched_eval_callback callback_eval; void * callback_eval_user_data; - bool debug; + char * context_buffer; + size_t context_buffer_size; - // align context_buffer to LM_GGML_MEM_ALIGN -#ifdef _MSC_VER - __declspec(align(LM_GGML_MEM_ALIGN)) -#else - __attribute__((aligned(LM_GGML_MEM_ALIGN))) -#endif - char context_buffer[LM_GGML_SCHED_MAX_SPLITS*LM_GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct lm_ggml_tensor) + sizeof(struct lm_ggml_cgraph)]; + bool debug; }; -#define hash_id(tensor) lm_ggml_hash_find_or_insert(sched->hash_set, tensor) -#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)] +#define hash_id(tensor) lm_ggml_hash_find_or_insert(&sched->hash_set, tensor) +#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)] +#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)] +#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id) // returns the priority of the backend, lower id is higher priority static int lm_ggml_backend_sched_backend_id(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend) { @@ -1169,7 +1165,6 @@ static int lm_ggml_backend_sched_backend_id_from_cur(lm_ggml_backend_sched_t sch return cur_backend_id; } - // assign nodes that use weights to the backend of the weights // operations with weights are preferably run on the same backend as the weights for (int i = 0; i < LM_GGML_MAX_SRC; i++) { const struct lm_ggml_tensor * src = tensor->src[i]; @@ -1275,7 +1270,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str sched->is_reset = false; struct lm_ggml_init_params params = { - /* .mem_size = */ sizeof(sched->context_buffer), + /* .mem_size = */ sched->context_buffer_size, /* .mem_buffer = */ sched->context_buffer, /* .no_alloc = */ true }; @@ -1284,39 +1279,43 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str sched->ctx = lm_ggml_init(params); if (sched->ctx == NULL) { - fprintf(stderr, "%s: failed to initialize context\n", __func__); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("%s: failed to initialize context\n", __func__); } // pass 1: assign backends to ops with pre-allocated inputs for (int i = 0; i < graph->n_leafs; i++) { struct lm_ggml_tensor * leaf = graph->leafs[i]; int * leaf_backend_id = &tensor_backend_id(leaf); - if (*leaf_backend_id != -1) { - // do not overwrite user assignments - continue; + // do not overwrite user assignments + if (*leaf_backend_id == -1) { + *leaf_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, leaf); } - *leaf_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, leaf); } for (int i = 0; i < graph->n_nodes; i++) { struct lm_ggml_tensor * node = graph->nodes[i]; int * node_backend_id = &tensor_backend_id(node); - if (*node_backend_id != -1) { - // do not overwrite user assignments - continue; - } - *node_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, node); - // src - for (int j = 0; j < LM_GGML_MAX_SRC; j++) { - struct lm_ggml_tensor * src = node->src[j]; - if (src == NULL) { + // do not overwrite user assignments + if (*node_backend_id == -1) { + *node_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, node); + +#if 0 + // src + if (node->op == LM_GGML_OP_NONE) { continue; } - int * src_backend_id = &tensor_backend_id(src); - if (*src_backend_id == -1) { - *src_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, src); + + for (int j = 0; j < LM_GGML_MAX_SRC; j++) { + struct lm_ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + int * src_backend_id = &tensor_backend_id(src); + if (*src_backend_id == -1) { + *src_backend_id = lm_ggml_backend_sched_backend_id_from_cur(sched, src); + } } +#endif } } @@ -1488,12 +1487,13 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str } } - // pass 4: split graph, find tensors that need to be copied + // pass 5: split graph, find tensors that need to be copied { int i_split = 0; struct lm_ggml_backend_sched_split * split = &sched->splits[0]; // find the backend of the first split, skipping view ops - for (int i = 0; i < graph->n_nodes; i++) { + int i = 0; + for (; i < graph->n_nodes; i++) { struct lm_ggml_tensor * node = graph->nodes[i]; if (!lm_ggml_is_view_op(node->op)) { split->backend_id = tensor_backend_id(node); @@ -1502,9 +1502,8 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str } split->i_start = 0; split->n_inputs = 0; - memset(split->inputs, 0, sizeof(split->inputs)); //HACK int cur_backend_id = split->backend_id; - for (int i = 0; i < graph->n_nodes; i++) { + for (; i < graph->n_nodes; i++) { struct lm_ggml_tensor * node = graph->nodes[i]; if (lm_ggml_is_view_op(node->op)) { @@ -1513,7 +1512,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str const int node_backend_id = tensor_backend_id(node); - LM_GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now + assert(node_backend_id != -1); // all nodes should be assigned by now // check if we should start a new split based on the sources of the current node bool need_new_split = false; @@ -1527,7 +1526,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str // by starting a new split, the memory of the previously offloaded weights can be reused if (src->buffer != NULL && src->buffer->usage == LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { int src_backend_id = tensor_backend_id(src); - if (src_backend_id != -1 && src_backend_id != cur_backend_id) { + if (src_backend_id != cur_backend_id) { need_new_split = true; break; } @@ -1536,9 +1535,9 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str // FIXME: count the number of inputs instead of only checking when full if (split->n_inputs == LM_GGML_SCHED_MAX_SPLIT_INPUTS) { const size_t id = hash_id(src); - int src_backend_id = sched->tensor_backend_id[id]; + int src_backend_id = sched->hv_tensor_backend_ids[id]; bool supported = lm_ggml_backend_sched_buffer_supported(sched, src, cur_backend_id); - if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) { + if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) { //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name); need_new_split = true; break; @@ -1570,12 +1569,12 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str continue; } - const int src_backend_id = tensor_backend_id(src); + size_t src_id = hash_id(src); + const int src_backend_id = sched->hv_tensor_backend_ids[src_id]; assert(src_backend_id != -1); // all inputs should be assigned by now if (src->flags & LM_GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { - size_t id = hash_id(src); - if (sched->tensor_copies[id][src_backend_id][0] == NULL) { + if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) { lm_ggml_backend_t backend = sched->backends[src_backend_id]; for (int c = 0; c < sched->n_copies; c++) { struct lm_ggml_tensor * tensor_copy; @@ -1589,7 +1588,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str lm_ggml_set_input(tensor_copy); lm_ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor } - sched->tensor_copies[id][src_backend_id][c] = tensor_copy; + tensor_id_copy(src_id, src_backend_id, c) = tensor_copy; SET_CAUSE(tensor_copy, "4.cpy"); } int n_graph_inputs = sched->n_graph_inputs++; @@ -1598,11 +1597,9 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str } } - bool supported = lm_ggml_backend_sched_buffer_supported(sched, src, cur_backend_id); - if (src_backend_id != cur_backend_id && !supported) { + if (src_backend_id != cur_backend_id && !lm_ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) { // create a copy of the input in the split's backend - const size_t id = hash_id(src); - if (sched->tensor_copies[id][cur_backend_id][0] == NULL) { + if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) { lm_ggml_backend_t backend = sched->backends[cur_backend_id]; for (int c = 0; c < sched->n_copies; c++) { struct lm_ggml_tensor * tensor_copy = lm_ggml_dup_tensor_layout(sched->ctx, src); @@ -1611,14 +1608,14 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str lm_ggml_set_input(tensor_copy); lm_ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor } - sched->tensor_copies[id][cur_backend_id][c] = tensor_copy; + tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy; SET_CAUSE(tensor_copy, "4.cpy"); } int n_inputs = split->n_inputs++; LM_GGML_ASSERT(n_inputs < LM_GGML_SCHED_MAX_SPLIT_INPUTS); split->inputs[n_inputs] = src; } - node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy]; + node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy); } } } @@ -1630,7 +1627,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str lm_ggml_backend_sched_print_assignments(sched, graph); } - // swap node_backend_ids and leaf_backend_ids and prevs + // swap node_backend_ids and leaf _backend_ids with prevs { int * tmp = sched->node_backend_ids; sched->node_backend_ids = sched->prev_node_backend_ids; @@ -1641,9 +1638,19 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str sched->prev_leaf_backend_ids = tmp; } - // create copies of the graph for each split - // TODO: avoid this copy - struct lm_ggml_cgraph * graph_copy = lm_ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*LM_GGML_SCHED_MAX_SPLIT_INPUTS*2, false); + int graph_size = graph->n_nodes + sched->n_splits*LM_GGML_SCHED_MAX_SPLIT_INPUTS*2; + if (sched->graph.size < graph_size) { + sched->graph.size = graph_size; + sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct lm_ggml_tensor *)); + sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct lm_ggml_tensor *)); + LM_GGML_ASSERT(sched->graph.nodes != NULL); + LM_GGML_ASSERT(sched->graph.leafs != NULL); + } + sched->graph.n_nodes = 0; + sched->graph.n_leafs = 0; + + struct lm_ggml_cgraph * graph_copy = &sched->graph; + for (int i = 0; i < sched->n_splits; i++) { struct lm_ggml_backend_sched_split * split = &sched->splits[i]; split->graph = lm_ggml_graph_view(graph, split->i_start, split->i_end); @@ -1654,12 +1661,12 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str struct lm_ggml_tensor * input = split->inputs[j]; const size_t input_id = hash_id(input); - struct lm_ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy]; + struct lm_ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy); // add a dependency to the input source so that it is not freed before the copy is done struct lm_ggml_tensor * input_dep = lm_ggml_view_tensor(sched->ctx, input); input_dep->src[0] = input; - sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id]; + sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id]; graph_copy->nodes[graph_copy->n_nodes++] = input_dep; // add a dependency to the input copy so that it is allocated at the start of the split @@ -1681,7 +1688,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str size_t id = hash_id(input); int backend_id = tensor_backend_id(input); for (int c = 0; c < sched->n_copies; c++) { - struct lm_ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; + struct lm_ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; } @@ -1694,7 +1701,7 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str struct lm_ggml_tensor * input = split->inputs[j]; size_t id = hash_id(input); for (int c = 0; c < sched->n_copies; c++) { - struct lm_ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; + struct lm_ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; } @@ -1708,13 +1715,11 @@ static void lm_ggml_backend_sched_split_graph(lm_ggml_backend_sched_t sched, str sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); graph_copy->leafs[graph_copy->n_leafs++] = leaf; } - - sched->graph = graph_copy; } static bool lm_ggml_backend_sched_alloc_splits(lm_ggml_backend_sched_t sched) { bool backend_ids_changed = false; - for (int i = 0; i < sched->graph->n_nodes; i++) { + for (int i = 0; i < sched->graph.n_nodes; i++) { if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] && sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) { backend_ids_changed = true; @@ -1722,7 +1727,7 @@ static bool lm_ggml_backend_sched_alloc_splits(lm_ggml_backend_sched_t sched) { } } if (!backend_ids_changed) { - for (int i = 0; i < sched->graph->n_leafs; i++) { + for (int i = 0; i < sched->graph.n_leafs; i++) { if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] && sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) { backend_ids_changed = true; @@ -1732,14 +1737,14 @@ static bool lm_ggml_backend_sched_alloc_splits(lm_ggml_backend_sched_t sched) { } // allocate graph - if (backend_ids_changed || !lm_ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { + if (backend_ids_changed || !lm_ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) { // the re-allocation may cause the split inputs to be moved to a different address lm_ggml_backend_sched_synchronize(sched); #ifndef NDEBUG - fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__); + fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed); #endif - lm_ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids); - if (!lm_ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { + lm_ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids); + if (!lm_ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) { fprintf(stderr, "%s: failed to allocate graph\n", __func__); return false; } @@ -1760,7 +1765,7 @@ static enum lm_ggml_status lm_ggml_backend_sched_compute_splits(lm_ggml_backend_ for (int j = 0; j < split->n_inputs; j++) { lm_ggml_backend_t input_backend = lm_ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]); struct lm_ggml_tensor * input = split->inputs[j]; - struct lm_ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy]; + struct lm_ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy); if (input->flags & LM_GGML_TENSOR_FLAG_INPUT) { // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done @@ -1846,21 +1851,23 @@ lm_ggml_backend_sched_t lm_ggml_backend_sched_new( struct lm_ggml_backend_sched * sched = calloc(1, sizeof(struct lm_ggml_backend_sched)); sched->debug = getenv("LM_GGML_SCHED_DEBUG") != NULL; + sched->n_backends = n_backends; + sched->n_copies = parallel ? LM_GGML_SCHED_MAX_COPIES : 1; // initialize hash table - sched->hash_set = lm_ggml_hash_set_new(graph_size); - sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0])); - sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0])); + // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead) + sched->hash_set = lm_ggml_hash_set_new(graph_size); + sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); + sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct lm_ggml_tensor *)); const size_t nodes_size = graph_size + LM_GGML_SCHED_MAX_SPLITS*LM_GGML_SCHED_MAX_SPLIT_INPUTS*2; - sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); - sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); + sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0])); + sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0])); sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0])); sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0])); - sched->n_backends = n_backends; - - sched->n_copies = parallel ? LM_GGML_SCHED_MAX_COPIES : 1; + sched->context_buffer_size = LM_GGML_SCHED_MAX_SPLITS*LM_GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct lm_ggml_tensor) + lm_ggml_graph_overhead_custom(graph_size, false); + sched->context_buffer = malloc(sched->context_buffer_size); const int initial_splits_capacity = 16; sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0])); @@ -1895,37 +1902,37 @@ void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched) { } lm_ggml_gallocr_free(sched->galloc); lm_ggml_free(sched->ctx); + lm_ggml_hash_set_free(&sched->hash_set); free(sched->splits); - free(sched->hash_set.keys); - free(sched->tensor_backend_id); - free(sched->tensor_copies); + free(sched->hv_tensor_backend_ids); + free(sched->hv_tensor_copies); free(sched->node_backend_ids); free(sched->leaf_backend_ids); free(sched->prev_node_backend_ids); free(sched->prev_leaf_backend_ids); + free(sched->context_buffer); + free(sched->graph.nodes); + free(sched->graph.leafs); free(sched); } void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched) { // reset state for the next run if (!sched->is_reset) { - size_t hash_size = sched->hash_set.size; - memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT - memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); - memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); - + lm_ggml_hash_set_reset(&sched->hash_set); + memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0])); + memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct lm_ggml_tensor *)); sched->is_reset = true; } sched->is_alloc = false; } bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph) { - LM_GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes); + LM_GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs); lm_ggml_backend_sched_split_graph(sched, measure_graph); - // TODO: extract this to a separate function - if (!lm_ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) { + if (!lm_ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) { return false; } @@ -1936,10 +1943,11 @@ bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml } bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph) { - LM_GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes); + LM_GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs); lm_ggml_backend_sched_split_graph(sched, graph); + if (!lm_ggml_backend_sched_alloc_splits(sched)) { return false; } @@ -2009,6 +2017,7 @@ void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, str LM_GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); tensor_backend_id(node) = backend_index; SET_CAUSE(node, "usr"); + sched->is_reset = false; } lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node) { @@ -2051,9 +2060,9 @@ static struct lm_ggml_tensor * graph_copy_dup_tensor(struct lm_ggml_hash_set has LM_GGML_ASSERT(src != NULL); LM_GGML_ASSERT(src->data && "graph must be allocated"); - size_t id = lm_ggml_hash_insert(hash_set, src); - if (id == LM_GGML_HASHTABLE_ALREADY_EXISTS) { - return node_copies[lm_ggml_hash_find(hash_set, src)]; + size_t id = lm_ggml_hash_insert(&hash_set, src); + if (id == LM_GGML_HASHSET_ALREADY_EXISTS) { + return node_copies[lm_ggml_hash_find(&hash_set, src)]; } struct lm_ggml_tensor * dst = lm_ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); @@ -2078,7 +2087,7 @@ static struct lm_ggml_tensor * graph_copy_dup_tensor(struct lm_ggml_hash_set has return dst; } -static void graph_copy_init_tensor(struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor ** node_copies, bool * node_init, struct lm_ggml_tensor * src) { +static void graph_copy_init_tensor(struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor ** node_copies, bool * node_init, struct lm_ggml_tensor * src) { size_t id = lm_ggml_hash_find(hash_set, src); if (node_init[id]) { return; @@ -2105,10 +2114,7 @@ static void graph_copy_init_tensor(struct lm_ggml_hash_set hash_set, struct lm_g } struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph) { - struct lm_ggml_hash_set hash_set = { - /* .size = */ graph->visited_hash_table.size, - /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT - }; + struct lm_ggml_hash_set hash_set = lm_ggml_hash_set_new(graph->visited_hash_set.size); struct lm_ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT bool * node_init = calloc(hash_set.size, sizeof(node_init[0])); @@ -2123,7 +2129,7 @@ struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t b if (ctx_allocated == NULL || ctx_unallocated == NULL) { fprintf(stderr, "failed to allocate context for graph copy\n"); - free(hash_set.keys); + lm_ggml_hash_set_free(&hash_set); free(node_copies); free(node_init); lm_ggml_free(ctx_allocated); @@ -2146,7 +2152,7 @@ struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t b lm_ggml_backend_buffer_t buffer = lm_ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); if (buffer == NULL) { fprintf(stderr, "failed to allocate buffer for graph copy\n"); - free(hash_set.keys); + lm_ggml_hash_set_free(&hash_set); free(node_copies); free(node_init); lm_ggml_free(ctx_allocated); @@ -2164,19 +2170,19 @@ struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t b // copy data and init views for (int i = 0; i < graph->n_nodes; i++) { struct lm_ggml_tensor * node = graph->nodes[i]; - graph_copy_init_tensor(hash_set, node_copies, node_init, node); + graph_copy_init_tensor(&hash_set, node_copies, node_init, node); } // build graph copy struct lm_ggml_cgraph * graph_copy = lm_ggml_new_graph_custom(ctx_allocated, graph->size, false); for (int i = 0; i < graph->n_nodes; i++) { struct lm_ggml_tensor * node = graph->nodes[i]; - struct lm_ggml_tensor * node_copy = node_copies[lm_ggml_hash_find(hash_set, node)]; + struct lm_ggml_tensor * node_copy = node_copies[lm_ggml_hash_find(&hash_set, node)]; graph_copy->nodes[i] = node_copy; } graph_copy->n_nodes = graph->n_nodes; - free(hash_set.keys); + lm_ggml_hash_set_free(&hash_set); free(node_copies); free(node_init); diff --git a/cpp/ggml-impl.h b/cpp/ggml-impl.h index 3d77044..bdd736c 100644 --- a/cpp/ggml-impl.h +++ b/cpp/ggml-impl.h @@ -634,21 +634,121 @@ inline static float lm_ggml_lookup_fp16_to_fp32(lm_ggml_fp16_t f) { #define LM_GGML_FP32_TO_FP16(x) LM_GGML_COMPUTE_FP32_TO_FP16(x) #endif -#define LM_GGML_HASHTABLE_FULL ((size_t)-1) -#define LM_GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2) +// bitset + +static_assert(sizeof(lm_ggml_bitset_t) == 4, "bitset_t constants must be updated"); +#define BITSET_SHR 5 // log2(sizeof(lm_ggml_bitset_t)*8) +#define BITSET_MASK (sizeof(lm_ggml_bitset_t)*8 - 1) + +static size_t lm_ggml_bitset_size(size_t n) { + return (n + BITSET_MASK) >> BITSET_SHR; +} + +static inline bool lm_ggml_bitset_get(const lm_ggml_bitset_t * bitset, size_t i) { + return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK))); +} + +static inline void lm_ggml_bitset_set(lm_ggml_bitset_t * bitset, size_t i) { + bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK)); +} + +static inline void lm_ggml_bitset_clear(lm_ggml_bitset_t * bitset, size_t i) { + bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK)); +} + +// hash set + +#define LM_GGML_HASHSET_FULL ((size_t)-1) +#define LM_GGML_HASHSET_ALREADY_EXISTS ((size_t)-2) struct lm_ggml_hash_set lm_ggml_hash_set_new(size_t size); +void lm_ggml_hash_set_free(struct lm_ggml_hash_set * hash_set); + +// returns the minimum size for a hash set that can hold min_sz elements +size_t lm_ggml_hash_size(size_t min_sz); -bool lm_ggml_hash_contains (const struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key); +// remove all elements from the hash set +void lm_ggml_hash_set_reset(struct lm_ggml_hash_set * hash_set); -// returns LM_GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted -size_t lm_ggml_hash_find (const struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key); +// returns true if key is in the hash set +static bool lm_ggml_hash_contains(const struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key); -// returns LM_GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full -size_t lm_ggml_hash_insert ( struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key); +// returns LM_GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted +static size_t lm_ggml_hash_find(const struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key); + +// returns LM_GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full +static size_t lm_ggml_hash_insert(struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key); // return index, asserts if table is full -size_t lm_ggml_hash_find_or_insert( struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key); +static size_t lm_ggml_hash_find_or_insert(struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key); + +// hash function for lm_ggml_tensor +static inline size_t lm_ggml_hash(const struct lm_ggml_tensor * p) { + // the last 4 bits are always zero due to alignment + return (size_t)(uintptr_t)p >> 4; +} + +static size_t lm_ggml_hash_find(const struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key) { + size_t h = lm_ggml_hash(key) % hash_set->size; + + // linear probing + size_t i = h; + while (lm_ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) { + i = (i + 1) % hash_set->size; + if (i == h) { + // visited all hash table entries -> not found + return LM_GGML_HASHSET_FULL; + } + } + return i; +} + +static bool lm_ggml_hash_contains(const struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key) { + size_t i = lm_ggml_hash_find(hash_set, key); + return i != LM_GGML_HASHSET_FULL && lm_ggml_bitset_get(hash_set->used, i); +} + +static size_t lm_ggml_hash_insert(struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key) { + size_t h = lm_ggml_hash(key) % hash_set->size; + + // linear probing + size_t i = h; + do { + if (!lm_ggml_bitset_get(hash_set->used, i)) { + lm_ggml_bitset_set(hash_set->used, i); + hash_set->keys[i] = key; + return i; + } + if (hash_set->keys[i] == key) { + return LM_GGML_HASHSET_ALREADY_EXISTS; + } + i = (i + 1) % hash_set->size; + } while (i != h); + + // visited all hash table entries -> not found + LM_GGML_ABORT("fatal error"); +} + +static size_t lm_ggml_hash_find_or_insert(struct lm_ggml_hash_set * hash_set, struct lm_ggml_tensor * key) { + size_t h = lm_ggml_hash(key) % hash_set->size; + + // linear probing + size_t i = h; + do { + if (!lm_ggml_bitset_get(hash_set->used, i)) { + lm_ggml_bitset_set(hash_set->used, i); + hash_set->keys[i] = key; + return i; + } + if (hash_set->keys[i] == key) { + return i; + } + i = (i + 1) % hash_set->size; + } while (i != h); + + // visited all hash table entries -> not found + LM_GGML_ABORT("fatal error"); +} #ifdef __cplusplus } diff --git a/cpp/ggml-metal.m b/cpp/ggml-metal.m index 8eb8263..f6a8d06 100644 --- a/cpp/ggml-metal.m +++ b/cpp/ggml-metal.m @@ -869,7 +869,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( NSError * error = nil; if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) { LM_GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]); - LM_GGML_ASSERT(!"capture failed"); + LM_GGML_ABORT("capture failed"); } } @@ -931,7 +931,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( if (!lm_ggml_metal_supports_op(ctx, dst)) { LM_GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, lm_ggml_op_desc(dst)); - LM_GGML_ASSERT(!"unsupported op"); + LM_GGML_ABORT("unsupported op"); } if (should_capture) { @@ -1068,7 +1068,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_OP_ADD: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; case LM_GGML_OP_MUL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; case LM_GGML_OP_DIV: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); } bcast_row = true; @@ -1077,7 +1077,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_OP_ADD: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; case LM_GGML_OP_MUL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; case LM_GGML_OP_DIV: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); } } @@ -1131,7 +1131,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_TYPE_F16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break; case LM_GGML_TYPE_I32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break; case LM_GGML_TYPE_I16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); } [encoder setComputePipelineState:pipeline]; @@ -1387,7 +1387,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( default: { LM_GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, lm_ggml_op_name(dst->op)); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_OP_SQR: @@ -1609,7 +1609,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_TYPE_IQ1_M: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; case LM_GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; case LM_GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; - default: LM_GGML_ASSERT(false && "MUL MAT-MAT not implemented"); + default: LM_GGML_ABORT("MUL MAT-MAT not implemented"); } [encoder setComputePipelineState:pipeline]; @@ -1782,7 +1782,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( default: { LM_GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); - LM_GGML_ASSERT(false && "not implemented"); + LM_GGML_ABORT("not implemented"); } }; @@ -1911,7 +1911,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_TYPE_IQ1_M: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; case LM_GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; case LM_GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; - default: LM_GGML_ASSERT(false && "MUL_MAT_ID not implemented"); + default: LM_GGML_ABORT("MUL_MAT_ID not implemented"); } [encoder setComputePipelineState:pipeline]; @@ -2078,7 +2078,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( default: { LM_GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); - LM_GGML_ASSERT(false && "not implemented"); + LM_GGML_ABORT("not implemented"); } }; @@ -2178,7 +2178,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; case LM_GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case LM_GGML_TYPE_I32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; - default: LM_GGML_ASSERT(false && "not implemented"); + default: LM_GGML_ABORT("not implemented"); } [encoder setComputePipelineState:pipeline]; @@ -2316,13 +2316,13 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( switch (src0->type) { case LM_GGML_TYPE_F32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break; case LM_GGML_TYPE_F16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); }; } else { switch (src0->type) { case LM_GGML_TYPE_F32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break; case LM_GGML_TYPE_F16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); }; } @@ -2399,7 +2399,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( switch (dst->type) { case LM_GGML_TYPE_F32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break; case LM_GGML_TYPE_F16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); }; [encoder setComputePipelineState:pipeline]; @@ -2556,7 +2556,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( switch (order) { case LM_GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; case LM_GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); }; [encoder setComputePipelineState:pipeline]; @@ -2645,7 +2645,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( { LM_GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); LM_GGML_METAL_LOG_ERROR("add template specialization for this size\n"); - LM_GGML_ASSERT(false && "add template specialization for this size"); + LM_GGML_ABORT("add template specialization for this size"); } } } else { @@ -2658,7 +2658,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( { LM_GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); LM_GGML_METAL_LOG_ERROR("add template specialization for this size\n"); - LM_GGML_ASSERT(false && "add template specialization for this size"); + LM_GGML_ABORT("add template specialization for this size"); } } } @@ -2779,7 +2779,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( case LM_GGML_TYPE_Q5_0: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; case LM_GGML_TYPE_Q5_1: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; case LM_GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break; - default: LM_GGML_ASSERT(false && "not implemented"); + default: LM_GGML_ABORT("not implemented"); }; } break; case LM_GGML_TYPE_F16: @@ -2787,10 +2787,10 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( switch (dstt) { case LM_GGML_TYPE_F32: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; case LM_GGML_TYPE_F16: pipeline = ctx->kernels[LM_GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; - default: LM_GGML_ASSERT(false && "not implemented"); + default: LM_GGML_ABORT("not implemented"); }; } break; - default: LM_GGML_ASSERT(false && "not implemented"); + default: LM_GGML_ABORT("not implemented"); } [encoder setComputePipelineState:pipeline]; @@ -2818,7 +2818,7 @@ static enum lm_ggml_status lm_ggml_metal_graph_compute( default: { LM_GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, lm_ggml_op_name(dst->op)); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } diff --git a/cpp/ggml-quants.c b/cpp/ggml-quants.c index 6804b28..9377cbe 100644 --- a/cpp/ggml-quants.c +++ b/cpp/ggml-quants.c @@ -12692,7 +12692,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); printf("\n"); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } q2[2*ib+0] |= ((uint32_t) grid_index << 8*k); q2[2*ib+1] |= (block_signs[k] << 7*k); @@ -12871,7 +12871,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); printf("\n"); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } q2[2*ib+k] = grid_index | (block_signs[k] << 9); } @@ -13314,7 +13314,7 @@ static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, v printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); printf("\n"); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } if (grid_size == 256) { q3[8*ib+k] = grid_index; @@ -13527,7 +13527,7 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); printf("\n"); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } qs[k] = grid_index & 255; qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8)); @@ -14503,7 +14503,7 @@ static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy printf("Oops: found point %u not on grid:", u); for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); printf("\n"); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } const int i8 = 2*ib + k; y[ibl].qs[i8] = grid_index & 255; @@ -14623,7 +14623,7 @@ bool lm_ggml_validate_row_data(enum lm_ggml_type type, const void * data, size_t } if (nbytes % lm_ggml_type_size(type) != 0) { - fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type); + fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, lm_ggml_type_name(type), lm_ggml_type_size(type)); return false; } diff --git a/cpp/ggml.c b/cpp/ggml.c index 05bcb3d..b600701 100644 --- a/cpp/ggml.c +++ b/cpp/ggml.c @@ -141,23 +141,25 @@ typedef pthread_t lm_ggml_thread_t; #include -void lm_ggml_print_backtrace(void) { - /* - #include - #include - - void * trace[100]; - - int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); - - backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); - */ +#if defined(__linux__) +#include +static void lm_ggml_print_backtrace_symbols(void) { + // void * trace[100]; + // int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); + // backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); +} +#else +static void lm_ggml_print_backtrace_symbols(void) { + // platform not supported +} +#endif - // backtrack_symbols does not show line numbers, use gdb instead +static void lm_ggml_print_backtrace(void) { char attach[32]; snprintf(attach, sizeof(attach), "attach %d", getpid()); int pid = fork(); if (pid == 0) { + // try gdb execlp("gdb", "gdb", "--batch", "-ex", "set style enabled on", "-ex", attach, @@ -165,16 +167,46 @@ void lm_ggml_print_backtrace(void) { "-ex", "detach", "-ex", "quit", (char *) NULL); + // try lldb + execlp("lldb", "lldb", "--batch", + "-o", "bt", + "-o", "quit", + "-p", attach, + (char *) NULL); + exit(EXIT_FAILURE); } else { - waitpid(pid, NULL, 0); + int wstatus; + waitpid(pid, &wstatus, 0); + if (WIFEXITED(wstatus)) { + if (WEXITSTATUS(wstatus) == EXIT_FAILURE) { + // gdb failed, fallback to backtrace_symbols + lm_ggml_print_backtrace_symbols(); + } + } } } #else -void lm_ggml_print_backtrace(void) { +static void lm_ggml_print_backtrace(void) { // platform not supported } #endif +void lm_ggml_abort(const char * file, int line, const char * fmt, ...) { + fflush(stdout); + + fprintf(stderr, "%s:%d: ", file, line); + + va_list args; + va_start(args, fmt); + vfprintf(stderr, fmt, args); + va_end(args); + + fprintf(stderr, "\n"); + + lm_ggml_print_backtrace(); + abort(); +} + #define LM_GGML_DEBUG 0 #define LM_GGML_GELU_FP16 #define LM_GGML_GELU_QUICK_FP16 @@ -246,7 +278,7 @@ inline static void * lm_ggml_aligned_malloc(size_t size) { break; } LM_GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0)); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); return NULL; } return aligned_memory; @@ -267,7 +299,7 @@ inline static void * lm_ggml_malloc(size_t size) { void * result = malloc(size); if (result == NULL) { LM_GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } return result; } @@ -281,7 +313,7 @@ inline static void * lm_ggml_calloc(size_t num, size_t size) { void * result = calloc(num, size); if (result == NULL) { LM_GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } return result; } @@ -3372,7 +3404,7 @@ static inline int lm_ggml_up(int n, int m) { } // assert that pointer is aligned to LM_GGML_MEM_ALIGN -#define lm_ggml_assert_aligned(ptr) \ +#define LM_GGML_ASSERT_ALIGNED(ptr) \ LM_GGML_ASSERT(((uintptr_t) (ptr))%LM_GGML_MEM_ALIGN == 0) //////////////////////////////////////////////////////////////////////////////// @@ -3473,7 +3505,7 @@ struct lm_ggml_context * lm_ggml_init(struct lm_ggml_init_params params) { LM_GGML_ASSERT(ctx->mem_buffer != NULL); - lm_ggml_assert_aligned(ctx->mem_buffer); + LM_GGML_ASSERT_ALIGNED(ctx->mem_buffer); LM_GGML_PRINT_DEBUG("%s: context initialized\n", __func__); @@ -3605,7 +3637,7 @@ static struct lm_ggml_object * lm_ggml_new_object(struct lm_ggml_context * ctx, .type = type, }; - lm_ggml_assert_aligned(mem_buffer + obj_new->offs); + LM_GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs); if (obj_cur != NULL) { obj_cur->next = obj_new; @@ -3706,7 +3738,7 @@ static struct lm_ggml_tensor * lm_ggml_new_tensor_impl( #endif // TODO: this should not be needed as long as we don't rely on aligned SIMD loads - //lm_ggml_assert_aligned(result->data); + //LM_GGML_ASSERT_ALIGNED(result->data); for (int i = 0; i < n_dims; i++) { result->ne[i] = ne[i]; @@ -3879,8 +3911,8 @@ struct lm_ggml_tensor * lm_ggml_set_i32 (struct lm_ggml_tensor * tensor, int32_t } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } return tensor; @@ -3938,8 +3970,8 @@ struct lm_ggml_tensor * lm_ggml_set_f32(struct lm_ggml_tensor * tensor, float va } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } return tensor; @@ -4008,11 +4040,9 @@ int32_t lm_ggml_get_i32_1d(const struct lm_ggml_tensor * tensor, int i) { } default: { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } - - return 0.0f; } void lm_ggml_set_i32_1d(const struct lm_ggml_tensor * tensor, int i, int32_t value) { @@ -4055,8 +4085,8 @@ void lm_ggml_set_i32_1d(const struct lm_ggml_tensor * tensor, int i, int32_t val } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -4076,10 +4106,8 @@ int32_t lm_ggml_get_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, case LM_GGML_TYPE_F32: return ((float *) data)[0]; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } - - return 0.0f; } void lm_ggml_set_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { @@ -4111,8 +4139,8 @@ void lm_ggml_set_i32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, in } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -4149,11 +4177,9 @@ float lm_ggml_get_f32_1d(const struct lm_ggml_tensor * tensor, int i) { } default: { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } - - return 0.0f; } void lm_ggml_set_f32_1d(const struct lm_ggml_tensor * tensor, int i, float value) { @@ -4190,8 +4216,8 @@ void lm_ggml_set_f32_1d(const struct lm_ggml_tensor * tensor, int i, float value } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -4211,10 +4237,8 @@ float lm_ggml_get_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, i case LM_GGML_TYPE_F32: return ((float *) data)[0]; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } - - return 0.0f; } void lm_ggml_set_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { @@ -4246,8 +4270,8 @@ void lm_ggml_set_f32_nd(const struct lm_ggml_tensor * tensor, int i0, int i1, in } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -4270,8 +4294,11 @@ const char * lm_ggml_get_name(const struct lm_ggml_tensor * tensor) { } struct lm_ggml_tensor * lm_ggml_set_name(struct lm_ggml_tensor * tensor, const char * name) { - strncpy(tensor->name, name, sizeof(tensor->name) - 1); - tensor->name[sizeof(tensor->name) - 1] = '\0'; + size_t i; + for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) { + tensor->name[i] = name[i]; + } + tensor->name[i] = '\0'; return tensor; } @@ -4842,7 +4869,7 @@ struct lm_ggml_tensor * lm_ggml_mean( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement is_node = true; } @@ -4865,7 +4892,7 @@ struct lm_ggml_tensor * lm_ggml_argmax( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); is_node = true; } @@ -5188,7 +5215,7 @@ static struct lm_ggml_tensor * lm_ggml_norm_impl( bool is_node = false; if (!inplace && (a->grad)) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -5291,7 +5318,7 @@ static struct lm_ggml_tensor * lm_ggml_group_norm_impl( bool is_node = false; if (!inplace && (a->grad)) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -5705,7 +5732,7 @@ struct lm_ggml_tensor * lm_ggml_reshape( if (b->grad) { // gradient propagation is not supported - //LM_GGML_ASSERT(false); + //LM_GGML_ABORT("fatal error"); } struct lm_ggml_tensor * result = lm_ggml_new_tensor_impl(ctx, a->type, LM_GGML_MAX_DIMS, b->ne, a, 0); @@ -6488,7 +6515,7 @@ struct lm_ggml_tensor * lm_ggml_clamp( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6564,7 +6591,7 @@ LM_GGML_API struct lm_ggml_tensor * lm_ggml_conv_transpose_1d( bool is_node = false; if (a->grad || b->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6636,7 +6663,7 @@ struct lm_ggml_tensor * lm_ggml_im2col( bool is_node = false; if (a->grad || b->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6722,7 +6749,7 @@ struct lm_ggml_tensor * lm_ggml_conv_transpose_2d_p0( bool is_node = false; if (a->grad || b->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6763,7 +6790,7 @@ struct lm_ggml_tensor * lm_ggml_pool_1d( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6801,7 +6828,7 @@ struct lm_ggml_tensor * lm_ggml_pool_2d( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6834,7 +6861,7 @@ static struct lm_ggml_tensor * lm_ggml_upscale_impl( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6884,7 +6911,7 @@ struct lm_ggml_tensor * lm_ggml_pad( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -6933,7 +6960,7 @@ struct lm_ggml_tensor * lm_ggml_timestep_embedding( bool is_node = false; if (timesteps->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -7059,7 +7086,7 @@ struct lm_ggml_tensor * lm_ggml_flash_attn_back( struct lm_ggml_tensor * v, struct lm_ggml_tensor * d, bool masked) { - LM_GGML_ASSERT(false && "TODO: adapt to lm_ggml_flash_attn_ext() changes"); + LM_GGML_ABORT("TODO: adapt to lm_ggml_flash_attn_ext() changes"); LM_GGML_ASSERT(lm_ggml_can_mul_mat(k, q)); // TODO: check if vT can be multiplied by (k*qT) @@ -7158,7 +7185,7 @@ struct lm_ggml_tensor * lm_ggml_ssm_conv( bool is_node = false; if (s->grad || x->grad || c->grad || sq->grad) { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement is_node = true; } @@ -7212,7 +7239,7 @@ struct lm_ggml_tensor * lm_ggml_ssm_scan( bool is_node = false; if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement is_node = true; } @@ -7244,7 +7271,7 @@ struct lm_ggml_tensor * lm_ggml_win_part( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -7282,7 +7309,7 @@ struct lm_ggml_tensor * lm_ggml_win_unpart( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -7312,7 +7339,7 @@ struct lm_ggml_tensor * lm_ggml_get_rel_pos( bool is_node = false; if (a->grad) { - LM_GGML_ASSERT(false); // TODO: implement backward + LM_GGML_ABORT("fatal error"); // TODO: implement backward is_node = true; } @@ -8002,7 +8029,7 @@ static void lm_ggml_compute_forward_dup_f16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); @@ -8044,7 +8071,7 @@ static void lm_ggml_compute_forward_dup_f16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } return; @@ -8161,7 +8188,7 @@ static void lm_ggml_compute_forward_dup_f16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } @@ -8288,7 +8315,7 @@ static void lm_ggml_compute_forward_dup_bf16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); @@ -8348,7 +8375,7 @@ static void lm_ggml_compute_forward_dup_bf16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } return; @@ -8517,7 +8544,7 @@ static void lm_ggml_compute_forward_dup_bf16( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } @@ -8603,7 +8630,7 @@ static void lm_ggml_compute_forward_dup_f32( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } else { //printf("%s: this is not optimal - fix me\n", __func__); @@ -8663,7 +8690,7 @@ static void lm_ggml_compute_forward_dup_f32( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } @@ -8834,7 +8861,7 @@ static void lm_ggml_compute_forward_dup_f32( } } } else { - LM_GGML_ASSERT(false); // TODO: implement + LM_GGML_ABORT("fatal error"); // TODO: implement } } @@ -9012,8 +9039,8 @@ static void lm_ggml_compute_forward_dup( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -9165,7 +9192,7 @@ static void lm_ggml_compute_forward_add_f16_f32( } else { // src1 is not contiguous - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } @@ -9240,7 +9267,7 @@ static void lm_ggml_compute_forward_add_bf16_f32( } else { // src1 is not contiguous - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } @@ -9292,7 +9319,7 @@ static void lm_ggml_compute_forward_add_f16_f16( } else { // src1 is not contiguous - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } @@ -9344,7 +9371,7 @@ static void lm_ggml_compute_forward_add_bf16_bf16( } else { // src1 is not contiguous - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } @@ -9438,7 +9465,7 @@ static void lm_ggml_compute_forward_add( lm_ggml_compute_forward_add_f32(params, dst); } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_TYPE_F16: @@ -9450,7 +9477,7 @@ static void lm_ggml_compute_forward_add( lm_ggml_compute_forward_add_f16_f32(params, dst); } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_TYPE_BF16: @@ -9462,7 +9489,7 @@ static void lm_ggml_compute_forward_add( lm_ggml_compute_forward_add_bf16_f32(params, dst); } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_TYPE_Q4_0: @@ -9492,8 +9519,8 @@ static void lm_ggml_compute_forward_add( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -9827,7 +9854,7 @@ static void lm_ggml_compute_forward_add1( lm_ggml_compute_forward_add1_f16_f32(params, dst); } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_TYPE_BF16: @@ -9839,7 +9866,7 @@ static void lm_ggml_compute_forward_add1( lm_ggml_compute_forward_add1_bf16_f32(params, dst); } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_TYPE_Q4_0: @@ -9870,8 +9897,8 @@ static void lm_ggml_compute_forward_add1( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -9995,8 +10022,8 @@ static void lm_ggml_compute_forward_acc( case LM_GGML_TYPE_Q4_0_8_8: default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10076,8 +10103,8 @@ static void lm_ggml_compute_forward_sub( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10170,8 +10197,8 @@ static void lm_ggml_compute_forward_mul( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10261,8 +10288,8 @@ static void lm_ggml_compute_forward_div( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10306,8 +10333,8 @@ static void lm_ggml_compute_forward_sqr( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10351,8 +10378,8 @@ static void lm_ggml_compute_forward_sqrt( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10396,8 +10423,8 @@ static void lm_ggml_compute_forward_log( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10525,8 +10552,8 @@ static void lm_ggml_compute_forward_sum( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10578,8 +10605,8 @@ static void lm_ggml_compute_forward_sum_rows( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10635,8 +10662,8 @@ static void lm_ggml_compute_forward_mean( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10683,8 +10710,8 @@ static void lm_ggml_compute_forward_argmax( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10801,8 +10828,8 @@ static void lm_ggml_compute_forward_repeat( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10879,8 +10906,8 @@ static void lm_ggml_compute_forward_repeat_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10948,8 +10975,8 @@ static void lm_ggml_compute_forward_concat( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -10992,8 +11019,8 @@ static void lm_ggml_compute_forward_abs( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11036,8 +11063,8 @@ static void lm_ggml_compute_forward_sgn( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11080,8 +11107,8 @@ static void lm_ggml_compute_forward_neg( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11124,8 +11151,8 @@ static void lm_ggml_compute_forward_step( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11168,8 +11195,8 @@ static void lm_ggml_compute_forward_tanh( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11212,8 +11239,8 @@ static void lm_ggml_compute_forward_elu( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11256,8 +11283,8 @@ static void lm_ggml_compute_forward_relu( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11300,8 +11327,8 @@ static void lm_ggml_compute_forward_sigmoid( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11359,8 +11386,8 @@ static void lm_ggml_compute_forward_gelu( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11418,8 +11445,8 @@ static void lm_ggml_compute_forward_gelu_quick( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11477,8 +11504,8 @@ static void lm_ggml_compute_forward_silu( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } // lm_ggml_compute_forward_leaky_relu @@ -11526,8 +11553,8 @@ static void lm_ggml_compute_forward_leaky_relu( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11589,8 +11616,8 @@ static void lm_ggml_compute_forward_silu_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11631,8 +11658,8 @@ static void lm_ggml_compute_forward_hardswish( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11673,8 +11700,8 @@ static void lm_ggml_compute_forward_hardsigmoid( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11745,8 +11772,8 @@ static void lm_ggml_compute_forward_norm( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11813,8 +11840,8 @@ static void lm_ggml_compute_forward_rms_norm( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -11986,8 +12013,8 @@ static void lm_ggml_compute_forward_rms_norm_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -12080,8 +12107,8 @@ static void lm_ggml_compute_forward_group_norm( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -12839,17 +12866,17 @@ static void lm_ggml_compute_forward_out_prod( } break; case LM_GGML_TYPE_F16: { - LM_GGML_ASSERT(false); // todo + LM_GGML_ABORT("fatal error"); // todo // lm_ggml_compute_forward_out_prod_f16_f32(params, dst); - } break; + } case LM_GGML_TYPE_F32: { lm_ggml_compute_forward_out_prod_f32(params, dst); } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -12908,8 +12935,8 @@ static void lm_ggml_compute_forward_scale( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13024,8 +13051,8 @@ static void lm_ggml_compute_forward_set( case LM_GGML_TYPE_Q4_0_8_8: default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13302,8 +13329,8 @@ static void lm_ggml_compute_forward_get_rows( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } //static bool first = true; @@ -13410,8 +13437,8 @@ static void lm_ggml_compute_forward_get_rows_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } //static bool first = true; @@ -13488,8 +13515,8 @@ static void lm_ggml_compute_forward_diag( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13558,8 +13585,8 @@ static void lm_ggml_compute_forward_diag_mask_inf( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13576,8 +13603,8 @@ static void lm_ggml_compute_forward_diag_mask_zero( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13694,8 +13721,8 @@ static void lm_ggml_compute_forward_soft_max( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13790,8 +13817,8 @@ static void lm_ggml_compute_forward_soft_max_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -13881,8 +13908,8 @@ static void lm_ggml_compute_forward_clamp( case LM_GGML_TYPE_F64: case LM_GGML_TYPE_COUNT: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14211,8 +14238,8 @@ static void lm_ggml_compute_forward_rope( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14235,8 +14262,8 @@ static void lm_ggml_compute_forward_rope_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14435,8 +14462,8 @@ static void lm_ggml_compute_forward_conv_transpose_1d( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14607,8 +14634,8 @@ static void lm_ggml_compute_forward_im2col( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14740,20 +14767,20 @@ static void lm_ggml_compute_forward_pool_1d_sk_p0( switch (op) { case LM_GGML_OP_POOL_AVG: drow[i] = 0; break; case LM_GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } for (int ki = 0; ki < k; ++ki) { switch (op) { case LM_GGML_OP_POOL_AVG: drow[i] += srow[j]; break; case LM_GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } ++j; } switch (op) { case LM_GGML_OP_POOL_AVG: drow[i] /= k; break; case LM_GGML_OP_POOL_MAX: break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } } @@ -14822,7 +14849,7 @@ static void lm_ggml_compute_forward_pool_2d( switch (op) { case LM_GGML_OP_POOL_AVG: *out = 0; break; case LM_GGML_OP_POOL_MAX: *out = -FLT_MAX; break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } const int ix = offset0 + ox * s0; @@ -14837,14 +14864,14 @@ static void lm_ggml_compute_forward_pool_2d( switch (op) { case LM_GGML_OP_POOL_AVG: *out += srow[j]; break; case LM_GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } } } switch (op) { case LM_GGML_OP_POOL_AVG: *out /= ka; break; case LM_GGML_OP_POOL_MAX: break; - case LM_GGML_OP_POOL_COUNT: LM_GGML_ASSERT(false); break; + case LM_GGML_OP_POOL_COUNT: LM_GGML_ABORT("fatal error"); } } } @@ -14908,8 +14935,8 @@ static void lm_ggml_compute_forward_upscale( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -14966,8 +14993,8 @@ static void lm_ggml_compute_forward_pad( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15007,8 +15034,8 @@ static void lm_ggml_compute_forward_arange( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15058,8 +15085,8 @@ static void lm_ggml_compute_forward_timestep_embedding( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15117,8 +15144,8 @@ static void lm_ggml_compute_forward_argsort( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15340,8 +15367,8 @@ static void lm_ggml_compute_forward_flash_attn_ext( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15676,8 +15703,8 @@ static void lm_ggml_compute_forward_flash_attn_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15798,8 +15825,8 @@ static void lm_ggml_compute_forward_ssm_conv( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15919,8 +15946,8 @@ static void lm_ggml_compute_forward_ssm_scan( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -15982,8 +16009,8 @@ static void lm_ggml_compute_forward_win_part( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16043,8 +16070,8 @@ static void lm_ggml_compute_forward_win_unpart( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16111,8 +16138,8 @@ static void lm_ggml_compute_forward_unary( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16158,8 +16185,8 @@ static void lm_ggml_compute_forward_get_rel_pos( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16239,8 +16266,8 @@ static void lm_ggml_compute_forward_add_rel_pos( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16285,8 +16312,8 @@ static void lm_ggml_compute_forward_map_unary( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16334,8 +16361,8 @@ static void lm_ggml_compute_forward_map_binary( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16533,8 +16560,8 @@ static void lm_ggml_compute_forward_cross_entropy_loss( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16620,8 +16647,8 @@ static void lm_ggml_compute_forward_cross_entropy_loss_back( } break; default: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } @@ -16956,14 +16983,32 @@ static void lm_ggml_compute_forward(struct lm_ggml_compute_params * params, stru } break; case LM_GGML_OP_COUNT: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } } //////////////////////////////////////////////////////////////////////////////// -static size_t lm_ggml_hash_size(size_t min_sz) { +struct lm_ggml_hash_set lm_ggml_hash_set_new(size_t size) { + size = lm_ggml_hash_size(size); + struct lm_ggml_hash_set result; + result.size = size; + result.keys = LM_GGML_MALLOC(sizeof(struct lm_ggml_tensor *) * size); + result.used = LM_GGML_CALLOC(lm_ggml_bitset_size(size), sizeof(lm_ggml_bitset_t)); + return result; +} + +void lm_ggml_hash_set_reset(struct lm_ggml_hash_set * hash_set) { + memset(hash_set->used, 0, sizeof(lm_ggml_bitset_t) * lm_ggml_bitset_size(hash_set->size)); +} + +void lm_ggml_hash_set_free(struct lm_ggml_hash_set * hash_set) { + LM_GGML_FREE(hash_set->used); + LM_GGML_FREE(hash_set->keys); +} + +size_t lm_ggml_hash_size(size_t min_sz) { // next primes after powers of two static const size_t primes[] = { 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, @@ -16974,7 +17019,7 @@ static size_t lm_ggml_hash_size(size_t min_sz) { }; static const size_t n_primes = sizeof(primes)/sizeof(primes[0]); - // find the smallest prime that is larger or equal to min_sz + // find the smallest prime that is larger or equal than min_sz size_t l = 0; size_t r = n_primes; while (l < r) { @@ -16989,67 +17034,6 @@ static size_t lm_ggml_hash_size(size_t min_sz) { return sz; } -static size_t lm_ggml_hash(const void * p) { - return (size_t)p; -} - -size_t lm_ggml_hash_find(const struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key) { - size_t h = lm_ggml_hash(key) % hash_set.size; - - // linear probing - size_t i = h; - while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) { - i = (i + 1) % hash_set.size; - if (i == h) { - // visited all hash table entries -> not found - return LM_GGML_HASHTABLE_FULL; - } - } - return i; -} - -bool lm_ggml_hash_contains(struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key) { - size_t i = lm_ggml_hash_find(hash_set, key); - return i != LM_GGML_HASHTABLE_FULL && hash_set.keys[i] == key; -} - -size_t lm_ggml_hash_insert(struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key) { - size_t i = lm_ggml_hash_find(hash_set, key); - - LM_GGML_ASSERT(i != LM_GGML_HASHTABLE_FULL); - - if (hash_set.keys[i] == key) { - return LM_GGML_HASHTABLE_ALREADY_EXISTS; - } - - // insert - LM_GGML_ASSERT(hash_set.keys[i] == NULL); - hash_set.keys[i] = key; - return i; -} - -size_t lm_ggml_hash_find_or_insert(struct lm_ggml_hash_set hash_set, struct lm_ggml_tensor * key) { - size_t i = lm_ggml_hash_find(hash_set, key); - - LM_GGML_ASSERT(i != LM_GGML_HASHTABLE_FULL); - - hash_set.keys[i] = key; - return i; -} - -struct lm_ggml_hash_set lm_ggml_hash_set_new(size_t size) { - size = lm_ggml_hash_size(size); - struct lm_ggml_hash_set result; - result.size = size; - result.keys = LM_GGML_MALLOC(sizeof(struct lm_ggml_tensor *) * size); - memset(result.keys, 0, sizeof(struct lm_ggml_tensor *) * size); - return result; -} - -static void lm_ggml_hash_set_free(struct lm_ggml_hash_set hash_set) { - LM_GGML_FREE(hash_set.keys); -} - struct hash_map { struct lm_ggml_hash_set set; struct lm_ggml_tensor ** vals; @@ -17058,13 +17042,12 @@ struct hash_map { static struct hash_map * lm_ggml_new_hash_map(size_t size) { struct hash_map * result = LM_GGML_MALLOC(sizeof(struct hash_map)); result->set = lm_ggml_hash_set_new(size); - result->vals = LM_GGML_MALLOC(sizeof(struct lm_ggml_tensor *) * result->set.size); - memset(result->vals, 0, sizeof(struct lm_ggml_tensor *) * result->set.size); + result->vals = LM_GGML_CALLOC(result->set.size, sizeof(struct lm_ggml_tensor *)); return result; } static void lm_ggml_hash_map_free(struct hash_map * map) { - lm_ggml_hash_set_free(map->set); + lm_ggml_hash_set_free(&map->set); LM_GGML_FREE(map->vals); LM_GGML_FREE(map); } @@ -17085,7 +17068,7 @@ static struct lm_ggml_tensor * lm_ggml_recompute_graph_node( return node; } - if (!lm_ggml_hash_contains(graph->visited_hash_table, node)) { + if (!lm_ggml_hash_contains(&graph->visited_hash_set, node)) { return node; } @@ -17100,8 +17083,8 @@ static struct lm_ggml_tensor * lm_ggml_recompute_graph_node( return node; } - size_t i = lm_ggml_hash_find(replacements->set, node); - LM_GGML_ASSERT(i != LM_GGML_HASHTABLE_FULL); // assert that not full + size_t i = lm_ggml_hash_find(&replacements->set, node); + LM_GGML_ASSERT(i != LM_GGML_HASHSET_FULL); // assert that not full if (replacements->set.keys[i] == node) { return replacements->vals[i]; } @@ -17159,8 +17142,8 @@ void lm_ggml_build_backward_gradient_checkpointing( // insert checkpoints in replacements for (int i = 0; i < n_checkpoints; ++i) { - size_t k = lm_ggml_hash_find(replacements->set, checkpoints[i]); - LM_GGML_ASSERT(k != LM_GGML_HASHTABLE_FULL); // assert that not full + size_t k = lm_ggml_hash_find(&replacements->set, checkpoints[i]); + LM_GGML_ASSERT(k != LM_GGML_HASHSET_FULL); // assert that not full LM_GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite replacements->set.keys[k] = checkpoints[i]; replacements->vals[k] = checkpoints[i]; @@ -17188,7 +17171,7 @@ void lm_ggml_build_backward_gradient_checkpointing( // functions to change gradients considering the case that input a might be initial gradient with zero value -static struct lm_ggml_tensor * lm_ggml_add_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set zero_table) { +static struct lm_ggml_tensor * lm_ggml_add_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set * zero_table) { if (lm_ggml_hash_contains(zero_table, a)) { return b; } else { @@ -17196,7 +17179,7 @@ static struct lm_ggml_tensor * lm_ggml_add_or_set(struct lm_ggml_context * ctx, } } -static struct lm_ggml_tensor * lm_ggml_acc_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct lm_ggml_hash_set zero_table) { +static struct lm_ggml_tensor * lm_ggml_acc_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct lm_ggml_hash_set * zero_table) { if (lm_ggml_hash_contains(zero_table, a)) { struct lm_ggml_tensor * a_zero = lm_ggml_scale(ctx, a, 0.0f); return lm_ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false); @@ -17205,7 +17188,7 @@ static struct lm_ggml_tensor * lm_ggml_acc_or_set(struct lm_ggml_context * ctx, } } -static struct lm_ggml_tensor * lm_ggml_add1_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set zero_table) { +static struct lm_ggml_tensor * lm_ggml_add1_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set * zero_table) { if (lm_ggml_hash_contains(zero_table, a)) { return lm_ggml_repeat(ctx, b, a); } else { @@ -17213,7 +17196,7 @@ static struct lm_ggml_tensor * lm_ggml_add1_or_set(struct lm_ggml_context * ctx, } } -static struct lm_ggml_tensor * lm_ggml_sub_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set zero_table) { +static struct lm_ggml_tensor * lm_ggml_sub_or_set(struct lm_ggml_context * ctx, struct lm_ggml_tensor * a, struct lm_ggml_tensor * b, struct lm_ggml_hash_set * zero_table) { if (lm_ggml_hash_contains(zero_table, a)) { return lm_ggml_neg(ctx, b); } else { @@ -17221,7 +17204,7 @@ static struct lm_ggml_tensor * lm_ggml_sub_or_set(struct lm_ggml_context * ctx, } } -static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor, struct lm_ggml_hash_set zero_table) { +static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggml_tensor * tensor, struct lm_ggml_hash_set * zero_table) { struct lm_ggml_tensor * src0 = tensor->src[0]; struct lm_ggml_tensor * src1 = tensor->src[1]; struct lm_ggml_tensor * src2 = tensor->src[2]; @@ -17390,8 +17373,8 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm case LM_GGML_OP_MEAN: case LM_GGML_OP_ARGMAX: { - LM_GGML_ASSERT(false); // TODO: implement - } break; + LM_GGML_ABORT("fatal error"); // TODO: implement + } case LM_GGML_OP_REPEAT: { // necessary for llama @@ -17414,16 +17397,16 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_CONCAT: { - LM_GGML_ASSERT(false); // TODO: implement - } break; + LM_GGML_ABORT("fatal error"); // TODO: implement + } case LM_GGML_OP_SILU_BACK: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_NORM: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_RMS_NORM: { // necessary for llama @@ -17439,12 +17422,12 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_RMS_NORM_BACK: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_GROUP_NORM: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_MUL_MAT: { // https://cs231n.github.io/optimization-2/#staged @@ -17505,12 +17488,12 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_MUL_MAT_ID: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_OUT_PROD: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_SCALE: { // necessary for llama @@ -17686,12 +17669,12 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_GET_ROWS_BACK: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_DIAG: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_DIAG_MASK_INF: { // necessary for llama @@ -17729,8 +17712,8 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_SOFT_MAX_BACK: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_ROPE: { // necessary for llama @@ -17805,52 +17788,52 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_CLAMP: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_CONV_TRANSPOSE_1D: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_IM2COL: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_CONV_TRANSPOSE_2D: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_POOL_1D: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_POOL_2D: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_UPSCALE: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_PAD: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_ARANGE: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_TIMESTEP_EMBEDDING: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_ARGSORT: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_LEAKY_RELU: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_FLASH_ATTN_EXT: { struct lm_ggml_tensor * flash_grad = NULL; @@ -17906,13 +17889,13 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_FLASH_ATTN_BACK: { - LM_GGML_ASSERT(false); // not supported - } break; + LM_GGML_ABORT("fatal error"); // not supported + } case LM_GGML_OP_SSM_CONV: case LM_GGML_OP_SSM_SCAN: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_OP_WIN_PART: case LM_GGML_OP_WIN_UNPART: case LM_GGML_OP_UNARY: @@ -17950,12 +17933,12 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_UNARY_OP_TANH: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_UNARY_OP_ELU: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_UNARY_OP_RELU: { if (src0->grad) { @@ -17969,16 +17952,16 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_UNARY_OP_SIGMOID: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_UNARY_OP_GELU: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_UNARY_OP_GELU_QUICK: { - LM_GGML_ASSERT(false); // TODO: not implemented - } break; + LM_GGML_ABORT("fatal error"); // TODO: not implemented + } case LM_GGML_UNARY_OP_SILU: { // necessary for llama @@ -17990,7 +17973,7 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } } break; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_OP_GET_REL_POS: @@ -18004,8 +17987,8 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm case LM_GGML_OP_MAP_CUSTOM2: case LM_GGML_OP_MAP_CUSTOM3: { - LM_GGML_ASSERT(false); // not supported - } break; + LM_GGML_ABORT("fatal error"); // not supported + } case LM_GGML_OP_CROSS_ENTROPY_LOSS: { if (src0->grad) { @@ -18020,16 +18003,16 @@ static void lm_ggml_compute_backward(struct lm_ggml_context * ctx, struct lm_ggm } break; case LM_GGML_OP_CROSS_ENTROPY_LOSS_BACK: { - LM_GGML_ASSERT(false); // not supported - } break; + LM_GGML_ABORT("fatal error"); // not supported + } case LM_GGML_OP_NONE: { // nop } break; case LM_GGML_OP_COUNT: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } for (int i = 0; i < LM_GGML_MAX_SRC; ++i) { @@ -18049,7 +18032,7 @@ static void lm_ggml_visit_parents(struct lm_ggml_cgraph * cgraph, struct lm_ggml } // check if already visited - if (lm_ggml_hash_insert(cgraph->visited_hash_table, node) == LM_GGML_HASHTABLE_ALREADY_EXISTS) { + if (lm_ggml_hash_insert(&cgraph->visited_hash_set, node) == LM_GGML_HASHSET_ALREADY_EXISTS) { return; } @@ -18131,7 +18114,7 @@ void lm_ggml_build_backward_expand(struct lm_ggml_context * ctx, struct lm_ggml_ struct lm_ggml_hash_set zero_table = lm_ggml_hash_set_new(gf->size); for (int i = 0; i < gf->n_nodes; i++) { if (gf->grads[i]) { - lm_ggml_hash_insert(zero_table, gf->grads[i]); + lm_ggml_hash_insert(&zero_table, gf->grads[i]); } } @@ -18141,7 +18124,7 @@ void lm_ggml_build_backward_expand(struct lm_ggml_context * ctx, struct lm_ggml_ // inplace operations to add gradients are not created by lm_ggml_compute_backward // use allocator to automatically make inplace operations if (node->grad) { - lm_ggml_compute_backward(ctx, node, zero_table); + lm_ggml_compute_backward(ctx, node, &zero_table); } } @@ -18154,16 +18137,29 @@ void lm_ggml_build_backward_expand(struct lm_ggml_context * ctx, struct lm_ggml_ } } - lm_ggml_hash_set_free(zero_table); + lm_ggml_hash_set_free(&zero_table); +} + +static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { + void * ptr = *p; + ptr = (void *) LM_GGML_PAD((uintptr_t) ptr, align); + *p = (void *) ((char *) ptr + size); + return ptr; } static size_t lm_ggml_graph_nbytes(size_t size, bool grads) { - size_t nbytes = sizeof(struct lm_ggml_cgraph); - nbytes += size * sizeof(struct lm_ggml_tensor *) * 2; // leafs + nodes + size_t hash_size = lm_ggml_hash_size(size * 2); + void * p = 0; + incr_ptr_aligned(&p, sizeof(struct lm_ggml_cgraph), 1); + incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); // nodes + incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); // leafs + incr_ptr_aligned(&p, hash_size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); // hash keys if (grads) { - nbytes += size * sizeof(struct lm_ggml_tensor *); // grads + incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); // grads } - nbytes += lm_ggml_hash_size(size * 2) * sizeof(struct lm_ggml_tensor *); // hash set + incr_ptr_aligned(&p, lm_ggml_bitset_size(hash_size) * sizeof(lm_ggml_bitset_t), sizeof(lm_ggml_bitset_t)); + + size_t nbytes = (size_t) p; return nbytes; } @@ -18180,19 +18176,19 @@ struct lm_ggml_cgraph * lm_ggml_new_graph_custom(struct lm_ggml_context * ctx, s struct lm_ggml_object * obj = lm_ggml_new_object(ctx, LM_GGML_OBJECT_TYPE_GRAPH, obj_size); struct lm_ggml_cgraph * cgraph = (struct lm_ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); - struct lm_ggml_tensor ** data_start = (struct lm_ggml_tensor **) (cgraph + 1); - + // the size of the hash table is doubled since it needs to hold both nodes and leafs size_t hash_size = lm_ggml_hash_size(size * 2); - struct lm_ggml_tensor ** nodes_ptr = data_start; - struct lm_ggml_tensor ** leafs_ptr = nodes_ptr + size; - struct lm_ggml_tensor ** hash_keys_ptr = leafs_ptr + size; - struct lm_ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL; - // check that we allocated the correct amount of memory - assert(obj_size == (size_t) ( - (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph)); + void * p = cgraph + 1; - memset(hash_keys_ptr, 0, hash_size * sizeof(struct lm_ggml_tensor *)); + struct lm_ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); + struct lm_ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); + struct lm_ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)); + struct lm_ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct lm_ggml_tensor *), sizeof(struct lm_ggml_tensor *)) : NULL; + lm_ggml_bitset_t * hash_used = incr_ptr_aligned(&p, lm_ggml_bitset_size(hash_size) * sizeof(lm_ggml_bitset_t), sizeof(lm_ggml_bitset_t)); + + // check that we allocated the correct amount of memory + assert(obj_size == (size_t)((char *)p - (char *)cgraph)); *cgraph = (struct lm_ggml_cgraph) { /*.size =*/ size, @@ -18201,10 +18197,12 @@ struct lm_ggml_cgraph * lm_ggml_new_graph_custom(struct lm_ggml_context * ctx, s /*.nodes =*/ nodes_ptr, /*.grads =*/ grads_ptr, /*.leafs =*/ leafs_ptr, - /*.hash_table =*/ { hash_size, hash_keys_ptr }, + /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr }, /*.order =*/ LM_GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, }; + lm_ggml_hash_set_reset(&cgraph->visited_hash_set); + return cgraph; } @@ -18220,7 +18218,7 @@ struct lm_ggml_cgraph lm_ggml_graph_view(struct lm_ggml_cgraph * cgraph0, int i0 /*.nodes =*/ cgraph0->nodes + i0, /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL, /*.leafs =*/ NULL, - /*.hash_table =*/ { 0, NULL }, + /*.hash_table =*/ { 0, NULL, NULL }, /*.order =*/ cgraph0->order, }; @@ -18230,7 +18228,7 @@ struct lm_ggml_cgraph lm_ggml_graph_view(struct lm_ggml_cgraph * cgraph0, int i0 void lm_ggml_graph_cpy(struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst) { LM_GGML_ASSERT(dst->size >= src->n_leafs); LM_GGML_ASSERT(dst->size >= src->n_nodes); - LM_GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size); + LM_GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size); dst->n_leafs = src->n_leafs; dst->n_nodes = src->n_nodes; @@ -18251,9 +18249,9 @@ void lm_ggml_graph_cpy(struct lm_ggml_cgraph * src, struct lm_ggml_cgraph * dst) } } - for (size_t i = 0; i < src->visited_hash_table.size; ++i) { - if (src->visited_hash_table.keys[i]) { - lm_ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]); + for (size_t i = 0; i < src->visited_hash_set.size; ++i) { + if (src->visited_hash_set.keys[i]) { + lm_ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]); } } } @@ -18279,7 +18277,7 @@ void lm_ggml_graph_reset(struct lm_ggml_cgraph * cgraph) { void lm_ggml_graph_clear(struct lm_ggml_cgraph * cgraph) { cgraph->n_leafs = 0; cgraph->n_nodes = 0; - memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct lm_ggml_tensor *)); + lm_ggml_hash_set_reset(&cgraph->visited_hash_set); } // @@ -18471,7 +18469,7 @@ static int lm_ggml_get_n_tasks(struct lm_ggml_tensor * node, int n_threads) { n_tasks = n_threads; } break; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } break; case LM_GGML_OP_SILU_BACK: @@ -18598,8 +18596,8 @@ static int lm_ggml_get_n_tasks(struct lm_ggml_tensor * node, int n_threads) { } break; case LM_GGML_OP_COUNT: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } default: { fprintf(stderr, "%s: op not implemented: ", __func__); @@ -18608,8 +18606,8 @@ static int lm_ggml_get_n_tasks(struct lm_ggml_tensor * node, int n_threads) { } else { fprintf(stderr, "%d\n", node->op); } - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } } assert(n_tasks > 0); @@ -18719,7 +18717,7 @@ struct lm_ggml_cplan lm_ggml_graph_plan(const struct lm_ggml_cgraph * cgraph, in cur += sizeof(float)*ne00*ne01*ne02; cur += sizeof(float)*ne10*ne11; } else { - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } } break; case LM_GGML_OP_CONV_TRANSPOSE_2D: @@ -18765,8 +18763,8 @@ struct lm_ggml_cplan lm_ggml_graph_plan(const struct lm_ggml_cgraph * cgraph, in } break; case LM_GGML_OP_COUNT: { - LM_GGML_ASSERT(false); - } break; + LM_GGML_ABORT("fatal error"); + } default: break; } @@ -20000,9 +19998,9 @@ static enum lm_ggml_opt_result linesearch_backtracking( (*step) *= width; } - LM_GGML_ASSERT(false && "line search failed"); + LM_GGML_ABORT("line search failed"); - return LM_GGML_LINESEARCH_FAIL; + //return LM_GGML_LINESEARCH_FAIL; } static enum lm_ggml_opt_result lm_ggml_opt_lbfgs( @@ -20270,9 +20268,9 @@ static enum lm_ggml_opt_result lm_ggml_opt_lbfgs( step[0] = 1.0; } - LM_GGML_ASSERT(false && "lbfgs failed"); + LM_GGML_ABORT("lbfgs failed"); - return LM_GGML_OPT_RESULT_DID_NOT_CONVERGE; + //return LM_GGML_OPT_RESULT_DID_NOT_CONVERGE; } struct lm_ggml_opt_params lm_ggml_opt_default_params(enum lm_ggml_opt_type type) { @@ -20967,10 +20965,10 @@ struct lm_gguf_context * lm_gguf_init_from_file(const char * fname, struct lm_gg } } break; case LM_GGUF_TYPE_ARRAY: - default: LM_GGML_ASSERT(false && "invalid type"); break; + default: LM_GGML_ABORT("invalid type"); } } break; - default: LM_GGML_ASSERT(false && "invalid type"); + default: LM_GGML_ABORT("invalid type"); } if (!ok) { @@ -21096,6 +21094,12 @@ struct lm_gguf_context * lm_gguf_init_from_file(const char * fname, struct lm_gg }; *params.ctx = lm_ggml_init(pdata); + if (*params.ctx == NULL) { + fprintf(stderr, "%s: failed to initialize context\n", __func__); + fclose(file); + lm_gguf_free(ctx); + return NULL; + } struct lm_ggml_context * ctx_data = *params.ctx; @@ -21545,12 +21549,12 @@ void lm_gguf_set_kv(struct lm_gguf_context * ctx, struct lm_gguf_context * src) lm_gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n); LM_GGML_FREE((void *)data); } else if (src->kv[i].value.arr.type == LM_GGUF_TYPE_ARRAY) { - LM_GGML_ASSERT(false && "nested arrays not supported"); + LM_GGML_ABORT("nested arrays not supported"); } else { lm_gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n); } } break; - default: LM_GGML_ASSERT(false && "invalid type"); break; + default: LM_GGML_ABORT("invalid type"); } } } @@ -21559,7 +21563,7 @@ void lm_gguf_add_tensor( struct lm_gguf_context * ctx, const struct lm_ggml_tensor * tensor) { if (lm_gguf_find_tensor(ctx, tensor->name) != -1) { - LM_GGML_ASSERT(false && "duplicated tensor name"); + LM_GGML_ABORT("duplicated tensor name"); } const int idx = ctx->header.n_tensors; @@ -21592,7 +21596,7 @@ void lm_gguf_add_tensor( void lm_gguf_set_tensor_type(struct lm_gguf_context * ctx, const char * name, enum lm_ggml_type type) { const int idx = lm_gguf_find_tensor(ctx, name); if (idx < 0) { - LM_GGML_ASSERT(false && "tensor not found"); + LM_GGML_ABORT("tensor not found"); } ctx->infos[idx].type = type; @@ -21601,7 +21605,7 @@ void lm_gguf_set_tensor_type(struct lm_gguf_context * ctx, const char * name, en void lm_gguf_set_tensor_data(struct lm_gguf_context * ctx, const char * name, const void * data, size_t size) { const int idx = lm_gguf_find_tensor(ctx, name); if (idx < 0) { - LM_GGML_ASSERT(false && "tensor not found"); + LM_GGML_ABORT("tensor not found"); } ctx->infos[idx].data = data; @@ -21730,10 +21734,10 @@ static void lm_gguf_write_to_buf(const struct lm_gguf_context * ctx, struct lm_g } } break; case LM_GGUF_TYPE_ARRAY: - default: LM_GGML_ASSERT(false && "invalid type"); break; + default: LM_GGML_ABORT("invalid type"); } } break; - default: LM_GGML_ASSERT(false && "invalid type"); + default: LM_GGML_ABORT("invalid type"); } } @@ -21794,7 +21798,7 @@ static void lm_gguf_write_to_buf(const struct lm_gguf_context * ctx, struct lm_g void lm_gguf_write_to_file(const struct lm_gguf_context * ctx, const char * fname, bool only_meta) { FILE * file = lm_ggml_fopen(fname, "wb"); if (!file) { - LM_GGML_ASSERT(false && "failed to open file for writing"); + LM_GGML_ABORT("failed to open file for writing"); } struct lm_gguf_buf buf = lm_gguf_buf_init(16*1024); @@ -22005,6 +22009,14 @@ int lm_ggml_cpu_has_cann(void) { #endif } +int lm_ggml_cpu_has_llamafile(void) { +#if defined(LM_GGML_USE_LLAMAFILE) + return 1; +#else + return 0; +#endif +} + int lm_ggml_cpu_has_gpublas(void) { return lm_ggml_cpu_has_cuda() || lm_ggml_cpu_has_vulkan() || lm_ggml_cpu_has_kompute() || lm_ggml_cpu_has_sycl(); } diff --git a/cpp/ggml.c.rej b/cpp/ggml.c.rej new file mode 100644 index 0000000..45fd668 --- /dev/null +++ b/cpp/ggml.c.rej @@ -0,0 +1,13 @@ +@@ -144,9 +144,9 @@ + #if defined(__linux__) + #include + static void lm_ggml_print_backtrace_symbols(void) { +- void * trace[100]; +- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); +- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); ++ // void * trace[100]; ++ // int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); ++ // backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); + } + #else + static void lm_ggml_print_backtrace_symbols(void) { diff --git a/cpp/ggml.h b/cpp/ggml.h index 53fbf11..313af00 100644 --- a/cpp/ggml.h +++ b/cpp/ggml.h @@ -254,18 +254,8 @@ #define LM_GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) -#define LM_GGML_ASSERT(x) \ - do { \ - if (!(x)) { \ - fflush(stdout); \ - fprintf(stderr, "LM_GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ - lm_ggml_print_backtrace(); \ - abort(); \ - } \ - } while (0) - #ifndef NDEBUG -#define LM_GGML_UNREACHABLE() LM_GGML_ASSERT(!"statement should not be reached") +#define LM_GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0) #elif defined(__GNUC__) #define LM_GGML_UNREACHABLE() __builtin_unreachable() #elif defined(_MSC_VER) @@ -274,6 +264,17 @@ #define LM_GGML_UNREACHABLE() ((void) 0) #endif +#ifdef __cplusplus +#define LM_GGML_NORETURN [[noreturn]] +#elif defined(_MSC_VER) +#define LM_GGML_NORETURN __declspec(noreturn) +#else +#define LM_GGML_NORETURN _Noreturn +#endif + +#define LM_GGML_ABORT(...) lm_ggml_abort(__FILE__, __LINE__, __VA_ARGS__) +#define LM_GGML_ASSERT(x) if (!(x)) LM_GGML_ABORT("LM_GGML_ASSERT(%s) failed", #x) + // used to copy the number of elements and stride in bytes of tensors into local variables. // main purpose is to reduce code duplication and improve readability. // @@ -322,6 +323,9 @@ extern "C" { #endif + LM_GGML_NORETURN LM_GGML_ATTRIBUTE_FORMAT(3, 4) + LM_GGML_API void lm_ggml_abort(const char * file, int line, const char * fmt, ...); + enum lm_ggml_status { LM_GGML_STATUS_ALLOC_FAILED = -2, LM_GGML_STATUS_FAILED = -1, @@ -636,8 +640,11 @@ extern "C" { LM_GGML_CGRAPH_EVAL_ORDER_COUNT }; + typedef uint32_t lm_ggml_bitset_t; + struct lm_ggml_hash_set { size_t size; + lm_ggml_bitset_t * used; struct lm_ggml_tensor ** keys; }; @@ -651,7 +658,7 @@ extern "C" { struct lm_ggml_tensor ** grads; struct lm_ggml_tensor ** leafs; - struct lm_ggml_hash_set visited_hash_table; + struct lm_ggml_hash_set visited_hash_set; enum lm_ggml_cgraph_eval_order order; }; @@ -698,8 +705,6 @@ extern "C" { LM_GGML_API int64_t lm_ggml_cycles(void); LM_GGML_API int64_t lm_ggml_cycles_per_ms(void); - LM_GGML_API void lm_ggml_print_backtrace(void); - // accepts a UTF-8 path, even on Windows LM_GGML_API FILE * lm_ggml_fopen(const char * fname, const char * mode); @@ -2005,8 +2010,8 @@ extern "C" { // lm_ggml_graph_plan() has to be called before lm_ggml_graph_compute() // when plan.work_size > 0, caller must allocate memory for plan.work_data - LM_GGML_API struct lm_ggml_cplan lm_ggml_graph_plan (const struct lm_ggml_cgraph * cgraph, int n_threads /*= LM_GGML_DEFAULT_N_THREADS*/); - LM_GGML_API enum lm_ggml_status lm_ggml_graph_compute ( struct lm_ggml_cgraph * cgraph, struct lm_ggml_cplan * cplan); + LM_GGML_API struct lm_ggml_cplan lm_ggml_graph_plan (const struct lm_ggml_cgraph * cgraph, int n_threads /*= LM_GGML_DEFAULT_N_THREADS*/); + LM_GGML_API enum lm_ggml_status lm_ggml_graph_compute( struct lm_ggml_cgraph * cgraph, struct lm_ggml_cplan * cplan); // same as lm_ggml_graph_compute() but the work data is allocated as a part of the context // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data LM_GGML_API enum lm_ggml_status lm_ggml_graph_compute_with_ctx(struct lm_ggml_context * ctx, struct lm_ggml_cgraph * cgraph, int n_threads); @@ -2400,6 +2405,7 @@ extern "C" { LM_GGML_API int lm_ggml_cpu_has_vsx (void); LM_GGML_API int lm_ggml_cpu_has_matmul_int8(void); LM_GGML_API int lm_ggml_cpu_has_cann (void); + LM_GGML_API int lm_ggml_cpu_has_llamafile (void); // // Internal types and functions exposed for tests and benchmarks diff --git a/cpp/llama-grammar.cpp b/cpp/llama-grammar.cpp new file mode 100644 index 0000000..bb38bd5 --- /dev/null +++ b/cpp/llama-grammar.cpp @@ -0,0 +1,539 @@ +#include "llama-grammar.h" + +#include "llama-vocab.h" +#include "llama-sampling.h" + +#include + +// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as +// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. +std::pair, llama_partial_utf8> decode_utf8( + const std::string & src, + llama_partial_utf8 partial_start) { + static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; + const char * pos = src.c_str(); + std::vector code_points; + + // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. + code_points.reserve(src.size() + 1); + uint32_t value = partial_start.value; + int n_remain = partial_start.n_remain; + + // continue previous decode, if applicable + while (*pos != 0 && n_remain > 0) { + uint8_t next_byte = static_cast(*pos); + if ((next_byte >> 6) != 2) { + // invalid sequence, abort + code_points.push_back(0); + return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); + } + value = (value << 6) + (next_byte & 0x3F); + ++pos; + --n_remain; + } + + if (partial_start.n_remain > 0 && n_remain == 0) { + code_points.push_back(value); + } + + // decode any subsequent utf-8 sequences, which may end in an incomplete one + while (*pos != 0) { + uint8_t first_byte = static_cast(*pos); + uint8_t highbits = first_byte >> 4; + n_remain = lookup[highbits] - 1; + + if (n_remain < 0) { + // invalid sequence, abort + code_points.clear(); + code_points.push_back(0); + return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); + } + + uint8_t mask = (1 << (7 - n_remain)) - 1; + value = first_byte & mask; + + ++pos; + while (*pos != 0 && n_remain > 0) { + value = (value << 6) + (static_cast(*pos) & 0x3F); + ++pos; + --n_remain; + } + if (n_remain == 0) { + code_points.push_back(value); + } + } + code_points.push_back(0); + + return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); +} + +const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) { + return grammar->rules; +} + +llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) { + return grammar->stacks; +} + +// returns true iff pos points to the end of one of the definitions of a rule +static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { + switch (pos->type) { + case LLAMA_GRETYPE_END: return true; // NOLINT + case LLAMA_GRETYPE_ALT: return true; // NOLINT + default: return false; + } +} + +// returns true iff chr satisfies the char range at pos (regular or inverse range) +// asserts that pos is pointing to a char range element +static std::pair llama_grammar_match_char( + const llama_grammar_element * pos, + const uint32_t chr) { + + bool found = false; + bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; + + LM_GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT + + do { + if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { + // inclusive range, e.g. [a-z] + found = found || (pos->value <= chr && chr <= pos[1].value); + pos += 2; + } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { + // Any character matches "." + found = true; + pos += 1; + } else { + // exact char match, e.g. [a] or "a" + found = found || pos->value == chr; + pos += 1; + } + } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); + + return std::make_pair(found == is_positive_char, pos); +} + +// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char +// range at pos (regular or inverse range) +// asserts that pos is pointing to a char range element +static bool llama_grammar_match_partial_char( + const llama_grammar_element * pos, + const llama_partial_utf8 partial_utf8) { + bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; + LM_GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); + + uint32_t partial_value = partial_utf8.value; + int n_remain = partial_utf8.n_remain; + + // invalid sequence or 7-bit char split across 2 bytes (overlong) + if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { + return false; + } + + // range of possible code points this partial UTF-8 sequence could complete to + uint32_t low = partial_value << (n_remain * 6); + uint32_t high = low | ((1 << (n_remain * 6)) - 1); + + if (low == 0) { + if (n_remain == 2) { + low = 1 << 11; + } else if (n_remain == 3) { + low = 1 << 16; + } + } + + do { + if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { + // inclusive range, e.g. [a-z] + if (pos->value <= high && low <= pos[1].value) { + return is_positive_char; + } + pos += 2; + } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { + // Any character matches "." + return true; + } else { + // exact char match, e.g. [a] or "a" + if (low <= pos->value && pos->value <= high) { + return is_positive_char; + } + pos += 1; + } + } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); + + return !is_positive_char; +} + +// transforms a grammar pushdown stack into N possible stacks, all ending +// at a character range (terminal element) +static void llama_grammar_advance_stack( + const llama_grammar_rules & rules, + const llama_grammar_stack & stack, + llama_grammar_stacks & new_stacks) { + if (stack.empty()) { + if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { + new_stacks.emplace_back(stack); + } + return; + } + + const llama_grammar_element * pos = stack.back(); + + switch (pos->type) { + case LLAMA_GRETYPE_RULE_REF: { + const size_t rule_id = static_cast(pos->value); + const llama_grammar_element * subpos = rules[rule_id].data(); + do { + // init new stack without the top (pos) + llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(pos + 1)) { + // if this rule ref is followed by another element, add that to stack + new_stack.push_back(pos + 1); + } + if (!llama_grammar_is_end_of_sequence(subpos)) { + // if alternate is nonempty, add to stack + new_stack.push_back(subpos); + } + llama_grammar_advance_stack(rules, new_stack, new_stacks); + while (!llama_grammar_is_end_of_sequence(subpos)) { + // scan to end of alternate def + subpos++; + } + if (subpos->type == LLAMA_GRETYPE_ALT) { + // there's another alternate def of this rule to process + subpos++; + } else { + break; + } + } while (true); + break; + } + case LLAMA_GRETYPE_CHAR: + case LLAMA_GRETYPE_CHAR_NOT: + case LLAMA_GRETYPE_CHAR_ANY: + if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { + // only add the stack if it's not a duplicate of one we already have + new_stacks.emplace_back(stack); + } + break; + default: + // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range + // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on + // those + LM_GGML_ABORT("fatal error"); + } +} + +// takes a set of possible pushdown stacks on a grammar, which are required to +// be positioned at a character range (see `llama_grammar_advance_stack`), and +// produces the N possible stacks if the given char is accepted at those +// positions +void llama_grammar_accept( + const llama_grammar_rules & rules, + const llama_grammar_stacks & stacks, + const uint32_t chr, + llama_grammar_stacks & new_stacks) { + new_stacks.clear(); + + for (const auto & stack : stacks) { + if (stack.empty()) { + continue; + } + + auto match = llama_grammar_match_char(stack.back(), chr); + if (match.first) { + const llama_grammar_element * pos = match.second; + + // update top of stack to next element, if any + llama_grammar_stack new_stack(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(pos)) { + new_stack.push_back(pos); + } + llama_grammar_advance_stack(rules, new_stack, new_stacks); + } + } +} + +static llama_grammar_candidates llama_grammar_reject_candidates( + const llama_grammar_rules & rules, + const llama_grammar_stacks & stacks, + const llama_grammar_candidates & candidates) { + LM_GGML_ASSERT(!stacks.empty()); // REVIEW + + if (candidates.empty()) { + return {}; + } + + auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); + + for (size_t i = 1, size = stacks.size(); i < size; ++i) { + rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); + } + return rejects; +} + +llama_grammar_candidates llama_grammar_reject_candidates_for_stack( + const llama_grammar_rules & rules, + const llama_grammar_stack & stack, + const llama_grammar_candidates & candidates) { + + llama_grammar_candidates rejects; + rejects.reserve(candidates.size()); + + if (stack.empty()) { + for (const auto & tok : candidates) { + if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { + rejects.push_back(tok); + } + } + return rejects; + } + + const llama_grammar_element * stack_pos = stack.back(); + + llama_grammar_candidates next_candidates; + next_candidates.reserve(candidates.size()); + + for (const auto & tok : candidates) { + if (*tok.code_points == 0) { + // reached end of full codepoints in token, reject iff it ended in a partial sequence + // that cannot satisfy this position in grammar + if (tok.partial_utf8.n_remain != 0 && + !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { + rejects.push_back(tok); + } + } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { + next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); + } else { + rejects.push_back(tok); + } + } + + const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; + + // update top of stack to next element, if any + llama_grammar_stack stack_after(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { + stack_after.push_back(stack_pos_after); + } + llama_grammar_stacks next_stacks; + llama_grammar_advance_stack(rules, stack_after, next_stacks); + + auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); + for (const auto & tok : next_rejects) { + rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); + } + + return rejects; +} + +static bool llama_grammar_detect_left_recursion( + const llama_grammar_rules & rules, + size_t rule_index, + std::vector * rules_visited, + std::vector * rules_in_progress, + std::vector * rules_may_be_empty) { + if ((*rules_in_progress)[rule_index]) { + return true; + } + + (*rules_in_progress)[rule_index] = true; + + const llama_grammar_rule & rule = rules[rule_index]; + + // First check if the rule might produce the empty string. This could be done combined with the second + // step but it's more readable as two steps. + bool at_rule_start = true; + for (size_t i = 0; i < rule.size(); i++) { + if (llama_grammar_is_end_of_sequence(&rule[i])) { + if (at_rule_start) { + (*rules_may_be_empty)[rule_index] = true; + break; + } + at_rule_start = true; + } else { + at_rule_start = false; + } + } + + // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may + // be empty) + bool recurse_into_nonterminal = true; + for (size_t i = 0; i < rule.size(); i++) { + if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { + if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { + return true; + } + if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { + recurse_into_nonterminal = false; + } + } else if (llama_grammar_is_end_of_sequence(&rule[i])) { + recurse_into_nonterminal = true; + } else { + recurse_into_nonterminal = false; + } + } + + (*rules_in_progress)[rule_index] = false; + (*rules_visited)[rule_index] = true; + return false; +} + +// +// grammar - external +// + +struct llama_grammar * llama_grammar_init_impl( + const llama_grammar_element ** rules, + size_t n_rules, + size_t start_rule_index) { + const llama_grammar_element * pos; + + // copy rule definitions into vectors + llama_grammar_rules vec_rules(n_rules); + for (size_t i = 0; i < n_rules; i++) { + for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { + vec_rules[i].push_back(*pos); + } + vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); + } + + // Check for left recursion + std::vector rules_visited(n_rules); + std::vector rules_in_progress(n_rules); + std::vector rules_may_be_empty(n_rules); + for (size_t i = 0; i < n_rules; i++) { + if (rules_visited[i]) { + continue; + } + if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { + LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i); + return nullptr; + } + } + + // loop over alternates of start rule to build initial stacks + llama_grammar_stacks stacks; + pos = vec_rules[start_rule_index].data(); + do { + llama_grammar_stack stack; + if (!llama_grammar_is_end_of_sequence(pos)) { + // if alternate is nonempty, add to stack + stack.push_back(pos); + } + llama_grammar_advance_stack(vec_rules, stack, stacks); + while (!llama_grammar_is_end_of_sequence(pos)) { + // scan to end of alternate def + pos++; + } + if (pos->type == LLAMA_GRETYPE_ALT) { + // there's another alternate def of this rule to process + pos++; + } else { + break; + } + } while (true); + + // Important: vec_rules has to be moved here, not copied, because stacks contains + // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar + // then the pointers would be invalidated when the local vec_rules goes out of scope. + return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; +} + +void llama_grammar_free_impl(struct llama_grammar * grammar) { + delete grammar; +} + +struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) { + llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; + + // redirect elements in stacks to point to new rules + for (size_t is = 0; is < result->stacks.size(); is++) { + for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { + for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { + for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { + if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { + result->stacks[is][ie] = &result->rules[ir0][ir1]; + } + } + } + } + } + + return result; +} + +void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) { + LM_GGML_ASSERT(grammar); + LM_GGML_ASSERT(vocab); + + int64_t t_start_sample_us = lm_ggml_time_us(); + + bool allow_eog = false; + for (const auto & stack : grammar->stacks) { + if (stack.empty()) { + allow_eog = true; + break; + } + } + + std::vector, llama_partial_utf8>> candidates_decoded; + candidates_decoded.reserve(candidates->size); + + llama_grammar_candidates candidates_grammar; + candidates_grammar.reserve(candidates->size); + + for (size_t i = 0; i < candidates->size; ++i) { + const llama_token id = candidates->data[i].id; + const std::string & piece = vocab->cache_token_to_piece.at(id); + + if (llama_token_is_eog_impl(*vocab, id)) { + if (!allow_eog) { + candidates->data[i].logit = -INFINITY; + } + } else if (piece.empty() || piece[0] == 0) { + candidates->data[i].logit = -INFINITY; + } else { + candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); + candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); + } + } + + const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); + for (const auto & reject : rejects) { + candidates->data[reject.index].logit = -INFINITY; + } + + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; +} + +void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) { + const int64_t t_start_sample_us = lm_ggml_time_us(); + + if (llama_token_is_eog_impl(*vocab, token)) { + for (const auto & stack : grammar->stacks) { + if (stack.empty()) { + return; + } + } + LM_GGML_ABORT("fatal error"); + } + + const std::string & piece = vocab->cache_token_to_piece.at(token); + + // Note terminating 0 in decoded string + const auto decoded = decode_utf8(piece, grammar->partial_utf8); + const auto & code_points = decoded.first; + + llama_grammar_stacks tmp_new_stacks; + for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { + llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks); + grammar->stacks = tmp_new_stacks; + } + + grammar->partial_utf8 = decoded.second; + LM_GGML_ASSERT(!grammar->stacks.empty()); + + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; +} diff --git a/cpp/llama-grammar.h b/cpp/llama-grammar.h new file mode 100644 index 0000000..695ea06 --- /dev/null +++ b/cpp/llama-grammar.h @@ -0,0 +1,39 @@ +#pragma once + +#include "llama-impl.h" + +struct llama_vocab; +struct llama_sampling; + +struct llama_grammar { + const llama_grammar_rules rules; + llama_grammar_stacks stacks; + + // buffer for partially generated UTF-8 sequence from accepted tokens + llama_partial_utf8 partial_utf8; +}; + +// +// internal API +// + +struct llama_grammar * llama_grammar_init_impl( + const llama_grammar_element ** rules, + size_t n_rules, + size_t start_rule_index); + +void llama_grammar_free_impl(struct llama_grammar * grammar); + +struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar); + +void llama_grammar_sample_impl( + const struct llama_grammar * grammar, + const struct llama_vocab * vocab, + const struct llama_sampling * smpl, + llama_token_data_array * candidates); + +void llama_grammar_accept_token_impl( + struct llama_grammar * grammar, + const struct llama_vocab * vocab, + const struct llama_sampling * smpl, + llama_token token); diff --git a/cpp/llama-impl.h b/cpp/llama-impl.h new file mode 100644 index 0000000..d734f27 --- /dev/null +++ b/cpp/llama-impl.h @@ -0,0 +1,26 @@ +#pragma once + +#define LLAMA_API_INTERNAL +#include "llama.h" + +#ifdef __GNUC__ +#ifdef __MINGW32__ +#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) +#else +#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) +#endif +#else +#define LLAMA_ATTRIBUTE_FORMAT(...) +#endif + +// +// logging +// + +LLAMA_ATTRIBUTE_FORMAT(2, 3) +void llama_log_internal (lm_ggml_log_level level, const char * format, ...); +void llama_log_callback_default(lm_ggml_log_level level, const char * text, void * user_data); + +#define LLAMA_LOG_INFO(...) llama_log_internal(LM_GGML_LOG_LEVEL_INFO , __VA_ARGS__) +#define LLAMA_LOG_WARN(...) llama_log_internal(LM_GGML_LOG_LEVEL_WARN , __VA_ARGS__) +#define LLAMA_LOG_ERROR(...) llama_log_internal(LM_GGML_LOG_LEVEL_ERROR, __VA_ARGS__) diff --git a/cpp/llama-sampling.cpp b/cpp/llama-sampling.cpp new file mode 100644 index 0000000..3d7d0ce --- /dev/null +++ b/cpp/llama-sampling.cpp @@ -0,0 +1,635 @@ +#include "llama-sampling.h" + +#include +#include +#include +#include +#include +#include + +static void llama_log_softmax(float * array, size_t size) { + float max_l = *std::max_element(array, array + size); + float sum = 0.f; + for (size_t i = 0; i < size; ++i) { + float p = expf(array[i] - max_l); + sum += p; + array[i] = p; + } + + for (size_t i = 0; i < size; ++i) { + array[i] = logf(array[i] / sum); + } +} + +void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { + seed = time(NULL); + } + + smpl->rng.seed(seed); +} + +void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + LM_GGML_ASSERT(candidates->size > 0); + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + float max_l = candidates->data[0].logit; + float cum_sum = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float p = expf(candidates->data[i].logit - max_l); + candidates->data[i].p = p; + cum_sum += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum; + } + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) { + // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast + // if (k >= (int32_t)candidates->size) { + // return; + // } + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + if (k <= 0) { + k = candidates->size; + } + + k = std::max(k, (int) min_keep); + k = std::min(k, (int) candidates->size); + + // Sort scores in descending order + if (!candidates->sorted) { + auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + if (k <= 128) { + std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); + } else { + constexpr int nbuckets = 128; + constexpr float bucket_low = -10.0f; + constexpr float bucket_high = 10.0f; + constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); + constexpr float bucker_inter = -bucket_low * bucket_scale; + + std::vector bucket_idx(candidates->size); + std::vector histo(nbuckets, 0); + + for (int i = 0; i < (int)candidates->size; ++i) { + const float val = candidates->data[i].logit; + int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); + ib = std::max(0, std::min(nbuckets-1, ib)); + bucket_idx[i] = ib; + ++histo[ib]; + } + int nhave = 0; + int ib = nbuckets - 1; + for ( ; ib >= 0; --ib) { + nhave += histo[ib]; + if (nhave >= k) break; + } + std::vector tmp_tokens(nhave); + auto ptr = tmp_tokens.data(); + std::vector bucket_ptrs; + bucket_ptrs.reserve(nbuckets - ib); + for (int j = nbuckets - 1; j >= ib; --j) { + bucket_ptrs.push_back(ptr); + ptr += histo[j]; + } + for (int i = 0; i < (int)candidates->size; ++i) { + int j = bucket_idx[i]; + if (j >= ib) { + *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; + } + } + + ptr = tmp_tokens.data(); + int ndone = 0; + for (int j = nbuckets-1; j > ib; --j) { + std::sort(ptr, ptr + histo[j], comp); + ptr += histo[j]; + ndone += histo[j]; + } + std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); + + std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); + + } + candidates->sorted = true; + } + candidates->size = k; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p >= 1.0f) { + return; + } + + llama_sample_softmax_impl(smpl, candidates); + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + + for (size_t i = 0; i < candidates->size; ++i) { + cum_sum += candidates->data[i].p; + + // Check if the running sum is at least p or if we have kept at least min_keep tokens + // we set the last index to i+1 to indicate that the current iterate should be included in the set + if (cum_sum >= p && i + 1 >= min_keep) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the top-p tokens + candidates->size = last_idx; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p <= 0.0f || !candidates->size) { + return; + } + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + bool min_p_applied = false; + + // if the candidates aren't sorted, try the unsorted implementation first + if (!candidates->sorted) { + std::vector filtered_tokens; + + float max_logit = -FLT_MAX; + for (size_t i = 0; i < candidates->size; ++i) { + max_logit = std::max(max_logit, candidates->data[i].logit); + } + const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max + + for (size_t i = 0; i < candidates->size; ++i) { + if (candidates->data[i].logit >= min_logit) { + filtered_tokens.push_back(candidates->data[i]); + } + } + + // if we have enough values the operation was a success + if (filtered_tokens.size() >= min_keep) { + memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); + candidates->size = filtered_tokens.size(); + min_p_applied = true; + } + } + + // if the candidates are sorted or the unsorted implementation failed, use this implementation + if (!min_p_applied) { + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max + size_t i = 1; // first token always matches + + for (; i < candidates->size; ++i) { + if (candidates->data[i].logit < min_logit && i >= min_keep) { + break; // prob too small + } + } + + // Resize the output vector to keep only the matching tokens + candidates->size = i; + } + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) { + if (z >= 1.0f || candidates->size <= 2) { + return; + } + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // Compute the first and second derivatives + std::vector first_derivatives(candidates->size - 1); + std::vector second_derivatives(candidates->size - 2); + + for (size_t i = 0; i < first_derivatives.size(); ++i) { + first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; + } + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; + } + + // Calculate absolute value of second derivatives + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = std::abs(second_derivatives[i]); + } + + // Normalize the second derivatives + { + const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); + + if (second_derivatives_sum > 1e-6f) { + for (float & value : second_derivatives) { + value /= second_derivatives_sum; + } + } else { + for (float & value : second_derivatives) { + value = 1.0f / second_derivatives.size(); + } + } + } + + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + for (size_t i = 0; i < second_derivatives.size(); ++i) { + cum_sum += second_derivatives[i]; + + // Check if the running sum is greater than z or if we have kept at least min_keep tokens + if (cum_sum > z && i >= min_keep) { + last_idx = i; + break; + } + } + + // Resize the output vector to keep only the tokens above the tail location + candidates->size = last_idx; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + // Reference implementation: + // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr + if (p >= 1.0f) { + return; + } + + // Compute the softmax of logits and calculate entropy + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + entropy += -candidates->data[i].p * logf(candidates->data[i].p); + } + + // Compute the absolute difference between negative log probability and entropy for each candidate + std::vector shifted_scores; + for (size_t i = 0; i < candidates->size; ++i) { + float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); + shifted_scores.push_back(shifted_score); + } + + // Sort tokens based on the shifted_scores and their corresponding indices + std::vector indices(candidates->size); + std::iota(indices.begin(), indices.end(), 0); + + std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { + return shifted_scores[a] < shifted_scores[b]; + }); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = indices.size(); + + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + cum_sum += candidates->data[idx].p; + + // Check if the running sum is greater than typical or if we have kept at least min_keep tokens + if (cum_sum > p && i >= min_keep - 1) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the locally typical tokens + std::vector new_candidates; + for (size_t i = 0; i < last_idx; ++i) { + size_t idx = indices[i]; + new_candidates.push_back(candidates->data[idx]); + } + + // Replace the data in candidates with the new_candidates data + std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); + candidates->size = new_candidates.size(); + candidates->sorted = false; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) { + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // no need to do anything if there is only one (or zero) candidates + if(candidates->size <= 1) { + return; + } + + // Calculate maximum possible entropy + float max_entropy = -logf(1.0f / candidates->size); + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + // Calculate entropy of the softmax probabilities + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float prob = candidates->data[i].p; + if (prob > 0.0f) { // Ensure no log(0) + entropy -= prob * logf(prob); + } + } + + // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above) + float normalized_entropy = entropy / max_entropy; + + // Map the normalized entropy to the desired temperature range using the power function + float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); + +#ifdef DEBUG + LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); + LLAMA_LOG_INFO("Entropy: %f\n", entropy); + LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); + LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); + LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); + LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); +#endif + + // Apply the dynamically calculated temperature scaling + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].logit /= dyn_temp; + } + + // Re-compute softmax probabilities after scaling logits with dynamic temperature + double max_l_double = candidates->data[0].logit; + double cum_sum_double = 0.0; + for (size_t i = 0; i < candidates->size; ++i) { + double p = exp(candidates->data[i].logit - max_l_double); + candidates->data[i].p = p; // Store the scaled probability + cum_sum_double += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities + } + +#ifdef DEBUG + // Print the updated top 25 probabilities after temperature scaling + LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); + for (size_t i = 0; i < 25 && i < candidates->size; ++i) { + LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f); + } +#endif + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) { + const int64_t t_start_sample_us = lm_ggml_time_us(); + + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].logit /= temp; + } + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_repetition_penalties_impl( + struct llama_sampling * smpl, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present) { + if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { + return; + } + + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // Create a frequency map to count occurrences of each token in last_tokens + std::unordered_map token_count; + for (size_t i = 0; i < penalty_last_n; ++i) { + token_count[last_tokens[i]]++; + } + + // Apply frequency and presence penalties to the candidates + for (size_t i = 0; i < candidates->size; ++i) { + const auto token_iter = token_count.find(candidates->data[i].id); + if (token_iter == token_count.end()) { + continue; + } + + const int count = token_iter->second; + + // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. + // This is common fix for this problem, which is to multiply by the penalty instead of dividing. + if (candidates->data[i].logit <= 0) { + candidates->data[i].logit *= penalty_repeat; + } else { + candidates->data[i].logit /= penalty_repeat; + } + + candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; + } + + candidates->sorted = false; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_apply_guidance_impl( + struct llama_sampling * smpl, + float * logits, + float * logits_guidance, + float scale) { + LM_GGML_ASSERT(smpl); + + const auto t_start_sample_us = lm_ggml_time_us(); + const auto n_vocab = smpl->n_vocab; + + llama_log_softmax(logits, n_vocab); + llama_log_softmax(logits_guidance, n_vocab); + + for (int i = 0; i < n_vocab; ++i) { + auto & l = logits[i]; + const auto & g = logits_guidance[i]; + + l = scale * (l - g) + g; + } + + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; +} + +llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { + LM_GGML_ASSERT(smpl); + + const int32_t n_vocab = float(smpl->n_vocab); + + int64_t t_start_sample_us = lm_ggml_time_us(); + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + // Estimate s_hat using the most probable m tokens + float s_hat = 0.0; + float sum_ti_bi = 0.0; + float sum_ti_sq = 0.0; + for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { + float t_i = logf(float(i + 2) / float(i + 1)); + float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); + sum_ti_bi += t_i * b_i; + sum_ti_sq += t_i * t_i; + } + s_hat = sum_ti_bi / sum_ti_sq; + + // Compute k from the estimated s_hat and target surprise value + float epsilon_hat = s_hat - 1; + float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat); + + // Sample the next word X using top-k sampling + llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1); + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + llama_token X = llama_sample_token_impl(smpl, candidates); + t_start_sample_us = lm_ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + return X; +} + +llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) { + int64_t t_start_sample_us; + t_start_sample_us = lm_ggml_time_us(); + + llama_sample_softmax_impl(smpl, candidates); + + // Truncate the words with surprise values greater than mu + candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return -log2f(candidate.p) > *mu; + })); + + if (candidates->size == 0) { + candidates->size = 1; + } + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } + + // Normalize the probabilities of the remaining words + llama_sample_softmax_impl(smpl, candidates); + + // Sample the next word X from the remaining words + llama_token X = llama_sample_token_impl(smpl, candidates); + t_start_sample_us = lm_ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + } + return X; +} + +llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + const int64_t t_start_sample_us = lm_ggml_time_us(); + + // Find max element + auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit < b.logit; + }); + + llama_token result = max_iter->id; + if (smpl) { + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + smpl->n_sample++; + } + return result; +} + +llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) { + LM_GGML_ASSERT(smpl); + + const int64_t t_start_sample_us = lm_ggml_time_us(); + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + std::vector probs; + probs.reserve(candidates->size); + for (size_t i = 0; i < candidates->size; ++i) { + probs.push_back(candidates->data[i].p); + } + + std::discrete_distribution<> dist(probs.begin(), probs.end()); + int idx = dist(rng); + + llama_token result = candidates->data[idx].id; + + smpl->t_sample_us += lm_ggml_time_us() - t_start_sample_us; + smpl->n_sample++; + + return result; +} + +llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng); +} diff --git a/cpp/llama-sampling.h b/cpp/llama-sampling.h new file mode 100644 index 0000000..f7f8e3e --- /dev/null +++ b/cpp/llama-sampling.h @@ -0,0 +1,56 @@ +#pragma once + +#include "llama-impl.h" + +struct llama_sampling { + llama_sampling(int32_t n_vocab) : n_vocab(n_vocab) {} + + std::mt19937 rng; + + int32_t n_vocab = 0; + + mutable int64_t t_sample_us = 0; + mutable int32_t n_sample = 0; + + void reset_timings() const { + t_sample_us = 0; + n_sample = 0; + } +}; + +// +// internal API +// + +void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed); + +void llama_sample_softmax_impl (struct llama_sampling * smpl, llama_token_data_array * candidates); +void llama_sample_top_k_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep); +void llama_sample_top_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep); +void llama_sample_min_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep); +void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep); +void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep); +void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val); +void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp); + +void llama_sample_repetition_penalties_impl( + struct llama_sampling * smpl, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present); + +void llama_sample_apply_guidance_impl( + struct llama_sampling * smpl, + float * logits, + float * logits_guidance, + float scale); + +llama_token llama_sample_token_mirostat_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu); +llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu); +llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates); +llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng); +llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates); + diff --git a/cpp/llama-vocab.cpp b/cpp/llama-vocab.cpp new file mode 100644 index 0000000..791af18 --- /dev/null +++ b/cpp/llama-vocab.cpp @@ -0,0 +1,1721 @@ +#include "llama-vocab.h" + +#include "unicode.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// +// helpers +// + +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { + std::string result; + for (size_t pos = 0; ; pos += search.length()) { + auto new_pos = s.find(search, pos); + if (new_pos == std::string::npos) { + result += s.substr(pos, s.size() - pos); + break; + } + result += s.substr(pos, new_pos - pos) + replace; + pos = new_pos; + } + s = std::move(result); +} + +LLAMA_ATTRIBUTE_FORMAT(1, 2) +static std::string format(const char * fmt, ...) { + va_list ap; + va_list ap2; + va_start(ap, fmt); + va_copy(ap2, ap); + int size = vsnprintf(NULL, 0, fmt, ap); + LM_GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT + std::vector buf(size + 1); + int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); + LM_GGML_ASSERT(size2 == size); + va_end(ap2); + va_end(ap); + return std::string(buf.data(), size); +} + +struct naive_trie { + naive_trie() : has_value(false), value(0) { + } + void insert(const char * key, size_t len, int32_t value = 0) { + if (len == 0) { + this->has_value = true; + this->value = value; + return; + } + char c = key[0]; + auto res = children.find(c); + if (res != children.end()) { + res->second.insert(key + 1, len - 1, value); + } else { + auto res = children.insert(std::make_pair(c, naive_trie())); + res.first->second.insert(key + 1, len - 1, value); + } + } + std::pair get_longest_prefix(const char * key, size_t len, size_t offset = 0) { + if (len == 0 || offset == len) { + return std::make_pair(key, offset); + } + char c = key[offset]; + auto res = children.find(c); + if (res != children.end()) { + return res->second.get_longest_prefix(key, len, offset + 1); + } else { + return std::make_pair(key, offset); + } + } + struct naive_trie * traverse(const char c) { + auto res = children.find(c); + if (res != children.end()) { + return &res->second; + } else { + return NULL; + } + } + std::map children; + bool has_value; + llama_token value; +}; + +// +// impl +// + +int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const { + LM_GGML_ASSERT(token_left.find(' ') == std::string::npos); + LM_GGML_ASSERT(token_left.find('\n') == std::string::npos); + LM_GGML_ASSERT(token_right.find(' ') == std::string::npos); + LM_GGML_ASSERT(token_right.find('\n') == std::string::npos); + + auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); + if (it == bpe_ranks.end()) { + return -1; + } + + return it->second; +} + +static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { + return vocab.type; +} + +static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; +} + +static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; +} + +static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; +} + +static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; +} + +static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; +} + +static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED; +} + +static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) { + LM_GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); + LM_GGML_ASSERT(llama_is_byte_token(vocab, id)); + const auto & token_data = vocab.id_to_token.at(id); + switch (llama_vocab_get_type(vocab)) { + case LLAMA_VOCAB_TYPE_SPM: + case LLAMA_VOCAB_TYPE_UGM: { + auto buf = token_data.text.substr(3, 2); + return strtol(buf.c_str(), NULL, 16); + } + case LLAMA_VOCAB_TYPE_BPE: { + LM_GGML_ABORT("fatal error"); + //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after LM_GGML_ASSERT? + } + case LLAMA_VOCAB_TYPE_WPM: { + LM_GGML_ABORT("fatal error"); + } + default: + LM_GGML_ABORT("fatal error"); + } +} + +static void llama_escape_whitespace(std::string & text) { + replace_all(text, " ", "\xe2\x96\x81"); +} + +static void llama_unescape_whitespace(std::string & word) { + replace_all(word, "\xe2\x96\x81", " "); +} + +struct llm_symbol { + using index = int; + index prev; + index next; + const char * text; + size_t n; +}; + +static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); + +// +// SPM tokenizer +// original implementation: +// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 +// + +struct llm_bigram_spm { + struct comparator { + bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { + return (l.score < r.score) || (l.score == r.score && l.left > r.left); + } + }; + using queue_storage = std::vector; + using queue = std::priority_queue; + llm_symbol::index left; + llm_symbol::index right; + float score; + size_t size; +}; + +struct llm_tokenizer_spm { + llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) { + // split string into utf8 chars + int index = 0; + size_t offs = 0; + while (offs < text.size()) { + llm_symbol sym; + size_t len = unicode_len_utf8(text[offs]); + sym.text = text.c_str() + offs; + sym.n = std::min(len, text.size() - offs); + offs += sym.n; + sym.prev = index - 1; + sym.next = offs == text.size() ? -1 : index + 1; + index++; + symbols.emplace_back(sym); + } + + // seed the work queue with all possible 2-character tokens. + for (size_t i = 1; i < symbols.size(); ++i) { + try_add_bigram(i - 1, i); + } + + // keep substituting the highest frequency pairs for as long as we can. + while (!work_queue.empty()) { + auto bigram = work_queue.top(); + work_queue.pop(); + + auto & left_sym = symbols[bigram.left]; + auto & right_sym = symbols[bigram.right]; + + // if one of the symbols already got merged, skip it. + if (left_sym.n == 0 || right_sym.n == 0 || + left_sym.n + right_sym.n != bigram.size) { + continue; + } + + // merge the right sym into the left one + left_sym.n += right_sym.n; + right_sym.n = 0; + + //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); + + // remove the right sym from the chain + left_sym.next = right_sym.next; + if (right_sym.next >= 0) { + symbols[right_sym.next].prev = bigram.left; + } + + // find more substitutions + try_add_bigram(left_sym.prev, bigram.left); + try_add_bigram(bigram.left, left_sym.next); + } + + for (int i = 0; i != -1; i = symbols[i].next) { + auto & symbol = symbols[i]; + resegment(symbol, output); + } + } + +private: + void resegment(llm_symbol & symbol, std::vector & output) { + auto text = std::string(symbol.text, symbol.n); + auto token = vocab.token_to_id.find(text); + + // Do we need to support is_unused? + if (token != vocab.token_to_id.end()) { + output.push_back((*token).second); + return; + } + + const auto p = rev_merge.find(text); + + if (p == rev_merge.end()) { + // output any symbols that did not form tokens as bytes. + output.reserve(output.size() + symbol.n); + for (int j = 0; j < (int)symbol.n; ++j) { + llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]); + output.push_back(token_id); + } + return; + } + + resegment(symbols[p->second.first], output); + resegment(symbols[p->second.second], output); + } + + void try_add_bigram(int left, int right) { + if (left == -1 || right == -1) { + return; + } + + const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); + auto token = vocab.token_to_id.find(text); + + if (token == vocab.token_to_id.end()) { + return; + } + + if (static_cast((*token).second) >= vocab.id_to_token.size()) { + return; + } + + const auto & tok_data = vocab.id_to_token[(*token).second]; + + llm_bigram_spm bigram; + bigram.left = left; + bigram.right = right; + bigram.score = tok_data.score; + bigram.size = text.size(); + + work_queue.push(bigram); + + // Do we need to support is_unused? + rev_merge[text] = std::make_pair(left, right); + } + + const llama_vocab & vocab; + + std::vector symbols; + llm_bigram_spm::queue work_queue; + + std::map> rev_merge; +}; + +// +// BPE tokenizer +// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] +// tried to simplify unicode stuff, so most likely does not work 100% correctly! +// + +// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused + +struct llm_bigram_bpe { + struct comparator { + bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { + return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); + } + }; + + using queue_storage = std::vector; + using queue = std::priority_queue; + llm_symbol::index left; + llm_symbol::index right; + std::string text; + int rank; + size_t size; +}; + +struct llm_tokenizer_bpe { + llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) { + LM_GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); + switch (vocab.type_pre) { + case LLAMA_VOCAB_PRE_TYPE_LLAMA3: + regex_exprs = { + // original regex from tokenizer.json + //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + + // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_DBRX: + case LLAMA_VOCAB_PRE_TYPE_SMAUG: + regex_exprs = { + // same as llama3 + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: + regex_exprs = { + "[\r\n]", + "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", + "\\s?[!-/:-~!-/:-~‘-‟ -。]+", + "\\s+$", + "[一-龥ࠀ-一가-퟿]+", + "\\p{N}+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: + regex_exprs = { + "[\r\n]", + "\\s?\\p{L}+", + "\\s?\\p{P}+", + "[一-龥ࠀ-一가-퟿]+", + "\\p{N}", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_FALCON: + regex_exprs = { + "[\\p{P}\\$\\+<=>\\^~\\|`]+", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + "[0-9][0-9][0-9]", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_STARCODER: + case LLAMA_VOCAB_PRE_TYPE_REFACT: + case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: + case LLAMA_VOCAB_PRE_TYPE_SMOLLM: + case LLAMA_VOCAB_PRE_TYPE_CODESHELL: + regex_exprs = { + "\\p{N}", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_GPT2: + case LLAMA_VOCAB_PRE_TYPE_MPT: + case LLAMA_VOCAB_PRE_TYPE_OLMO: + case LLAMA_VOCAB_PRE_TYPE_JAIS: + regex_exprs = { + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_STABLELM2: + case LLAMA_VOCAB_PRE_TYPE_QWEN2: + regex_exprs = { + // original regex from tokenizer.json + // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_PORO: + regex_exprs = { + " ?[^(\\s|.,!?…。,、।۔،)]+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_CHATGLM4: + regex_exprs = { + "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_VIKING: + regex_exprs = { + " ?[^(\\s|.,!?…。,、।۔،)]+", + "\\p{N}", + }; + break; + case LLAMA_VOCAB_PRE_TYPE_TEKKEN: + // original regex from tokenizer.json + // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" + regex_exprs = { + "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", + }; + break; + default: + // default regex for BPE tokenization pre-processing + regex_exprs = { + "[\\p{P}\\$\\+<=>\\^~\\|]+", + "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", + "\\p{N}+", + "[0-9][0-9][0-9]", + }; + break; + } + } + + void append(const llama_vocab::id token_id, std::vector & output) const { + output.push_back(token_id); + } + + bool append_bos(std::vector & output) const { + if (vocab.tokenizer_add_bos) { + LM_GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + return true; + } + return false; + } + + bool append_eos(std::vector & output) const { + if (vocab.tokenizer_add_eos) { + LM_GGML_ASSERT(vocab.special_eos_id != -1); + output.push_back(vocab.special_eos_id); + return true; + } + return false; + } + + void check_double_bos_eos(const std::vector & output) const { + if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { + LLAMA_LOG_WARN( + "%s: Added a BOS token to the prompt as specified by the model but the prompt " + "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " + "Are you sure this is what you want?\n", __FUNCTION__); + } + if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) { + LLAMA_LOG_WARN( + "%s: Added a EOS token to the prompt as specified by the model but the prompt " + "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " + "Are you sure this is what you want?\n", __FUNCTION__); + } + } + + void tokenize(const std::string & text, std::vector & output) { + int final_prev_index = -1; + + const auto word_collection = unicode_regex_split(text, regex_exprs); + + symbols_final.clear(); + + for (auto & word : word_collection) { + work_queue = llm_bigram_bpe::queue(); + symbols.clear(); + + int index = 0; + size_t offset = 0; + + if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { + symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); + offset = word.size(); + } + + while (offset < word.size()) { + llm_symbol sym; + size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset])); + sym.text = word.c_str() + offset; + sym.n = char_len; + offset += sym.n; + sym.prev = index - 1; + sym.next = offset == word.size() ? -1 : index + 1; + index++; + symbols.emplace_back(sym); + } + for (size_t i = 1; i < symbols.size(); ++i) { + add_new_bigram(i - 1, i); + } + + // build token(s) + while (!work_queue.empty()) { + auto bigram = work_queue.top(); + work_queue.pop(); + + auto & left_symbol = symbols[bigram.left]; + auto & right_symbol = symbols[bigram.right]; + + if (left_symbol.n == 0 || right_symbol.n == 0) { + continue; + } + std::string left_token = std::string(left_symbol.text, left_symbol.n); + std::string right_token = std::string(right_symbol.text, right_symbol.n); + if (left_token + right_token != bigram.text) { + continue; // Skip this bigram if it's outdated + } + + // merge the right sym into the left one + left_symbol.n += right_symbol.n; + right_symbol.n = 0; + + // remove the right sym from the chain + left_symbol.next = right_symbol.next; + if (right_symbol.next >= 0) { + symbols[right_symbol.next].prev = bigram.left; + } + + add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol + add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol + } + + // add the finished tokens to the final list keeping correct order for next and prev + for (auto & sym : symbols) { + if (sym.n > 0) { + sym.prev = final_prev_index; + sym.next = -1; + if (final_prev_index != -1) { + symbols_final[final_prev_index].next = symbols_final.size(); + } + symbols_final.emplace_back(sym); + final_prev_index = symbols_final.size() - 1; + } + } + } + + symbols = symbols_final; + + if (!symbols.empty()) { + for (int i = 0; i != -1; i = symbols[i].next) { + auto & symbol = symbols[i]; + if (symbol.n == 0) { + continue; + } + + const std::string str = std::string(symbol.text, symbol.n); + const auto token = vocab.token_to_id.find(str); + + if (token == vocab.token_to_id.end()) { + for (auto j = str.begin(); j != str.end(); ++j) { + std::string byte_str(1, *j); + auto token_multibyte = vocab.token_to_id.find(byte_str); + if (token_multibyte != vocab.token_to_id.end()) { + output.push_back(token_multibyte->second); + } + } + } else { + output.push_back((*token).second); + } + } + } + } + +private: + void add_new_bigram(int left, int right) { + if (left == -1 || right == -1) { + return; + } + + std::string left_token = std::string(symbols[left].text, symbols[left].n); + std::string right_token = std::string(symbols[right].text, symbols[right].n); + + int rank_found = -1; + + rank_found = vocab.find_bpe_rank(left_token, right_token); + + if (rank_found < 0) { + return; + } + + llm_bigram_bpe bigram; + + bigram.left = left; + bigram.right = right; + bigram.text = left_token + right_token; + bigram.size = left_token.size() + right_token.size(); + bigram.rank = rank_found; + + work_queue.push(bigram); + } + + const llama_vocab & vocab; + + std::vector regex_exprs; + + std::vector symbols; + std::vector symbols_final; + + llm_bigram_bpe::queue work_queue; +}; + +// +// WPM tokenizer +// + +struct llm_tokenizer_wpm { + llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) const { + const auto & token_map = vocab.token_to_id; + + // normalize and split by whitespace + std::vector words = preprocess(text); + + // bos token prepended already + + // find the longest tokens that form the words + for (const std::string & word : words) { + // skip empty words + if (word.size() == 0) { + continue; + } + + // prepend phantom space + const std::string word1 = "\xe2\x96\x81" + word; + const int n = word1.size(); + + const size_t current_tokens = output.size(); + + // we're at the start of a new word + // move through character position in word + for (int i = 0; i < n; ++i) { + // loop through possible match length + bool match = false; + for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) { + auto it = token_map.find(word1.substr(i, j - i)); + if (it != token_map.end()) { + output.push_back(it->second); + match = true; + i = j - 1; + break; + } + } + + if (!match) { // discard all + output.resize(current_tokens); + break; // and discard next tokens + } + } + + // we didn't find any matches for this word + if (current_tokens == output.size()) { + output.push_back(vocab.special_unk_id); + } + } + } + + // TODO: reduce string copies by using cpts_offs array + std::vector preprocess(const std::string & text) const { + const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); + std::vector words(1, ""); + + for (const uint32_t cpt : cpts_nfd) { + const auto flags = unicode_cpt_flags(cpt); + + if (flags.is_whitespace) { + if (words.back().size()) { // finish previous word if any + words.emplace_back(); + } + continue; + } + + assert (!flags.is_separator); + if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { + continue; + } + + const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); + if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { + if (words.back().size()) { // finish previous word if any + words.emplace_back(); + } + words.back() = s; // single char word + words.emplace_back(); // start a new word + } else { + words.back() += s; // append char to word + } + } + + if (!words.back().size()) { + words.pop_back(); + } + + return words; + } + + static bool is_chinese_char(uint32_t cpt) { + return + (cpt >= 0x04E00 && cpt <= 0x09FFF) || + (cpt >= 0x03400 && cpt <= 0x04DBF) || + (cpt >= 0x20000 && cpt <= 0x2A6DF) || + (cpt >= 0x2A700 && cpt <= 0x2B73F) || + (cpt >= 0x2B740 && cpt <= 0x2B81F) || + (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 + (cpt >= 0x0F900 && cpt <= 0x0FAFF) || + (cpt >= 0x2F800 && cpt <= 0x2FA1F); + //(cpt >= 0x3000 && cpt <= 0x303F) || + //(cpt >= 0xFF00 && cpt <= 0xFFEF); + } + + const llama_vocab & vocab; +}; + +// +// UGM tokenizer +// + +struct llm_tokenizer_ugm { + llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) { + if (vocab.precompiled_charsmap.size() > 0) { + size_t charsmap_offset = 0; + + // First four bytes of precompiled_charsmap contains length of binary + // blob containing XOR-compressed compact double array (XCDA) entries + uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0]; + charsmap_offset += sizeof(xcda_blob_size); + if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) { + throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); + } + + // Next xcda_blob_size bytes contain entries of XOR-compressed compact + // double array (XCDA). Each entry is bit-packed into a 32-bit integer. + xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset]; + xcda_array_size = xcda_blob_size / sizeof(uint32_t); + charsmap_offset += xcda_blob_size; + + // Remaining bytes of precompiled charsmap contain null-terminated + // replacement strings for prefixes matched by the XCDA. + prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset]; + prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset; + } + + for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { + const auto &token_data = vocab.id_to_token[id]; + + if (llama_is_normal_token(vocab, id)) { + min_score = std::min(min_score, token_data.score); + max_score = std::max(max_score, token_data.score); + } + + if (llama_is_normal_token(vocab, id) || + llama_is_user_defined_token(vocab, id) || + llama_is_unused_token(vocab, id)) { + token_matcher.insert(token_data.text.data(), token_data.text.size(), id); + } + + if (llama_is_user_defined_token(vocab, id)) { + user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size()); + } + } + + unknown_token_score = min_score - unknown_token_score_penalty; + } + + /* This implementation is based on SentencePiece optimized Viterbi algorithm for + * unigram language models. The general idea is to: + * - move along the input sequence in steps of one UTF code point, + * - at each step find all possible tokenizations of the prefix by + * traversing the tokens trie, + * - for each tokenization store the best one so far (by higher score) + * - use the position in sequence after given token as an index to store + * results + * - if there was no valid tokenization of the current UTF code point + * then use unknown token with additional score penalty + * After processing the whole sequence we backtrack from the end to get + * the best tokenization. + */ + void tokenize(const std::string & text, std::vector & output) { + // normalize the input first + std::string normalized; + normalize(text, &normalized); + size_t input_len = normalized.size(); + if (input_len == 0) { + return; + } + + // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores + std::vector tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX}); + // at the beginning tokenization score is zero + tokenization_results[0] = { vocab.special_unk_id, 0, 0 }; + + for (size_t input_offset = 0; input_offset < input_len;) { + size_t prefix_offset = input_offset; + // calculate how many code units are in the currently processed UTF code point + size_t n_utf8_code_units = std::min(unicode_len_utf8(normalized[input_offset]), input_len - input_offset); + + // traverse the token matcher trie to find a matching token + bool single_codepoint_token_found = false; + const struct best_tokenization & current_best = tokenization_results[input_offset]; + struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); + + while (prefix_offset <= input_len && node != NULL) { + // check if we found valid token in prefix + if (node->has_value) { + // check if it corresponds to the whole UTF code point + if (prefix_offset - input_offset == n_utf8_code_units) { + single_codepoint_token_found = true; + } + llama_token token_id = node->value; + const auto & token_data = vocab.id_to_token[token_id]; + + // we set the user-defined token scores to 0 to make them more likely to be selected + // (normal token scores are log probabilities, so they are negative) + // score type is double here to make tokenization results exactly + // the same as in the HF tokenizer using SentencePiece + const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score; + const double challenger_score = current_best.score_sum + token_score; + struct best_tokenization & current_champ = tokenization_results[prefix_offset]; + if (challenger_score > current_champ.score_sum) { + struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score }; + current_champ = challenger; + } + } + node = node->traverse(normalized[prefix_offset++]); + } + + // if we didn't find a valid token corresponding to the whole UTF code point + // then use unknown token as the tokenization of this UTF code point + if (!single_codepoint_token_found) { + const double challenger_score = current_best.score_sum + unknown_token_score; + prefix_offset = input_offset + n_utf8_code_units; + struct best_tokenization & current_champ = tokenization_results[prefix_offset]; + if (challenger_score > current_champ.score_sum) { + struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score }; + current_champ = challenger; + } + } + + // move to the next UTF code point + input_offset += n_utf8_code_units; + } + + // now backtrack from the end to gather token ids of the best tokenization + // merge sequences of consecutive unknown tokens into single unknown tokens + bool is_prev_unknown = false; + for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) { + bool is_unknown = tokenization.token_id == vocab.special_unk_id; + if (!(is_prev_unknown && is_unknown)) { + output.push_back(tokenization.token_id); + } + if (tokenization.input_offset == 0) { + break; + } + is_prev_unknown = is_unknown; + } + + // reverse the output since we added tokens starting from the end of the input + std::reverse(output.begin(), output.end()); + } + +private: + const llama_vocab & vocab; + + // helper structure for returning normalization results + struct normalization_result { + const char * normalized; + size_t normalized_len; + size_t consumed_input; + }; + + void normalize(const std::string& input, std::string * normalized) { + normalized->clear(); + normalized->reserve(input.size() * 3); + + const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " "; + + bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; + bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; + bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces; + + bool is_space_prepended = false; + bool processing_non_ws = false; + + size_t input_len = input.size(); + + for (size_t input_offset = 0; input_offset < input_len; ) { + auto norm_res = normalize_prefix(input, input_offset); + for (size_t i = 0; i < norm_res.normalized_len; i++) { + char c = norm_res.normalized[i]; + if (c != ' ') { + if (!processing_non_ws) { + processing_non_ws = true; + if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) { + normalized->append(space); + is_space_prepended = true; + } + } + normalized->push_back(c); + } else { + if (processing_non_ws) { + processing_non_ws = false; + } + if (!shall_merge_spaces) { + normalized->append(space); + } + } + } + + input_offset += norm_res.consumed_input; + } + + if (shall_append_space) { + normalized->append(space); + } + } + + /* + * This structure is a view wrapper for XOR-compressed double array (XCDA) + * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries. + * Eeach bit-packed entry contains: + * - BASE array value in bits 10-30 + * - LCHECK array value in bits 0-7 + * - LEAF array value in bit 9 + * Entries containing indexes of replacement sequences have set bit 31 + */ + struct xcda_array_view { + public: + xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) { + } + uint32_t get_base(size_t index) { + uint32_t packed_node = get_node(index); + return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6); + } + uint32_t get_lcheck(size_t index) { + uint32_t packed_node = get_node(index); + return packed_node & ((1U << 31) | 0xff); + } + bool get_leaf(size_t index) { + uint32_t packed_node = get_node(index); + return (packed_node >> 8) & 1; + } + uint32_t get_value(size_t index) { + uint32_t packed_node = get_node(index); + return packed_node & ((1U << 31) - 1); + } + private: + uint32_t get_node(size_t index) { + if (index > xcda_array_size) { + throw std::runtime_error("Index out of array bounds in XCDA array!"); + } + return xcda_array[index]; + } + const uint32_t * xcda_array; + size_t xcda_array_size; + }; + + struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { + if (input_offset == input.size()) { + return { &input[input_offset], 0, 0 }; + } + + // if input prefix matches some user-defined token return this token as normalization result + auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); + if (user_defined_token_match.second > 0) { + return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; + } + + size_t longest_prefix_length = 0; + size_t longest_prefix_offset = 0; + + if (xcda_array_size > 0) { + struct xcda_array_view xcda_view(xcda_array, xcda_array_size); + + // Find the longest normalized sequence matching the input prefix by walking + // the XOR-compressed compact double array (XCDA) starting from the root node + // We find the index of the next node by calculating BASE[s] ^ c where s is + // the index of the previous node and c is a numerical character value + uint32_t node_index = 0; + // get BASE of the root node + node_index = xcda_view.get_base(node_index); + for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) { + unsigned char c = input[prefix_offset]; + if (c == 0) { + break; + } + node_index ^= c; + // if value of LCHECK is not c it means that this is not a child of + // the previous node, so we stop matching + if (xcda_view.get_lcheck(node_index) != c) { + break; + } + bool is_leaf = xcda_view.get_leaf(node_index); + // get BASE of the current node + node_index ^= xcda_view.get_base(node_index); + // if LEAF of the current node is true, it means that its BASE points to the node + // containing index of replacement sequence for currently matched input prefix + if (is_leaf) + { + longest_prefix_length = prefix_offset - input_offset + 1; + // get index of replacement sequence for currently matched input prefix + longest_prefix_offset = xcda_view.get_value(node_index); + } + } + } + + if (longest_prefix_length > 0) { + // we have a match, so return the replacement sequence + if (longest_prefix_offset >= prefix_replacements_size) { + throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); + } + const char * prefix_replacement = &prefix_replacements[longest_prefix_offset]; + return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; + } else { + // check if the input prefix contains a valid sequence of UTF-8 code units + try { + // if yes, return this sequence unmodified + size_t prefix_offset = input_offset; + unicode_cpt_from_utf8(input, prefix_offset); + return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; + } catch (std::invalid_argument & /*ex*/) { + // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER + return { "\xEF\xBF\xBD", 3, 1 }; + } + } + } + + // escaped space symbol - U+2581 (Lower One Eighth Block) + const std::string escaped_space = "\xE2\x96\x81"; + + const char * prefix_replacements = NULL; + size_t prefix_replacements_size = 0; + + const uint32_t * xcda_array = NULL; + size_t xcda_array_size = 0; + + struct naive_trie user_defined_token_matcher; + + // this structure stores the best tokenization so far at input_offset + struct best_tokenization { + llama_token token_id; + size_t input_offset; + float score_sum; + }; + + float min_score = FLT_MAX; + float max_score = -FLT_MAX; + + float unknown_token_score_penalty = 10.0; + float unknown_token_score; + + struct naive_trie token_matcher; +}; + +// +// (de-) tokenize +// + +typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { + FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, + FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT +} FRAGMENT_BUFFER_VARIANT_TYPE; + +struct fragment_buffer_variant { + fragment_buffer_variant(llama_vocab::id _token) + : + type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), + token(_token), + raw_text(_dummy), + offset(0), + length(0) {} + + fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) + : + type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), + token((llama_vocab::id) - 1), + raw_text(_raw_text), + offset(_offset), + length(_length){ + LM_GGML_ASSERT(_offset >= 0); + LM_GGML_ASSERT(_length >= 1); + LM_GGML_ASSERT(offset + length <= raw_text.length()); + } + + const FRAGMENT_BUFFER_VARIANT_TYPE type; + const llama_vocab::id token; + const std::string _dummy; + const std::string & raw_text; + const uint64_t offset; + const uint64_t length; +}; + +// #define PRETOKENIZERDEBUG + +static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer, bool parse_special) { + // for each special token + for (const llama_vocab::id special_id : vocab.cache_special_tokens) { + const auto & data = vocab.id_to_token[special_id]; + const auto & special_token = data.text; + + if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { + // Ignore control and unknown tokens when parse_special == false + continue; + // User-defined tokens are still pre-tokenized before everything else + // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726 + // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.) + } + + // for each text fragment + std::forward_list::iterator it = buffer.begin(); + while (it != buffer.end()) { + auto & fragment = (*it); + + // if a fragment is text ( not yet processed ) + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto & raw_text = fragment.raw_text; + + auto raw_text_base_offset = fragment.offset; + auto raw_text_base_length = fragment.length; + + // loop over the text + while (true) { + // find the first occurrence of a given special token in this fragment + // passing offset argument only limit the "search area" but match coordinates + // are still relative to the source full raw_text + auto match = raw_text.find(special_token, raw_text_base_offset); + + // no occurrences found, stop processing this fragment for a given special token + if (match == std::string::npos) break; + + // check if match is within bounds of offset <-> length + if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); +#endif + auto source = std::distance(buffer.begin(), it); + + // if match is further than base offset + // then we have some text to the left of it + if (match > raw_text_base_offset) { + // left + const int64_t left_reminder_offset = raw_text_base_offset + 0; + int64_t left_reminder_length = match - raw_text_base_offset; + + if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { + while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { + left_reminder_length--; + } + } + + if (left_reminder_length > 0) { + buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); + it++; + } + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); +#endif + } + + // special token + buffer.emplace_after(it, special_id); + it++; + + // right + if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { + int64_t right_reminder_offset = match + special_token.length(); + int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); + + if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { + while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { + right_reminder_offset++; + right_reminder_length--; + } + } + + if (right_reminder_length > 0) { + buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); + it++; + } + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); +#endif + + if (source == 0) { + buffer.erase_after(buffer.before_begin()); + } else { + buffer.erase_after(std::next(buffer.begin(), (source-1))); + } + + // repeat for the right side + raw_text_base_offset = right_reminder_offset; + raw_text_base_length = right_reminder_length; + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); +#endif + } else { + if (source == 0) { + buffer.erase_after(buffer.before_begin()); + } else { + buffer.erase_after(std::next(buffer.begin(), (source-1))); + } + break; + } + } + } + it++; + } + } +} + +std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { + std::vector output; + std::forward_list fragment_buffer; + + if (!raw_text.empty()) { + fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); + tokenizer_st_partition(vocab, fragment_buffer, parse_special); + } + + switch (vocab.type) { + case LLAMA_VOCAB_TYPE_SPM: + { + // OG tokenizer behavior: + // + // tokenizer.encode('', add_special_tokens=True) returns [1] + // tokenizer.encode('', add_special_tokens=False) returns [] + + bool is_prev_special = true; // prefix with space if first token + + if (add_special && vocab.tokenizer_add_bos) { + LM_GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + is_prev_special = true; + } + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + + // prefix with space if previous is special + if (vocab.tokenizer_add_space_prefix && is_prev_special) { + raw_text = " " + raw_text; + } + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + llm_tokenizer_spm tokenizer(vocab); + llama_escape_whitespace(raw_text); + tokenizer.tokenize(raw_text, output); + is_prev_special = false; + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + is_prev_special = true; + } + } + + if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { + LLAMA_LOG_WARN( + "%s: Added a BOS token to the prompt as specified by the model but the prompt " + "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " + "Are you sure this is what you want?\n", __FUNCTION__); + } + + if (add_special && vocab.tokenizer_add_eos) { + LM_GGML_ASSERT(vocab.special_eos_id != -1); + output.push_back(vocab.special_eos_id); + } + } break; + case LLAMA_VOCAB_TYPE_BPE: + { + llm_tokenizer_bpe tokenizer(vocab); + + if (add_special) { + tokenizer.append_bos(output); + } + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + tokenizer.append(fragment.token, output); + } + } + + if (add_special) { + tokenizer.append_eos(output); + tokenizer.check_double_bos_eos(output); + } + } break; + case LLAMA_VOCAB_TYPE_WPM: + { + if (add_special) { + LM_GGML_ASSERT(vocab.special_cls_id != -1); + output.push_back(vocab.special_cls_id); + } + + llm_tokenizer_wpm tokenizer(vocab); + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + + if (add_special) { + LM_GGML_ASSERT(vocab.special_sep_id != -1); + output.push_back(vocab.special_sep_id); + } + } break; + case LLAMA_VOCAB_TYPE_UGM: + { + llm_tokenizer_ugm tokenizer(vocab); + + if (add_special && vocab.tokenizer_add_bos != 0) { + LM_GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + } + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + + if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) { + LLAMA_LOG_WARN( + "%s: Added a BOS token to the prompt as specified by the model but the prompt " + "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " + "Are you sure this is what you want?\n", __FUNCTION__); + } + + if (add_special && vocab.tokenizer_add_eos == 1) { + LM_GGML_ASSERT(vocab.special_eos_id != -1); + output.push_back(vocab.special_eos_id); + } + } break; + case LLAMA_VOCAB_TYPE_NONE: + LM_GGML_ABORT("fatal error"); + } + + return output; +} + +llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) { + LM_GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); + static const char * hex = "0123456789ABCDEF"; + switch (llama_vocab_get_type(vocab)) { + case LLAMA_VOCAB_TYPE_SPM: + case LLAMA_VOCAB_TYPE_UGM: { + const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; + auto token = vocab.token_to_id.find(buf); + if (token != vocab.token_to_id.end()) { + return (*token).second; + } + // Try to fall back to just the byte as a string + const char buf2[2] = { (char)ch, 0 }; + return vocab.token_to_id.at(buf2); + } + case LLAMA_VOCAB_TYPE_WPM: + case LLAMA_VOCAB_TYPE_BPE: { + return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); + } + default: + LM_GGML_ABORT("fatal error"); + } +} + +const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[token].text.c_str(); +} + +float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[token].score; +} + +llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) { + LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[token].attr; +} + +bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) { + return token != -1 && ( + token == llama_token_eos_impl(vocab) || + token == llama_token_eot_impl(vocab) + ); +} + +bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) { + return llama_is_control_token(vocab, token); +} + +llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { + return vocab.special_bos_id; +} + +llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { + return vocab.special_eos_id; +} + +llama_token llama_token_cls_impl(const struct llama_vocab & vocab) { + return vocab.special_cls_id; +} + +llama_token llama_token_sep_impl(const struct llama_vocab & vocab) { + return vocab.special_sep_id; +} + +llama_token llama_token_nl_impl(const struct llama_vocab & vocab) { + return vocab.linefeed_id; +} + +llama_token llama_token_pad_impl(const struct llama_vocab & vocab) { + return vocab.special_pad_id; +} + +int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) { + return vocab.tokenizer_add_bos; +} + +int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) { + return vocab.tokenizer_add_eos; +} + +llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) { + return vocab.special_prefix_id; +} + +llama_token llama_token_middle_impl(const struct llama_vocab & vocab) { + return vocab.special_middle_id; +} + +llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) { + return vocab.special_suffix_id; +} + +llama_token llama_token_eot_impl(const struct llama_vocab & vocab) { + return vocab.special_eot_id; +} + +int32_t llama_tokenize_impl( + const struct llama_vocab & vocab, + const char * text, + int32_t text_len, + llama_token * tokens, + int32_t n_tokens_max, + bool add_special, + bool parse_special) { + auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special); + if (n_tokens_max < (int) res.size()) { + // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); + return -((int) res.size()); + } + + for (size_t i = 0; i < res.size(); i++) { + tokens[i] = res[i]; + } + + return res.size(); +} + +static std::string llama_decode_text(const std::string & text) { + std::string decoded_text; + + const auto cpts = unicode_cpts_from_utf8(text); + for (const auto cpt : cpts) { + const auto utf8 = unicode_cpt_to_utf8(cpt); + try { + decoded_text += unicode_utf8_to_byte(utf8); + } catch (const std::out_of_range & /*e*/) { + decoded_text += "[UNK_BYTE_0x"; + for (const auto c : utf8) { + decoded_text += format("%02x", (uint8_t) c); + } + decoded_text += text + "]"; + } + } + + return decoded_text; +} + +// does not write null-terminator to buf +int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) { + // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 + static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL; + const llama_token_attr attr = llama_token_get_attr_impl(vocab, token); + if (!special && (attr & attr_special)) { + return 0; + } + + // copy piece chars to output text buffer + // skip up to 'lstrip' leading spaces before copying + auto _try_copy = [=] (const char * token, size_t size) -> int32_t { + for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) { + token++; + size--; + } + if (length < (int32_t)size) { + return -(int32_t) size; + } + memcpy(buf, token, size); + return (int32_t) size; + }; + + // if we have a cache - use it + { + const auto & cache = vocab.cache_token_to_piece; + + if (!cache.empty()) { + const auto & result = cache.at(token); + return _try_copy(result.data(), result.size()); + } + } + + if (0 <= token && token < (int32_t) vocab.id_to_token.size()) { + const std::string & token_text = vocab.id_to_token[token].text; + switch (llama_vocab_get_type(vocab)) { + case LLAMA_VOCAB_TYPE_WPM: + case LLAMA_VOCAB_TYPE_SPM: + case LLAMA_VOCAB_TYPE_UGM: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { + return _try_copy(token_text.data(), token_text.size()); + } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { + std::string result = token_text; + llama_unescape_whitespace(result); + return _try_copy(result.data(), result.size()); + } else if (attr & LLAMA_TOKEN_ATTR_BYTE) { + char byte = (char) llama_token_to_byte(vocab, token); + return _try_copy((char*) &byte, 1); + } + break; + } + case LLAMA_VOCAB_TYPE_BPE: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { + return _try_copy(token_text.data(), token_text.size()); + } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { + std::string result = llama_decode_text(token_text); + return _try_copy(result.data(), result.size()); + } + break; + } + default: + LM_GGML_ABORT("fatal error"); + } + } + + return 0; +} + +int32_t llama_detokenize_impl( + const struct llama_vocab & vocab, + const llama_token * tokens, + int32_t n_tokens, + char * text, + int32_t text_len_max, + bool remove_special, + bool unparse_special) { + int32_t avail = text_len_max; + int32_t total = 0; + + // remove the leading space + bool remove_space = vocab.tokenizer_add_space_prefix; + + if (remove_special && vocab.tokenizer_add_bos) { + if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) { + remove_space = false; + n_tokens--; + tokens++; + } + } + + if (remove_special && vocab.tokenizer_add_eos) { + if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) { + n_tokens--; + } + } + + for (int32_t i = 0; i < n_tokens; ++i) { + LM_GGML_ASSERT(avail >= 0); + int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special); + remove_space = false; + if (n_chars < 0) { + avail = 0; + total -= n_chars; + } else if (n_chars > 0) { + avail -= n_chars; + text += n_chars; + total += n_chars; + } + } + + if (total > text_len_max) { + return -total; + } + + if (vocab.tokenizer_clean_spaces) { + text -= total; // restart text + + // first pass: characters ?!., //TODO: where do these characters come from? + const int32_t total1 = total; + total = total ? 1 : 0; + for (int32_t i = 1; i < total1; ++i) { + const char x = text[i]; + if (text[i - 1] == ' ') { + if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ," + total--; // remove space + } + } + text[total++] = x; + } + + // second pass: strip single apostrophe between spaces + const int32_t total2 = total; + total = total ? 1 : 0; + for (int32_t i = 1; i < total2; ++i) { + const char x = text[i]; + if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' " + total--; // remove prev space + text[++i] = '\0'; // remove next space + } + text[total++] = x; + } + + // third pass: apostrophe contractions //NOTE: this makes sense? + const int32_t total3 = total; + total = total ? 1 : 0; + for (int32_t i = 1; i < total3; ++i) { + const char x = text[i]; + if (text[i - 1] == ' ') { + if (x == '\'' && i + 1 < total3) { + const char x1 = text[i + 1]; + if (x1 == 't' || x1 == 'd') { // " 't", " 'd" + //total--; // remove space + } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm" + total--; // remove space + } else if (i + 2 < total3) { + const char x2 = text[i + 2]; + if ((x1 == 'l' && x2 == 'l')) { // " 'll" + //total--; // remove space + } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've" + total--; // remove space + } else { + //total--; // remove space + } + } else { + //total--; // remove space + } + } + } + text[total++] = x; + } + } + + return total <= text_len_max ? total : -total; +} diff --git a/cpp/llama-vocab.h b/cpp/llama-vocab.h new file mode 100644 index 0000000..30b565d --- /dev/null +++ b/cpp/llama-vocab.h @@ -0,0 +1,130 @@ +#pragma once + +#include "llama-impl.h" + +#include +#include +#include +#include + +struct llama_vocab { + using id = llama_token; + using token = std::string; + using tattr = llama_token_attr; + + struct token_data { + token text; + float score; + tattr attr; + }; + + enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; + enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + + int max_token_len = 0; // used for optimizing longest token search + + std::unordered_map token_to_id; + std::vector id_to_token; + + std::vector cache_special_tokens; + std::vector cache_token_to_piece; // llama_token_to_piece(special = true); + + std::map, int> bpe_ranks; + + // default LLaMA special tokens + id special_bos_id = 1; + id special_eos_id = 2; + id special_unk_id = 0; + id special_sep_id = -1; + id special_pad_id = -1; + id special_cls_id = -1; + id special_mask_id = -1; + + id linefeed_id = 13; + id special_prefix_id = -1; + id special_suffix_id = -1; + id special_middle_id = -1; + id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token + + // tokenizer flags + bool tokenizer_add_space_prefix = false; + bool tokenizer_add_bos = false; + bool tokenizer_add_eos = false; + bool tokenizer_ignore_merges = false; + bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces + bool tokenizer_remove_extra_whitespaces = false; + bool tokenizer_escape_whitespaces = true; + bool tokenizer_treat_whitespace_as_suffix = false; + + std::vector precompiled_charsmap; + + int find_bpe_rank(const std::string & token_left, const std::string & token_right) const; +}; + +const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx); + +// +// internal API +// + +// TODO: rename to llama_tokenize_impl +// TODO: This should probably be in llama.h +std::vector llama_tokenize_internal( + const llama_vocab & vocab, + std::string raw_text, + bool add_special, + bool parse_special = false); + +llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch); + +const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token); + +float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token); + +llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token); + +bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token); + +bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token); + +llama_token llama_token_bos_impl(const struct llama_vocab & vocab); +llama_token llama_token_eos_impl(const struct llama_vocab & vocab); +llama_token llama_token_cls_impl(const struct llama_vocab & vocab); +llama_token llama_token_sep_impl(const struct llama_vocab & vocab); +llama_token llama_token_nl_impl (const struct llama_vocab & vocab); +llama_token llama_token_pad_impl(const struct llama_vocab & vocab); + +int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab); +int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab); + +llama_token llama_token_prefix_impl(const struct llama_vocab & vocab); +llama_token llama_token_middle_impl(const struct llama_vocab & vocab); +llama_token llama_token_suffix_impl(const struct llama_vocab & vocab); +llama_token llama_token_eot_impl (const struct llama_vocab & vocab); + +int32_t llama_tokenize_impl( + const struct llama_vocab & vocab, + const char * text, + int32_t text_len, + llama_token * tokens, + int32_t n_tokens_max, + bool add_special, + bool parse_special); + +// does not write null-terminator to buf +int32_t llama_token_to_piece_impl( + const struct llama_vocab & vocab, + llama_token token, + char * buf, + int32_t length, + int32_t lstrip, + bool special); + +int32_t llama_detokenize_impl( + const struct llama_vocab & vocab, + const llama_token * tokens, + int32_t n_tokens, + char * text, + int32_t text_len_max, + bool remove_special, + bool unparse_special); diff --git a/cpp/llama.cpp b/cpp/llama.cpp index fce2269..d95f48c 100644 --- a/cpp/llama.cpp +++ b/cpp/llama.cpp @@ -1,5 +1,7 @@ -#define LLAMA_API_INTERNAL -#include "llama.h" +#include "llama-impl.h" +#include "llama-vocab.h" +#include "llama-grammar.h" +#include "llama-sampling.h" #include "unicode.h" @@ -79,7 +81,6 @@ #include #include #include -#include #include #include #include @@ -89,9 +90,6 @@ #include #include #include -#include -#include -#include #include #include #include @@ -102,33 +100,11 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -#ifdef __GNUC__ -#ifdef __MINGW32__ -#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) -#else -#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) -#endif -#else -#define LLAMA_ATTRIBUTE_FORMAT(...) -#endif - // bump if necessary #define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_LAYERS 512 #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 -// -// logging -// - -LLAMA_ATTRIBUTE_FORMAT(2, 3) -static void llama_log_internal (lm_ggml_log_level level, const char * format, ...); -static void llama_log_callback_default(lm_ggml_log_level level, const char * text, void * user_data); - -#define LLAMA_LOG_INFO(...) llama_log_internal(LM_GGML_LOG_LEVEL_INFO , __VA_ARGS__) -#define LLAMA_LOG_WARN(...) llama_log_internal(LM_GGML_LOG_LEVEL_WARN , __VA_ARGS__) -#define LLAMA_LOG_ERROR(...) llama_log_internal(LM_GGML_LOG_LEVEL_ERROR, __VA_ARGS__) - #if defined(__ANDROID__) && defined(RNLLAMA_ANDROID_ENABLE_LOGGING) #include #define LLAMA_ANDROID_TAG "RNLLAMA_LOG_ANDROID" @@ -144,10 +120,17 @@ static void llama_log_callback_default(lm_ggml_log_level level, const char * tex // helpers // -static size_t utf8_len(char src) { - const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; - uint8_t highbits = static_cast(src) >> 4; - return lookup[highbits]; +// trim whitespace from the beginning and end of a string +static std::string trim(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + while (start < end && isspace(str[start])) { + start += 1; + } + while (end > start && isspace(str[end - 1])) { + end -= 1; + } + return str.substr(start, end - start); } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { @@ -2287,8 +2270,7 @@ struct llama_hparams { return n_head_arr[il]; } - LM_GGML_ASSERT(false); - return 0; + LM_GGML_ABORT("fatal error"); } uint32_t n_head_kv(uint32_t il = 0) const { @@ -2296,8 +2278,7 @@ struct llama_hparams { return n_head_kv_arr[il]; } - LM_GGML_ASSERT(false); - return 0; + LM_GGML_ABORT("fatal error"); } uint32_t n_ff(uint32_t il = 0) const { @@ -2305,8 +2286,7 @@ struct llama_hparams { return n_ff_arr[il]; } - LM_GGML_ASSERT(false); - return 0; + LM_GGML_ABORT("fatal error"); } uint32_t n_gqa(uint32_t il = 0) const { @@ -2594,72 +2574,6 @@ struct llama_control_vector { } }; -struct llama_vocab { - using id = int32_t; - using token = std::string; - using tattr = llama_token_attr; - - struct token_data { - token text; - float score; - tattr attr; - }; - - enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; - enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - - int max_token_len = 0; // used for optimizing longest token search - - std::unordered_map token_to_id; - std::vector id_to_token; - - std::vector cache_special_tokens; - std::vector cache_token_to_piece; // llama_token_to_piece(special = true); - - std::map, int> bpe_ranks; - - // default LLaMA special tokens - id special_bos_id = 1; - id special_eos_id = 2; - id special_unk_id = 0; - id special_sep_id = -1; - id special_pad_id = -1; - id special_cls_id = -1; - id special_mask_id = -1; - - id linefeed_id = 13; - id special_prefix_id = -1; - id special_suffix_id = -1; - id special_middle_id = -1; - id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token - - // tokenizer flags - bool tokenizer_add_space_prefix = false; - bool tokenizer_add_bos = false; - bool tokenizer_add_eos = false; - bool tokenizer_ignore_merges = false; - bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces - bool tokenizer_remove_extra_whitespaces = false; - bool tokenizer_escape_whitespaces = true; - bool tokenizer_treat_whitespace_as_suffix = false; - - std::vector precompiled_charsmap; - - int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { - LM_GGML_ASSERT(token_left.find(' ') == std::string::npos); - LM_GGML_ASSERT(token_left.find('\n') == std::string::npos); - LM_GGML_ASSERT(token_right.find(' ') == std::string::npos); - LM_GGML_ASSERT(token_right.find('\n') == std::string::npos); - - auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); - if (it == bpe_ranks.end()) { - return -1; - } - - return it->second; - } -}; - struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; @@ -2748,7 +2662,12 @@ struct llama_model { }; struct llama_context { - llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} + llama_context(const llama_model & model) + : model(model) + , sampling(llama_n_vocab(&model)) + , t_start_us(model.t_start_us) + , t_load_us(model.t_load_us) {} + ~llama_context() { lm_ggml_backend_sched_free(sched); @@ -2759,7 +2678,14 @@ struct llama_context { lm_ggml_backend_buffer_free(buf_output); } - llama_cparams cparams; + const struct llama_model & model; + + struct llama_cparams cparams; + struct llama_sampling sampling; + struct llama_kv_cache kv_self; + struct llama_control_vector cvec; + + std::unordered_map lora_adapters; std::vector backends; #ifdef LM_GGML_USE_METAL @@ -2770,26 +2696,16 @@ struct llama_context { #endif lm_ggml_backend_t backend_cpu = nullptr; - - const llama_model & model; - - // key + value cache for the self attention - struct llama_kv_cache kv_self; - - std::mt19937 rng; - bool has_evaluated_once = false; int64_t t_start_us; int64_t t_load_us; - int64_t t_sample_us = 0; int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; int64_t t_compute_start_us = 0; int64_t n_queued_tokens = 0; - int32_t n_sample = 0; // number of tokens sampled int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls @@ -2845,12 +2761,6 @@ struct llama_context { struct lm_ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch] struct lm_ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc] struct lm_ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] - - // control vectors - struct llama_control_vector cvec; - - // lora adapters and scales - std::unordered_map lora_adapters; }; struct llama_lora_weight { @@ -3003,7 +2913,7 @@ static size_t llama_get_device_memory(const llama_model & model, int device) { #elif defined(LM_GGML_USE_CANN) size_t total; size_t free; - lm_ggml_backend_cann_get_device_memory(device, &total, &free); + lm_ggml_backend_cann_get_device_memory(device, &free, &total); return free; #else return 1; @@ -4985,6 +4895,7 @@ static void llm_load_hparams( } break; case LLM_ARCH_PHI3: { + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { @@ -5313,12 +5224,6 @@ static void llm_load_hparams( hparams.rope_type = llama_rope_type(&model); } -// TODO: This should probably be in llama.h -static std::vector llama_tokenize_internal( - const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false -); -static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); - static void llm_load_vocab( llama_model_loader & ml, llama_model & model) { @@ -5655,7 +5560,7 @@ static void llm_load_vocab( } } try { - vocab.linefeed_id = llama_byte_to_token(vocab, '\n'); + vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n'); } catch (const std::exception & e) { LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what()); vocab.linefeed_id = vocab.special_pad_id; @@ -8175,7 +8080,7 @@ static struct lm_ggml_tensor * llm_build_moe_ffn( cb(gate, "ffn_moe_gelu", il); } break; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } lm_ggml_tensor * par = lm_ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens] @@ -8738,8 +8643,8 @@ struct llm_build_context { } break; default: { - LM_GGML_ASSERT(false && "unknown pooling type"); - } break; + LM_GGML_ABORT("unknown pooling type"); + } } cb(cur, "result_embd_pooled", -1); @@ -8994,7 +8899,7 @@ struct llm_build_context { Kcur = lm_ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens); break; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); @@ -10850,7 +10755,7 @@ struct llm_build_context { struct lm_ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct lm_ggml_tensor * KQ_mask = build_inp_KQ_mask(); + struct lm_ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(); for (int il = 0; il < n_layer; ++il) { auto residual = inpL; @@ -10908,7 +10813,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { @@ -11826,7 +11731,7 @@ struct llm_build_context { switch (model.type) { case e_model::MODEL_9B: Qcur = lm_ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break; case e_model::MODEL_27B: Qcur = lm_ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break; - default: LM_GGML_ASSERT(false); + default: LM_GGML_ABORT("fatal error"); }; cb(Qcur, "Qcur_scaled", il); @@ -13991,7 +13896,7 @@ static struct lm_ggml_cgraph * llama_build_graph( result = llm.build_jais(); } break; default: - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); } // add on pooling layer @@ -14115,18 +14020,23 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { "causal attention is not supported by this model" ); - if (lctx.inp_KQ_mask) { + if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) { // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. if (cparams.causal_attn && !lctx.is_encoding) { const int64_t n_kv = kv_self.n; const int64_t n_tokens = batch.n_tokens; - LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - float * data = (float *) lctx.inp_KQ_mask->data; + float * data = nullptr; float * data_swa = nullptr; + if (lctx.inp_KQ_mask) { + LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + data = (float *) lctx.inp_KQ_mask->data; + } + if (lctx.inp_KQ_mask_swa) { + LM_GGML_ASSERT(lm_ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer)); data_swa = (float *) lctx.inp_KQ_mask_swa->data; } @@ -14144,12 +14054,15 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { f = -INFINITY; } else { if (hparams.use_alibi) { - f = -fabs(lctx.kv_self.cells[i].pos - pos); + f = -std::abs(lctx.kv_self.cells[i].pos - pos); } else { f = 0.0f; } } - data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + + if (data) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } // may need to cut off old tokens for sliding window if (data_swa) { @@ -14161,9 +14074,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { } } - for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) { - for (int j = 0; j < n_kv; ++j) { - data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; + if (data) { + for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) { + for (int j = 0; j < n_kv; ++j) { + data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; + } + } + } + + if (data_swa) { + for (int i = n_tokens; i < LM_GGML_PAD(n_tokens, LM_GGML_KQ_MASK_PAD); ++i) { + for (int j = 0; j < n_kv; ++j) { + data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; + } } } } @@ -14185,7 +14108,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { for (int s = 0; s < batch.n_seq_id[i]; ++s) { if (batch.seq_id[i][s] == seq_id) { if (hparams.use_alibi) { - f = -fabs(batch.pos[i] - batch.pos[j]); + f = -std::abs(batch.pos[i] - batch.pos[j]); } else { f = 0.0f; } @@ -14772,8 +14695,8 @@ static int llama_decode_internal( } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: { - LM_GGML_ASSERT(false && "unknown pooling type"); - } break; + LM_GGML_ABORT("unknown pooling type"); + } } } n_outputs_prev += lctx.n_outputs; @@ -15164,7 +15087,7 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { // apply K-shift if needed if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA - LM_GGML_ASSERT(false && "Deepseek2 does not support K-shift"); + LM_GGML_ABORT("Deepseek2 does not support K-shift"); } { @@ -15245,2693 +15168,180 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { } // -// tokenizer +// quantization // -static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { - return vocab.type; -} +struct quantize_state_internal { + const llama_model & model; + const llama_model_quantize_params * params; -static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; -} + int n_attention_wv = 0; + int n_ffn_down = 0; + int n_ffn_gate = 0; + int n_ffn_up = 0; + int i_attention_wv = 0; + int i_ffn_down = 0; + int i_ffn_gate = 0; + int i_ffn_up = 0; -static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; -} + int n_k_quantized = 0; + int n_fallback = 0; -static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; -} + bool has_imatrix = false; -static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; -} + // used to figure out if a model shares tok_embd with the output weight + bool has_output = false; -static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; -} + quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) + : model(model) + , params(params) + {} +}; -static bool llama_is_unused_token(const llama_vocab& vocab, llama_token id) { - LM_GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED; -} +static void llama_tensor_dequantize_internal( + struct lm_ggml_tensor * tensor, std::vector> & output, std::vector & workers, + const size_t nelements, const int nthread +) { + if (output.size() < nelements) { + output.resize(nelements); + } + float * f32_output = (float *) output.data(); -static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { - LM_GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); - LM_GGML_ASSERT(llama_is_byte_token(vocab, id)); - const auto & token_data = vocab.id_to_token.at(id); - switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: - case LLAMA_VOCAB_TYPE_UGM: { - auto buf = token_data.text.substr(3, 2); - return strtol(buf.c_str(), NULL, 16); - } - case LLAMA_VOCAB_TYPE_BPE: { - LM_GGML_ASSERT(false); - return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after LM_GGML_ASSERT? - } - case LLAMA_VOCAB_TYPE_WPM: { - LM_GGML_ASSERT(false); + lm_ggml_type_traits_t qtype; + if (lm_ggml_is_quantized(tensor->type)) { + qtype = lm_ggml_internal_get_type_traits(tensor->type); + if (qtype.to_float == NULL) { + throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", lm_ggml_type_name(tensor->type))); } - default: - LM_GGML_ASSERT(false); + } else if (tensor->type != LM_GGML_TYPE_F16 && + tensor->type != LM_GGML_TYPE_BF16) { + throw std::runtime_error(format("cannot dequantize/convert tensor type %s", lm_ggml_type_name(tensor->type))); } -} -static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { - LM_GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); - static const char * hex = "0123456789ABCDEF"; - switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: - case LLAMA_VOCAB_TYPE_UGM: { - const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; - auto token = vocab.token_to_id.find(buf); - if (token != vocab.token_to_id.end()) { - return (*token).second; - } - // Try to fall back to just the byte as a string - const char buf2[2] = { (char)ch, 0 }; - return vocab.token_to_id.at(buf2); - } - case LLAMA_VOCAB_TYPE_WPM: - case LLAMA_VOCAB_TYPE_BPE: { - return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); + if (nthread < 2) { + if (tensor->type == LM_GGML_TYPE_F16) { + lm_ggml_fp16_to_fp32_row((lm_ggml_fp16_t *)tensor->data, f32_output, nelements); + } else if (tensor->type == LM_GGML_TYPE_BF16) { + lm_ggml_bf16_to_fp32_row((lm_ggml_bf16_t *)tensor->data, f32_output, nelements); + } else if (lm_ggml_is_quantized(tensor->type)) { + qtype.to_float(tensor->data, f32_output, nelements); + } else { + LM_GGML_ABORT("fatal error"); // unreachable } - default: - LM_GGML_ASSERT(false); + return; } -} - -static void llama_escape_whitespace(std::string & text) { - replace_all(text, " ", "\xe2\x96\x81"); -} -static void llama_unescape_whitespace(std::string & word) { - replace_all(word, "\xe2\x96\x81", " "); -} + size_t block_size; + if (tensor->type == LM_GGML_TYPE_F16 || + tensor->type == LM_GGML_TYPE_BF16) { + block_size = 1; + } else { + block_size = (size_t)lm_ggml_blck_size(tensor->type); + } -struct llm_symbol { - using index = int; - index prev; - index next; - const char * text; - size_t n; -}; + size_t block_size_bytes = lm_ggml_type_size(tensor->type); -static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); + LM_GGML_ASSERT(nelements % block_size == 0); + size_t nblocks = nelements / block_size; + size_t blocks_per_thread = nblocks / nthread; + size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count -// SPM tokenizer -// original implementation: -// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 + size_t in_buff_offs = 0; + size_t out_buff_offs = 0; -struct llm_bigram_spm { - struct comparator { - bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { - return (l.score < r.score) || (l.score == r.score && l.left > r.left); - } - }; - using queue_storage = std::vector; - using queue = std::priority_queue; - llm_symbol::index left; - llm_symbol::index right; - float score; - size_t size; -}; + for (int tnum = 0; tnum < nthread; tnum++) { + size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread + size_t thr_elems = thr_blocks * block_size; // number of elements for this thread + size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread -struct llm_tokenizer_spm { - llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} - - void tokenize(const std::string & text, std::vector & output) { - // split string into utf8 chars - int index = 0; - size_t offs = 0; - while (offs < text.size()) { - llm_symbol sym; - size_t len = utf8_len(text[offs]); - sym.text = text.c_str() + offs; - sym.n = std::min(len, text.size() - offs); - offs += sym.n; - sym.prev = index - 1; - sym.next = offs == text.size() ? -1 : index + 1; - index++; - symbols.emplace_back(sym); - } - - // seed the work queue with all possible 2-character tokens. - for (size_t i = 1; i < symbols.size(); ++i) { - try_add_bigram(i - 1, i); - } - - // keep substituting the highest frequency pairs for as long as we can. - while (!work_queue.empty()) { - auto bigram = work_queue.top(); - work_queue.pop(); - - auto & left_sym = symbols[bigram.left]; - auto & right_sym = symbols[bigram.right]; - - // if one of the symbols already got merged, skip it. - if (left_sym.n == 0 || right_sym.n == 0 || - left_sym.n + right_sym.n != bigram.size) { - continue; + auto compute = [qtype] (lm_ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { + if (typ == LM_GGML_TYPE_F16) { + lm_ggml_fp16_to_fp32_row((lm_ggml_fp16_t *)inbuf, outbuf, nels); + } else if (typ == LM_GGML_TYPE_BF16) { + lm_ggml_bf16_to_fp32_row((lm_ggml_bf16_t *)inbuf, outbuf, nels); + } else { + qtype.to_float(inbuf, outbuf, nels); } + }; + workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); + in_buff_offs += thr_block_bytes; + out_buff_offs += thr_elems; + } + for (auto & w : workers) { w.join(); } + workers.clear(); +} - // merge the right sym into the left one - left_sym.n += right_sym.n; - right_sym.n = 0; +static lm_ggml_type llama_tensor_get_type(quantize_state_internal & qs, lm_ggml_type new_type, const lm_ggml_tensor * tensor, llama_ftype ftype) { + const std::string name = lm_ggml_get_name(tensor); - //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); + // TODO: avoid hardcoded tensor names - use the TN_* constants + const llm_arch arch = qs.model.arch; + const auto tn = LLM_TN(arch); - // remove the right sym from the chain - left_sym.next = right_sym.next; - if (right_sym.next >= 0) { - symbols[right_sym.next].prev = bigram.left; + auto use_more_bits = [](int i_layer, int n_layers) -> bool { + return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; + }; + const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); + auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { + if (n_expert > 1) { + // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly + // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work + // for getting the current layer as I initially thought, and we need to resort to parsing the + // tensor name. + if (sscanf(name, "blk.%d.", &i_layer) != 1) { + throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); + } + if (i_layer < 0 || i_layer >= n_layer) { + throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); } - - // find more substitutions - try_add_bigram(left_sym.prev, bigram.left); - try_add_bigram(bigram.left, left_sym.next); - } - - for (int i = 0; i != -1; i = symbols[i].next) { - auto & symbol = symbols[i]; - resegment(symbol, output); } - } - -private: - void resegment(llm_symbol & symbol, std::vector & output) { - auto text = std::string(symbol.text, symbol.n); - auto token = vocab.token_to_id.find(text); + return std::make_pair(i_layer, n_layer); + }; - // Do we need to support is_unused? - if (token != vocab.token_to_id.end()) { - output.push_back((*token).second); - return; + // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings + // with the quantization of the output tensor + if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { + if (qs.params->output_tensor_type < LM_GGML_TYPE_COUNT) { + new_type = qs.params->output_tensor_type; + } else { + int nx = tensor->ne[0]; + if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { + new_type = LM_GGML_TYPE_Q8_0; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + new_type = LM_GGML_TYPE_Q5_K; + } + else if (new_type != LM_GGML_TYPE_Q8_0) { + new_type = LM_GGML_TYPE_Q6_K; + } } - - const auto p = rev_merge.find(text); - - if (p == rev_merge.end()) { - // output any symbols that did not form tokens as bytes. - output.reserve(output.size() + symbol.n); - for (int j = 0; j < (int)symbol.n; ++j) { - llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]); - output.push_back(token_id); + } else if (name == "token_embd.weight") { + if (qs.params->token_embedding_type < LM_GGML_TYPE_COUNT) { + new_type = qs.params->token_embedding_type; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + new_type = LM_GGML_TYPE_Q2_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + new_type = LM_GGML_TYPE_IQ3_S; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = LM_GGML_TYPE_IQ3_S; + } + else if (new_type == LM_GGML_TYPE_Q4_0_4_4 || new_type == LM_GGML_TYPE_Q4_0_4_8 || + new_type == LM_GGML_TYPE_Q4_0_8_8) { + new_type = LM_GGML_TYPE_Q4_0; } - return; } - - resegment(symbols[p->second.first], output); - resegment(symbols[p->second.second], output); - } - - void try_add_bigram(int left, int right) { - if (left == -1 || right == -1) { - return; - } - - const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); - auto token = vocab.token_to_id.find(text); - - if (token == vocab.token_to_id.end()) { - return; - } - - if (static_cast((*token).second) >= vocab.id_to_token.size()) { - return; - } - - const auto & tok_data = vocab.id_to_token[(*token).second]; - - llm_bigram_spm bigram; - bigram.left = left; - bigram.right = right; - bigram.score = tok_data.score; - bigram.size = text.size(); - - work_queue.push(bigram); - - // Do we need to support is_unused? - rev_merge[text] = std::make_pair(left, right); - } - - const llama_vocab & vocab; - - std::vector symbols; - llm_bigram_spm::queue work_queue; - - std::map> rev_merge; -}; - -// BPE tokenizer -// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] -// tried to simplify unicode stuff, so most likely does not work 100% correctly! - -// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused - -struct llm_bigram_bpe { - struct comparator { - bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { - return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); - } - }; - - using queue_storage = std::vector; - using queue = std::priority_queue; - llm_symbol::index left; - llm_symbol::index right; - std::string text; - int rank; - size_t size; -}; - -struct llm_tokenizer_bpe { - llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) { - LM_GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); - switch (vocab.type_pre) { - case LLAMA_VOCAB_PRE_TYPE_LLAMA3: - regex_exprs = { - // original regex from tokenizer.json - //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - - // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DBRX: - case LLAMA_VOCAB_PRE_TYPE_SMAUG: - regex_exprs = { - // same as llama3 - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: - regex_exprs = { - "[\r\n]", - "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", - "\\s?[!-/:-~!-/:-~‘-‟ -。]+", - "\\s+$", - "[一-龥ࠀ-一가-퟿]+", - "\\p{N}+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: - regex_exprs = { - "[\r\n]", - "\\s?\\p{L}+", - "\\s?\\p{P}+", - "[一-龥ࠀ-一가-퟿]+", - "\\p{N}", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_FALCON: - regex_exprs = { - "[\\p{P}\\$\\+<=>\\^~\\|`]+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - "[0-9][0-9][0-9]", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_STARCODER: - case LLAMA_VOCAB_PRE_TYPE_REFACT: - case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: - case LLAMA_VOCAB_PRE_TYPE_SMOLLM: - case LLAMA_VOCAB_PRE_TYPE_CODESHELL: - regex_exprs = { - "\\p{N}", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_GPT2: - case LLAMA_VOCAB_PRE_TYPE_MPT: - case LLAMA_VOCAB_PRE_TYPE_OLMO: - case LLAMA_VOCAB_PRE_TYPE_JAIS: - regex_exprs = { - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_STABLELM2: - case LLAMA_VOCAB_PRE_TYPE_QWEN2: - regex_exprs = { - // original regex from tokenizer.json - // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_PORO: - regex_exprs = { - " ?[^(\\s|.,!?…。,、।۔،)]+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_CHATGLM4: - regex_exprs = { - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_VIKING: - regex_exprs = { - " ?[^(\\s|.,!?…。,、।۔،)]+", - "\\p{N}", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_TEKKEN: - // original regex from tokenizer.json - // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" - regex_exprs = { - "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - default: - // default regex for BPE tokenization pre-processing - regex_exprs = { - "[\\p{P}\\$\\+<=>\\^~\\|]+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - "\\p{N}+", - "[0-9][0-9][0-9]", - }; - break; - } - } - - void append(const llama_vocab::id token_id, std::vector & output) const { - output.push_back(token_id); - } - - bool append_bos(std::vector & output) const { - if (vocab.tokenizer_add_bos) { - LM_GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - return true; - } - return false; - } - - bool append_eos(std::vector & output) const { - if (vocab.tokenizer_add_eos) { - LM_GGML_ASSERT(vocab.special_eos_id != -1); - output.push_back(vocab.special_eos_id); - return true; - } - return false; - } - - void check_double_bos_eos(const std::vector & output) const { - if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { - LLAMA_LOG_WARN( - "%s: Added a BOS token to the prompt as specified by the model but the prompt " - "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) { - LLAMA_LOG_WARN( - "%s: Added a EOS token to the prompt as specified by the model but the prompt " - "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - } - - void tokenize(const std::string & text, std::vector & output) { - int final_prev_index = -1; - - const auto word_collection = unicode_regex_split(text, regex_exprs); - - symbols_final.clear(); - - for (auto & word : word_collection) { - work_queue = llm_bigram_bpe::queue(); - symbols.clear(); - - int index = 0; - size_t offset = 0; - - if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { - symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); - offset = word.size(); - } - - while (offset < word.size()) { - llm_symbol sym; - size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); - sym.text = word.c_str() + offset; - sym.n = char_len; - offset += sym.n; - sym.prev = index - 1; - sym.next = offset == word.size() ? -1 : index + 1; - index++; - symbols.emplace_back(sym); - } - for (size_t i = 1; i < symbols.size(); ++i) { - add_new_bigram(i - 1, i); - } - - // build token(s) - while (!work_queue.empty()) { - auto bigram = work_queue.top(); - work_queue.pop(); - - auto & left_symbol = symbols[bigram.left]; - auto & right_symbol = symbols[bigram.right]; - - if (left_symbol.n == 0 || right_symbol.n == 0) { - continue; - } - std::string left_token = std::string(left_symbol.text, left_symbol.n); - std::string right_token = std::string(right_symbol.text, right_symbol.n); - if (left_token + right_token != bigram.text) { - continue; // Skip this bigram if it's outdated - } - - // merge the right sym into the left one - left_symbol.n += right_symbol.n; - right_symbol.n = 0; - - // remove the right sym from the chain - left_symbol.next = right_symbol.next; - if (right_symbol.next >= 0) { - symbols[right_symbol.next].prev = bigram.left; - } - - add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol - add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol - } - - // add the finished tokens to the final list keeping correct order for next and prev - for (auto & sym : symbols) { - if (sym.n > 0) { - sym.prev = final_prev_index; - sym.next = -1; - if (final_prev_index != -1) { - symbols_final[final_prev_index].next = symbols_final.size(); - } - symbols_final.emplace_back(sym); - final_prev_index = symbols_final.size() - 1; - } - } - } - - symbols = symbols_final; - - if (!symbols.empty()) { - for (int i = 0; i != -1; i = symbols[i].next) { - auto & symbol = symbols[i]; - if (symbol.n == 0) { - continue; - } - - const std::string str = std::string(symbol.text, symbol.n); - const auto token = vocab.token_to_id.find(str); - - if (token == vocab.token_to_id.end()) { - for (auto j = str.begin(); j != str.end(); ++j) { - std::string byte_str(1, *j); - auto token_multibyte = vocab.token_to_id.find(byte_str); - if (token_multibyte != vocab.token_to_id.end()) { - output.push_back(token_multibyte->second); - } - } - } else { - output.push_back((*token).second); - } - } - } - } - -private: - void add_new_bigram(int left, int right) { - if (left == -1 || right == -1) { - return; - } - - std::string left_token = std::string(symbols[left].text, symbols[left].n); - std::string right_token = std::string(symbols[right].text, symbols[right].n); - - int rank_found = -1; - - rank_found = vocab.find_bpe_rank(left_token, right_token); - - if (rank_found < 0) { - return; - } - - llm_bigram_bpe bigram; - - bigram.left = left; - bigram.right = right; - bigram.text = left_token + right_token; - bigram.size = left_token.size() + right_token.size(); - bigram.rank = rank_found; - - work_queue.push(bigram); - } - - const llama_vocab & vocab; - - std::vector regex_exprs; - - std::vector symbols; - std::vector symbols_final; - - llm_bigram_bpe::queue work_queue; -}; - -struct llm_tokenizer_wpm { - llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} - - void tokenize(const std::string & text, std::vector & output) const { - const auto & token_map = vocab.token_to_id; - - // normalize and split by whitespace - std::vector words = preprocess(text); - - // bos token prepended already - - // find the longest tokens that form the words - for (const std::string & word : words) { - // skip empty words - if (word.size() == 0) { - continue; - } - - // prepend phantom space - const std::string word1 = "\xe2\x96\x81" + word; - const int n = word1.size(); - - const size_t current_tokens = output.size(); - - // we're at the start of a new word - // move through character position in word - for (int i = 0; i < n; ++i) { - // loop through possible match length - bool match = false; - for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) { - auto it = token_map.find(word1.substr(i, j - i)); - if (it != token_map.end()) { - output.push_back(it->second); - match = true; - i = j - 1; - break; - } - } - - if (!match) { // discard all - output.resize(current_tokens); - break; // and discard next tokens - } - } - - // we didn't find any matches for this word - if (current_tokens == output.size()) { - output.push_back(vocab.special_unk_id); - } - } - } - - // TODO: reduce string copies by using cpts_offs array - std::vector preprocess(const std::string & text) const { - const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); - std::vector words(1, ""); - - for (const uint32_t cpt : cpts_nfd) { - const auto flags = unicode_cpt_flags(cpt); - - if (flags.is_whitespace) { - if (words.back().size()) { // finish previous word if any - words.emplace_back(); - } - continue; - } - - assert (!flags.is_separator); - if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { - continue; - } - - const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); - if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { - if (words.back().size()) { // finish previous word if any - words.emplace_back(); - } - words.back() = s; // single char word - words.emplace_back(); // start a new word - } else { - words.back() += s; // append char to word - } - } - - if (!words.back().size()) { - words.pop_back(); - } - - return words; - } - - static bool is_chinese_char(uint32_t cpt) { - return - (cpt >= 0x04E00 && cpt <= 0x09FFF) || - (cpt >= 0x03400 && cpt <= 0x04DBF) || - (cpt >= 0x20000 && cpt <= 0x2A6DF) || - (cpt >= 0x2A700 && cpt <= 0x2B73F) || - (cpt >= 0x2B740 && cpt <= 0x2B81F) || - (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 - (cpt >= 0x0F900 && cpt <= 0x0FAFF) || - (cpt >= 0x2F800 && cpt <= 0x2FA1F); - //(cpt >= 0x3000 && cpt <= 0x303F) || - //(cpt >= 0xFF00 && cpt <= 0xFFEF); - } - - const llama_vocab & vocab; -}; - -struct naive_trie { - naive_trie() : has_value(false), value(0) { - } - void insert(const char * key, size_t len, int32_t value = 0) { - if (len == 0) { - this->has_value = true; - this->value = value; - return; - } - char c = key[0]; - auto res = children.find(c); - if (res != children.end()) { - res->second.insert(key + 1, len - 1, value); - } else { - auto res = children.insert(std::make_pair(c, naive_trie())); - res.first->second.insert(key + 1, len - 1, value); - } - } - std::pair get_longest_prefix(const char * key, size_t len, size_t offset = 0) { - if (len == 0 || offset == len) { - return std::make_pair(key, offset); - } - char c = key[offset]; - auto res = children.find(c); - if (res != children.end()) { - return res->second.get_longest_prefix(key, len, offset + 1); - } else { - return std::make_pair(key, offset); - } - } - struct naive_trie * traverse(const char c) { - auto res = children.find(c); - if (res != children.end()) { - return &res->second; - } else { - return NULL; - } - } - std::map children; - bool has_value; - llama_token value; -}; - -struct llm_tokenizer_ugm { - llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) { - if (vocab.precompiled_charsmap.size() > 0) { - size_t charsmap_offset = 0; - - // First four bytes of precompiled_charsmap contains length of binary - // blob containing XOR-compressed compact double array (XCDA) entries - uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0]; - charsmap_offset += sizeof(xcda_blob_size); - if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) { - throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); - } - - // Next xcda_blob_size bytes contain entries of XOR-compressed compact - // double array (XCDA). Each entry is bit-packed into a 32-bit integer. - xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset]; - xcda_array_size = xcda_blob_size / sizeof(uint32_t); - charsmap_offset += xcda_blob_size; - - // Remaining bytes of precompiled charsmap contain null-terminated - // replacement strings for prefixes matched by the XCDA. - prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset]; - prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset; - } - - for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { - const auto &token_data = vocab.id_to_token[id]; - - if (llama_is_normal_token(vocab, id)) { - min_score = std::min(min_score, token_data.score); - max_score = std::max(max_score, token_data.score); - } - - if (llama_is_normal_token(vocab, id) || - llama_is_user_defined_token(vocab, id) || - llama_is_unused_token(vocab, id)) { - token_matcher.insert(token_data.text.data(), token_data.text.size(), id); - } - - if (llama_is_user_defined_token(vocab, id)) { - user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size()); - } - } - - unknown_token_score = min_score - unknown_token_score_penalty; - } - - /* This implementation is based on SentencePiece optimized Viterbi algorithm for - * unigram language models. The general idea is to: - * - move along the input sequence in steps of one UTF code point, - * - at each step find all possible tokenizations of the prefix by - * traversing the tokens trie, - * - for each tokenization store the best one so far (by higher score) - * - use the position in sequence after given token as an index to store - * results - * - if there was no valid tokenization of the current UTF code point - * then use unknown token with additional score penalty - * After processing the whole sequence we backtrack from the end to get - * the best tokenization. - */ - void tokenize(const std::string & text, std::vector & output) { - // normalize the input first - std::string normalized; - normalize(text, &normalized); - size_t input_len = normalized.size(); - if (input_len == 0) { - return; - } - - // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores - std::vector tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX}); - // at the beginning tokenization score is zero - tokenization_results[0] = { vocab.special_unk_id, 0, 0 }; - - for (size_t input_offset = 0; input_offset < input_len;) { - size_t prefix_offset = input_offset; - // calculate how many code units are in the currently processed UTF code point - size_t n_utf8_code_units = std::min(utf8_len(normalized[input_offset]), input_len - input_offset); - - // traverse the token matcher trie to find a matching token - bool single_codepoint_token_found = false; - const struct best_tokenization & current_best = tokenization_results[input_offset]; - struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); - - while (prefix_offset <= input_len && node != NULL) { - // check if we found valid token in prefix - if (node->has_value) { - // check if it corresponds to the whole UTF code point - if (prefix_offset - input_offset == n_utf8_code_units) { - single_codepoint_token_found = true; - } - llama_token token_id = node->value; - const auto & token_data = vocab.id_to_token[token_id]; - - // we set the user-defined token scores to 0 to make them more likely to be selected - // (normal token scores are log probabilities, so they are negative) - // score type is double here to make tokenization results exactly - // the same as in the HF tokenizer using SentencePiece - const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score; - const double challenger_score = current_best.score_sum + token_score; - struct best_tokenization & current_champ = tokenization_results[prefix_offset]; - if (challenger_score > current_champ.score_sum) { - struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score }; - current_champ = challenger; - } - } - node = node->traverse(normalized[prefix_offset++]); - } - - // if we didn't find a valid token corresponding to the whole UTF code point - // then use unknown token as the tokenization of this UTF code point - if (!single_codepoint_token_found) { - const double challenger_score = current_best.score_sum + unknown_token_score; - prefix_offset = input_offset + n_utf8_code_units; - struct best_tokenization & current_champ = tokenization_results[prefix_offset]; - if (challenger_score > current_champ.score_sum) { - struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score }; - current_champ = challenger; - } - } - - // move to the next UTF code point - input_offset += n_utf8_code_units; - } - - // now backtrack from the end to gather token ids of the best tokenization - // merge sequences of consecutive unknown tokens into single unknown tokens - bool is_prev_unknown = false; - for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) { - bool is_unknown = tokenization.token_id == vocab.special_unk_id; - if (!(is_prev_unknown && is_unknown)) { - output.push_back(tokenization.token_id); - } - if (tokenization.input_offset == 0) { - break; - } - is_prev_unknown = is_unknown; - } - - // reverse the output since we added tokens starting from the end of the input - std::reverse(output.begin(), output.end()); - } - -private: - const llama_vocab & vocab; - - // helper structure for returning normalization results - struct normalization_result { - const char * normalized; - size_t normalized_len; - size_t consumed_input; - }; - - void normalize(const std::string& input, std::string * normalized) { - normalized->clear(); - normalized->reserve(input.size() * 3); - - const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " "; - - bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; - bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; - bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces; - - bool is_space_prepended = false; - bool processing_non_ws = false; - - size_t input_len = input.size(); - - for (size_t input_offset = 0; input_offset < input_len; ) { - auto norm_res = normalize_prefix(input, input_offset); - for (size_t i = 0; i < norm_res.normalized_len; i++) { - char c = norm_res.normalized[i]; - if (c != ' ') { - if (!processing_non_ws) { - processing_non_ws = true; - if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) { - normalized->append(space); - is_space_prepended = true; - } - } - normalized->push_back(c); - } else { - if (processing_non_ws) { - processing_non_ws = false; - } - if (!shall_merge_spaces) { - normalized->append(space); - } - } - } - - input_offset += norm_res.consumed_input; - } - - if (shall_append_space) { - normalized->append(space); - } - } - - /* - * This structure is a view wrapper for XOR-compressed double array (XCDA) - * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries. - * Eeach bit-packed entry contains: - * - BASE array value in bits 10-30 - * - LCHECK array value in bits 0-7 - * - LEAF array value in bit 9 - * Entries containing indexes of replacement sequences have set bit 31 - */ - struct xcda_array_view { - public: - xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) { - } - uint32_t get_base(size_t index) { - uint32_t packed_node = get_node(index); - return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6); - } - uint32_t get_lcheck(size_t index) { - uint32_t packed_node = get_node(index); - return packed_node & ((1U << 31) | 0xff); - } - bool get_leaf(size_t index) { - uint32_t packed_node = get_node(index); - return (packed_node >> 8) & 1; - } - uint32_t get_value(size_t index) { - uint32_t packed_node = get_node(index); - return packed_node & ((1U << 31) - 1); - } - private: - uint32_t get_node(size_t index) { - if (index > xcda_array_size) { - throw std::runtime_error("Index out of array bounds in XCDA array!"); - } - return xcda_array[index]; - } - const uint32_t * xcda_array; - size_t xcda_array_size; - }; - - struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { - if (input_offset == input.size()) { - return { &input[input_offset], 0, 0 }; - } - - // if input prefix matches some user-defined token return this token as normalization result - auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); - if (user_defined_token_match.second > 0) { - return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; - } - - size_t longest_prefix_length = 0; - size_t longest_prefix_offset = 0; - - if (xcda_array_size > 0) { - struct xcda_array_view xcda_view(xcda_array, xcda_array_size); - - // Find the longest normalized sequence matching the input prefix by walking - // the XOR-compressed compact double array (XCDA) starting from the root node - // We find the index of the next node by calculating BASE[s] ^ c where s is - // the index of the previous node and c is a numerical character value - uint32_t node_index = 0; - // get BASE of the root node - node_index = xcda_view.get_base(node_index); - for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) { - unsigned char c = input[prefix_offset]; - if (c == 0) { - break; - } - node_index ^= c; - // if value of LCHECK is not c it means that this is not a child of - // the previous node, so we stop matching - if (xcda_view.get_lcheck(node_index) != c) { - break; - } - bool is_leaf = xcda_view.get_leaf(node_index); - // get BASE of the current node - node_index ^= xcda_view.get_base(node_index); - // if LEAF of the current node is true, it means that its BASE points to the node - // containing index of replacement sequence for currently matched input prefix - if (is_leaf) - { - longest_prefix_length = prefix_offset - input_offset + 1; - // get index of replacement sequence for currently matched input prefix - longest_prefix_offset = xcda_view.get_value(node_index); - } - } - } - - if (longest_prefix_length > 0) { - // we have a match, so return the replacement sequence - if (longest_prefix_offset >= prefix_replacements_size) { - throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); - } - const char * prefix_replacement = &prefix_replacements[longest_prefix_offset]; - return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; - } else { - // check if the input prefix contains a valid sequence of UTF-8 code units - try { - // if yes, return this sequence unmodified - size_t prefix_offset = input_offset; - unicode_cpt_from_utf8(input, prefix_offset); - return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; - } catch (std::invalid_argument & /*ex*/) { - // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER - return { "\xEF\xBF\xBD", 3, 1 }; - } - } - } - - // escaped space symbol - U+2581 (Lower One Eighth Block) - const std::string escaped_space = "\xE2\x96\x81"; - - const char * prefix_replacements = NULL; - size_t prefix_replacements_size = 0; - - const uint32_t * xcda_array = NULL; - size_t xcda_array_size = 0; - - struct naive_trie user_defined_token_matcher; - - // this structure stores the best tokenization so far at input_offset - struct best_tokenization { - llama_token token_id; - size_t input_offset; - float score_sum; - }; - - float min_score = FLT_MAX; - float max_score = -FLT_MAX; - - float unknown_token_score_penalty = 10.0; - float unknown_token_score; - - struct naive_trie token_matcher; -}; - - -typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { - FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, - FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT -} FRAGMENT_BUFFER_VARIANT_TYPE; - -struct fragment_buffer_variant { - fragment_buffer_variant(llama_vocab::id _token) - : - type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), - token(_token), - raw_text(_dummy), - offset(0), - length(0) {} - - fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) - : - type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), - token((llama_vocab::id) - 1), - raw_text(_raw_text), - offset(_offset), - length(_length){ - LM_GGML_ASSERT(_offset >= 0); - LM_GGML_ASSERT(_length >= 1); - LM_GGML_ASSERT(offset + length <= raw_text.length()); - } - - const FRAGMENT_BUFFER_VARIANT_TYPE type; - const llama_vocab::id token; - const std::string _dummy; - const std::string & raw_text; - const uint64_t offset; - const uint64_t length; -}; - -// #define PRETOKENIZERDEBUG - -static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer, bool parse_special) { - // for each special token - for (const llama_vocab::id special_id : vocab.cache_special_tokens) { - const auto & data = vocab.id_to_token[special_id]; - const auto & special_token = data.text; - - if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { - // Ignore control and unknown tokens when parse_special == false - continue; - // User-defined tokens are still pre-tokenized before everything else - // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726 - // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.) - } - - // for each text fragment - std::forward_list::iterator it = buffer.begin(); - while (it != buffer.end()) { - auto & fragment = (*it); - - // if a fragment is text ( not yet processed ) - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto & raw_text = fragment.raw_text; - - auto raw_text_base_offset = fragment.offset; - auto raw_text_base_length = fragment.length; - - // loop over the text - while (true) { - // find the first occurrence of a given special token in this fragment - // passing offset argument only limit the "search area" but match coordinates - // are still relative to the source full raw_text - auto match = raw_text.find(special_token, raw_text_base_offset); - - // no occurrences found, stop processing this fragment for a given special token - if (match == std::string::npos) break; - - // check if match is within bounds of offset <-> length - if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); -#endif - auto source = std::distance(buffer.begin(), it); - - // if match is further than base offset - // then we have some text to the left of it - if (match > raw_text_base_offset) { - // left - const int64_t left_reminder_offset = raw_text_base_offset + 0; - int64_t left_reminder_length = match - raw_text_base_offset; - - if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { - while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { - left_reminder_length--; - } - } - - if (left_reminder_length > 0) { - buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); - it++; - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); -#endif - } - - // special token - buffer.emplace_after(it, special_id); - it++; - - // right - if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { - int64_t right_reminder_offset = match + special_token.length(); - int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); - - if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { - while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { - right_reminder_offset++; - right_reminder_length--; - } - } - - if (right_reminder_length > 0) { - buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); - it++; - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); -#endif - - if (source == 0) { - buffer.erase_after(buffer.before_begin()); - } else { - buffer.erase_after(std::next(buffer.begin(), (source-1))); - } - - // repeat for the right side - raw_text_base_offset = right_reminder_offset; - raw_text_base_length = right_reminder_length; - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); -#endif - } else { - if (source == 0) { - buffer.erase_after(buffer.before_begin()); - } else { - buffer.erase_after(std::next(buffer.begin(), (source-1))); - } - break; - } - } - } - it++; - } - } -} - -static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { - std::vector output; - std::forward_list fragment_buffer; - - if (!raw_text.empty()) { - fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); - tokenizer_st_partition(vocab, fragment_buffer, parse_special); - } - - switch (vocab.type) { - case LLAMA_VOCAB_TYPE_SPM: - { - // OG tokenizer behavior: - // - // tokenizer.encode('', add_special_tokens=True) returns [1] - // tokenizer.encode('', add_special_tokens=False) returns [] - - bool is_prev_special = true; // prefix with space if first token - - if (add_special && vocab.tokenizer_add_bos) { - LM_GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - is_prev_special = true; - } - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - - // prefix with space if previous is special - if (vocab.tokenizer_add_space_prefix && is_prev_special) { - raw_text = " " + raw_text; - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - llm_tokenizer_spm tokenizer(vocab); - llama_escape_whitespace(raw_text); - tokenizer.tokenize(raw_text, output); - is_prev_special = false; - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - output.push_back(fragment.token); - is_prev_special = true; - } - } - - if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { - LLAMA_LOG_WARN( - "%s: Added a BOS token to the prompt as specified by the model but the prompt " - "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - - if (add_special && vocab.tokenizer_add_eos) { - LM_GGML_ASSERT(vocab.special_eos_id != -1); - output.push_back(vocab.special_eos_id); - } - } break; - case LLAMA_VOCAB_TYPE_BPE: - { - llm_tokenizer_bpe tokenizer(vocab); - - if (add_special) { - tokenizer.append_bos(output); - } - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - tokenizer.append(fragment.token, output); - } - } - - if (add_special) { - tokenizer.append_eos(output); - tokenizer.check_double_bos_eos(output); - } - } break; - case LLAMA_VOCAB_TYPE_WPM: - { - if (add_special) { - LM_GGML_ASSERT(vocab.special_cls_id != -1); - output.push_back(vocab.special_cls_id); - } - - llm_tokenizer_wpm tokenizer(vocab); - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - output.push_back(fragment.token); - } - } - - if (add_special) { - LM_GGML_ASSERT(vocab.special_sep_id != -1); - output.push_back(vocab.special_sep_id); - } - } break; - case LLAMA_VOCAB_TYPE_UGM: - { - llm_tokenizer_ugm tokenizer(vocab); - - if (add_special && vocab.tokenizer_add_bos != 0) { - LM_GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - } - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - output.push_back(fragment.token); - } - } - - if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) { - LLAMA_LOG_WARN( - "%s: Added a BOS token to the prompt as specified by the model but the prompt " - "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - - if (add_special && vocab.tokenizer_add_eos == 1) { - LM_GGML_ASSERT(vocab.special_eos_id != -1); - output.push_back(vocab.special_eos_id); - } - } break; - case LLAMA_VOCAB_TYPE_NONE: - LM_GGML_ASSERT(false); - } - - return output; -} - -// -// grammar - internal -// - - -// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as -// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. -std::pair, llama_partial_utf8> decode_utf8( - const std::string & src, - llama_partial_utf8 partial_start) { - static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; - const char * pos = src.c_str(); - std::vector code_points; - // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. - code_points.reserve(src.size() + 1); - uint32_t value = partial_start.value; - int n_remain = partial_start.n_remain; - - // continue previous decode, if applicable - while (*pos != 0 && n_remain > 0) { - uint8_t next_byte = static_cast(*pos); - if ((next_byte >> 6) != 2) { - // invalid sequence, abort - code_points.push_back(0); - return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); - } - value = (value << 6) + (next_byte & 0x3F); - ++pos; - --n_remain; - } - - if (partial_start.n_remain > 0 && n_remain == 0) { - code_points.push_back(value); - } - - // decode any subsequent utf-8 sequences, which may end in an incomplete one - while (*pos != 0) { - uint8_t first_byte = static_cast(*pos); - uint8_t highbits = first_byte >> 4; - n_remain = lookup[highbits] - 1; - - if (n_remain < 0) { - // invalid sequence, abort - code_points.clear(); - code_points.push_back(0); - return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); - } - - uint8_t mask = (1 << (7 - n_remain)) - 1; - value = first_byte & mask; - ++pos; - while (*pos != 0 && n_remain > 0) { - value = (value << 6) + (static_cast(*pos) & 0x3F); - ++pos; - --n_remain; - } - if (n_remain == 0) { - code_points.push_back(value); - } - } - code_points.push_back(0); - - return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); -} - -// returns true iff pos points to the end of one of the definitions of a rule -static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { - switch (pos->type) { - case LLAMA_GRETYPE_END: return true; // NOLINT - case LLAMA_GRETYPE_ALT: return true; // NOLINT - default: return false; - } -} - -// returns true iff chr satisfies the char range at pos (regular or inverse range) -// asserts that pos is pointing to a char range element -static std::pair llama_grammar_match_char( - const llama_grammar_element * pos, - const uint32_t chr) { - - bool found = false; - bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; - - LM_GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT - - do { - if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { - // inclusive range, e.g. [a-z] - found = found || (pos->value <= chr && chr <= pos[1].value); - pos += 2; - } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { - // Any character matches "." - found = true; - pos += 1; - } else { - // exact char match, e.g. [a] or "a" - found = found || pos->value == chr; - pos += 1; - } - } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); - - return std::make_pair(found == is_positive_char, pos); -} - -// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char -// range at pos (regular or inverse range) -// asserts that pos is pointing to a char range element -static bool llama_grammar_match_partial_char( - const llama_grammar_element * pos, - const llama_partial_utf8 partial_utf8) { - - bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; - LM_GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); - - uint32_t partial_value = partial_utf8.value; - int n_remain = partial_utf8.n_remain; - - // invalid sequence or 7-bit char split across 2 bytes (overlong) - if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { - return false; - } - - // range of possible code points this partial UTF-8 sequence could complete to - uint32_t low = partial_value << (n_remain * 6); - uint32_t high = low | ((1 << (n_remain * 6)) - 1); - - if (low == 0) { - if (n_remain == 2) { - low = 1 << 11; - } else if (n_remain == 3) { - low = 1 << 16; - } - } - - do { - if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { - // inclusive range, e.g. [a-z] - if (pos->value <= high && low <= pos[1].value) { - return is_positive_char; - } - pos += 2; - } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { - // Any character matches "." - return true; - } else { - // exact char match, e.g. [a] or "a" - if (low <= pos->value && pos->value <= high) { - return is_positive_char; - } - pos += 1; - } - } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); - - return !is_positive_char; -} - - -// transforms a grammar pushdown stack into N possible stacks, all ending -// at a character range (terminal element) -static void llama_grammar_advance_stack( - const std::vector> & rules, - const std::vector & stack, - std::vector> & new_stacks) { - - if (stack.empty()) { - if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { - new_stacks.emplace_back(stack); - } - return; - } - - const llama_grammar_element * pos = stack.back(); - - switch (pos->type) { - case LLAMA_GRETYPE_RULE_REF: { - const size_t rule_id = static_cast(pos->value); - const llama_grammar_element * subpos = rules[rule_id].data(); - do { - // init new stack without the top (pos) - std::vector new_stack(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(pos + 1)) { - // if this rule ref is followed by another element, add that to stack - new_stack.push_back(pos + 1); - } - if (!llama_grammar_is_end_of_sequence(subpos)) { - // if alternate is nonempty, add to stack - new_stack.push_back(subpos); - } - llama_grammar_advance_stack(rules, new_stack, new_stacks); - while (!llama_grammar_is_end_of_sequence(subpos)) { - // scan to end of alternate def - subpos++; - } - if (subpos->type == LLAMA_GRETYPE_ALT) { - // there's another alternate def of this rule to process - subpos++; - } else { - break; - } - } while (true); - break; - } - case LLAMA_GRETYPE_CHAR: - case LLAMA_GRETYPE_CHAR_NOT: - case LLAMA_GRETYPE_CHAR_ANY: - if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { - // only add the stack if it's not a duplicate of one we already have - new_stacks.emplace_back(stack); - } - break; - default: - // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range - // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on - // those - LM_GGML_ASSERT(false); - } -} - -// takes a set of possible pushdown stacks on a grammar, which are required to -// be positioned at a character range (see `llama_grammar_advance_stack`), and -// produces the N possible stacks if the given char is accepted at those -// positions -void llama_grammar_accept( - const std::vector> & rules, - const std::vector> & stacks, - const uint32_t chr, - std::vector> & new_stacks) { - - new_stacks.clear(); - - for (const auto & stack : stacks) { - if (stack.empty()) { - continue; - } - - auto match = llama_grammar_match_char(stack.back(), chr); - if (match.first) { - const llama_grammar_element * pos = match.second; - - // update top of stack to next element, if any - std::vector new_stack(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(pos)) { - new_stack.push_back(pos); - } - llama_grammar_advance_stack(rules, new_stack, new_stacks); - } - } -} - -static std::vector llama_grammar_reject_candidates( - const std::vector> & rules, - const std::vector> & stacks, - const std::vector & candidates); - -static std::vector llama_grammar_reject_candidates_for_stack( - const std::vector> & rules, - const std::vector & stack, - const std::vector & candidates) { - - std::vector rejects; - rejects.reserve(candidates.size()); - - if (stack.empty()) { - for (const auto & tok : candidates) { - if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { - rejects.push_back(tok); - } - } - return rejects; - } - - const llama_grammar_element * stack_pos = stack.back(); - - std::vector next_candidates; - next_candidates.reserve(candidates.size()); - - for (const auto & tok : candidates) { - if (*tok.code_points == 0) { - // reached end of full codepoints in token, reject iff it ended in a partial sequence - // that cannot satisfy this position in grammar - if (tok.partial_utf8.n_remain != 0 && - !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { - rejects.push_back(tok); - } - } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { - next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); - } else { - rejects.push_back(tok); - } - } - - const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; - - // update top of stack to next element, if any - std::vector stack_after(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { - stack_after.push_back(stack_pos_after); - } - std::vector> next_stacks; - llama_grammar_advance_stack(rules, stack_after, next_stacks); - - auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); - for (const auto & tok : next_rejects) { - rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); - } - - return rejects; -} - -static std::vector llama_grammar_reject_candidates( - const std::vector> & rules, - const std::vector> & stacks, - const std::vector & candidates) { - LM_GGML_ASSERT(!stacks.empty()); // REVIEW - - if (candidates.empty()) { - return std::vector(); - } - - auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); - - for (size_t i = 1, size = stacks.size(); i < size; ++i) { - rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); - } - return rejects; -} - -static bool llama_grammar_detect_left_recursion( - const std::vector> & rules, - size_t rule_index, - std::vector * rules_visited, - std::vector * rules_in_progress, - std::vector * rules_may_be_empty) { - if ((*rules_in_progress)[rule_index]) { - return true; - } - - (*rules_in_progress)[rule_index] = true; - - const std::vector & rule = rules[rule_index]; - - // First check if the rule might produce the empty string. This could be done combined with the second - // step but it's more readable as two steps. - bool at_rule_start = true; - for (size_t i = 0; i < rule.size(); i++) { - if (llama_grammar_is_end_of_sequence(&rule[i])) { - if (at_rule_start) { - (*rules_may_be_empty)[rule_index] = true; - break; - } - at_rule_start = true; - } else { - at_rule_start = false; - } - } - - // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may - // be empty) - bool recurse_into_nonterminal = true; - for (size_t i = 0; i < rule.size(); i++) { - if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { - if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { - return true; - } - if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { - recurse_into_nonterminal = false; - } - } else if (llama_grammar_is_end_of_sequence(&rule[i])) { - recurse_into_nonterminal = true; - } else { - recurse_into_nonterminal = false; - } - } - - (*rules_in_progress)[rule_index] = false; - (*rules_visited)[rule_index] = true; - return false; -} - -// -// grammar - external -// - -struct llama_grammar * llama_grammar_init( - const llama_grammar_element ** rules, - size_t n_rules, - size_t start_rule_index) { - const llama_grammar_element * pos; - - // copy rule definitions into vectors - std::vector> vec_rules(n_rules); - for (size_t i = 0; i < n_rules; i++) { - for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { - vec_rules[i].push_back(*pos); - } - vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); - } - - // Check for left recursion - std::vector rules_visited(n_rules); - std::vector rules_in_progress(n_rules); - std::vector rules_may_be_empty(n_rules); - for (size_t i = 0; i < n_rules; i++) { - if (rules_visited[i]) { - continue; - } - if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { - LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i); - return nullptr; - } - } - - // loop over alternates of start rule to build initial stacks - std::vector> stacks; - pos = vec_rules[start_rule_index].data(); - do { - std::vector stack; - if (!llama_grammar_is_end_of_sequence(pos)) { - // if alternate is nonempty, add to stack - stack.push_back(pos); - } - llama_grammar_advance_stack(vec_rules, stack, stacks); - while (!llama_grammar_is_end_of_sequence(pos)) { - // scan to end of alternate def - pos++; - } - if (pos->type == LLAMA_GRETYPE_ALT) { - // there's another alternate def of this rule to process - pos++; - } else { - break; - } - } while (true); - - // Important: vec_rules has to be moved here, not copied, because stacks contains - // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar - // then the pointers would be invalidated when the local vec_rules goes out of scope. - return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; -} - -void llama_grammar_free(struct llama_grammar * grammar) { - delete grammar; -} - -struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { - llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; - - // redirect elements in stacks to point to new rules - for (size_t is = 0; is < result->stacks.size(); is++) { - for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { - for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { - for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { - if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { - result->stacks[is][ie] = &result->rules[ir0][ir1]; - } - } - } - } - } - - return result; -} - -// -// sampling -// - -void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { - if (seed == LLAMA_DEFAULT_SEED) { - seed = time(NULL); - } - ctx->rng.seed(seed); -} - -void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { - LM_GGML_ASSERT(candidates->size > 0); - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // Sort the logits in descending order - if (!candidates->sorted) { - std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - candidates->sorted = true; - } - - float max_l = candidates->data[0].logit; - float cum_sum = 0.0f; - for (size_t i = 0; i < candidates->size; ++i) { - float p = expf(candidates->data[i].logit - max_l); - candidates->data[i].p = p; - cum_sum += p; - } - for (size_t i = 0; i < candidates->size; ++i) { - candidates->data[i].p /= cum_sum; - } - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) { - // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast - // if (k >= (int32_t)candidates->size) { - // return; - // } - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - if (k <= 0) { - k = candidates->size; - } - - k = std::max(k, (int) min_keep); - k = std::min(k, (int) candidates->size); - - // Sort scores in descending order - if (!candidates->sorted) { - auto comp = [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }; - if (k <= 128) { - std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); - } else { - constexpr int nbuckets = 128; - constexpr float bucket_low = -10.0f; - constexpr float bucket_high = 10.0f; - constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); - constexpr float bucker_inter = -bucket_low * bucket_scale; - - std::vector bucket_idx(candidates->size); - std::vector histo(nbuckets, 0); - - for (int i = 0; i < (int)candidates->size; ++i) { - const float val = candidates->data[i].logit; - int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); - ib = std::max(0, std::min(nbuckets-1, ib)); - bucket_idx[i] = ib; - ++histo[ib]; - } - int nhave = 0; - int ib = nbuckets - 1; - for ( ; ib >= 0; --ib) { - nhave += histo[ib]; - if (nhave >= k) break; - } - std::vector tmp_tokens(nhave); - auto ptr = tmp_tokens.data(); - std::vector bucket_ptrs; - bucket_ptrs.reserve(nbuckets - ib); - for (int j = nbuckets - 1; j >= ib; --j) { - bucket_ptrs.push_back(ptr); - ptr += histo[j]; - } - for (int i = 0; i < (int)candidates->size; ++i) { - int j = bucket_idx[i]; - if (j >= ib) { - *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; - } - } - - ptr = tmp_tokens.data(); - int ndone = 0; - for (int j = nbuckets-1; j > ib; --j) { - std::sort(ptr, ptr + histo[j], comp); - ptr += histo[j]; - ndone += histo[j]; - } - std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); - - std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); - - } - candidates->sorted = true; - } - candidates->size = k; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - if (p >= 1.0f) { - return; - } - - llama_sample_softmax(ctx, candidates); - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // Compute the cumulative probabilities - float cum_sum = 0.0f; - size_t last_idx = candidates->size; - - for (size_t i = 0; i < candidates->size; ++i) { - cum_sum += candidates->data[i].p; - - // Check if the running sum is at least p or if we have kept at least min_keep tokens - // we set the last index to i+1 to indicate that the current iterate should be included in the set - if (cum_sum >= p && i + 1 >= min_keep) { - last_idx = i + 1; - break; - } - } - - // Resize the output vector to keep only the top-p tokens - candidates->size = last_idx; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - if (p <= 0.0f || !candidates->size) { - return; - } - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - bool min_p_applied = false; - - // if the candidates aren't sorted, try the unsorted implementation first - if (!candidates->sorted) { - std::vector filtered_tokens; - - float max_logit = -FLT_MAX; - for (size_t i = 0; i < candidates->size; ++i) { - max_logit = std::max(max_logit, candidates->data[i].logit); - } - const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max - - for (size_t i = 0; i < candidates->size; ++i) { - if (candidates->data[i].logit >= min_logit) { - filtered_tokens.push_back(candidates->data[i]); - } - } - - // if we have enough values the operation was a success - if (filtered_tokens.size() >= min_keep) { - memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); - candidates->size = filtered_tokens.size(); - min_p_applied = true; - } - } - - // if the candidates are sorted or the unsorted implementation failed, use this implementation - if (!min_p_applied) { - // Sort the logits in descending order - if (!candidates->sorted) { - std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - candidates->sorted = true; - } - - const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max - size_t i = 1; // first token always matches - - for (; i < candidates->size; ++i) { - if (candidates->data[i].logit < min_logit && i >= min_keep) { - break; // prob too small - } - } - - // Resize the output vector to keep only the matching tokens - candidates->size = i; - } - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { - if (z >= 1.0f || candidates->size <= 2) { - return; - } - - llama_sample_softmax(nullptr, candidates); - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // Compute the first and second derivatives - std::vector first_derivatives(candidates->size - 1); - std::vector second_derivatives(candidates->size - 2); - - for (size_t i = 0; i < first_derivatives.size(); ++i) { - first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; - } - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; - } - - // Calculate absolute value of second derivatives - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = std::abs(second_derivatives[i]); - } - - // Normalize the second derivatives - { - const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); - - if (second_derivatives_sum > 1e-6f) { - for (float & value : second_derivatives) { - value /= second_derivatives_sum; - } - } else { - for (float & value : second_derivatives) { - value = 1.0f / second_derivatives.size(); - } - } - } - - float cum_sum = 0.0f; - size_t last_idx = candidates->size; - for (size_t i = 0; i < second_derivatives.size(); ++i) { - cum_sum += second_derivatives[i]; - - // Check if the running sum is greater than z or if we have kept at least min_keep tokens - if (cum_sum > z && i >= min_keep) { - last_idx = i; - break; - } - } - - // Resize the output vector to keep only the tokens above the tail location - candidates->size = last_idx; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - // Reference implementation: - // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr - if (p >= 1.0f) { - return; - } - - // Compute the softmax of logits and calculate entropy - llama_sample_softmax(nullptr, candidates); - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - float entropy = 0.0f; - for (size_t i = 0; i < candidates->size; ++i) { - entropy += -candidates->data[i].p * logf(candidates->data[i].p); - } - - // Compute the absolute difference between negative log probability and entropy for each candidate - std::vector shifted_scores; - for (size_t i = 0; i < candidates->size; ++i) { - float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); - shifted_scores.push_back(shifted_score); - } - - // Sort tokens based on the shifted_scores and their corresponding indices - std::vector indices(candidates->size); - std::iota(indices.begin(), indices.end(), 0); - - std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { - return shifted_scores[a] < shifted_scores[b]; - }); - - // Compute the cumulative probabilities - float cum_sum = 0.0f; - size_t last_idx = indices.size(); - - for (size_t i = 0; i < indices.size(); ++i) { - size_t idx = indices[i]; - cum_sum += candidates->data[idx].p; - - // Check if the running sum is greater than typical or if we have kept at least min_keep tokens - if (cum_sum > p && i >= min_keep - 1) { - last_idx = i + 1; - break; - } - } - - // Resize the output vector to keep only the locally typical tokens - std::vector new_candidates; - for (size_t i = 0; i < last_idx; ++i) { - size_t idx = indices[i]; - new_candidates.push_back(candidates->data[idx]); - } - - // Replace the data in candidates with the new_candidates data - std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); - candidates->size = new_candidates.size(); - candidates->sorted = false; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // no need to do anything if there is only one (or zero) candidates - if(candidates_p->size <= 1) { - return; - } - - // Calculate maximum possible entropy - float max_entropy = -logf(1.0f / candidates_p->size); - - llama_sample_softmax(nullptr, candidates_p); - - // Calculate entropy of the softmax probabilities - float entropy = 0.0f; - for (size_t i = 0; i < candidates_p->size; ++i) { - float prob = candidates_p->data[i].p; - if (prob > 0.0f) { // Ensure no log(0) - entropy -= prob * logf(prob); - } - } - - // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above) - float normalized_entropy = entropy / max_entropy; - - // Map the normalized entropy to the desired temperature range using the power function - float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); - -#ifdef DEBUG - LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); - LLAMA_LOG_INFO("Entropy: %f\n", entropy); - LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); - LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); - LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); - LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); -#endif - - // Apply the dynamically calculated temperature scaling - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].logit /= dyn_temp; - } - - // Re-compute softmax probabilities after scaling logits with dynamic temperature - double max_l_double = candidates_p->data[0].logit; - double cum_sum_double = 0.0; - for (size_t i = 0; i < candidates_p->size; ++i) { - double p = exp(candidates_p->data[i].logit - max_l_double); - candidates_p->data[i].p = p; // Store the scaled probability - cum_sum_double += p; - } - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities - } - -#ifdef DEBUG - // Print the updated top 25 probabilities after temperature scaling - LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); - for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) { - LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f); - } -#endif - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { - const int64_t t_start_sample_us = lm_ggml_time_us(); - - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].logit /= temp; - } - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_repetition_penalties( - struct llama_context * ctx, - llama_token_data_array * candidates, - const llama_token * last_tokens, - size_t penalty_last_n, - float penalty_repeat, - float penalty_freq, - float penalty_present) { - if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { - return; - } - - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // Create a frequency map to count occurrences of each token in last_tokens - std::unordered_map token_count; - for (size_t i = 0; i < penalty_last_n; ++i) { - token_count[last_tokens[i]]++; - } - - // Apply frequency and presence penalties to the candidates - for (size_t i = 0; i < candidates->size; ++i) { - const auto token_iter = token_count.find(candidates->data[i].id); - if (token_iter == token_count.end()) { - continue; - } - - const int count = token_iter->second; - - // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. - // This is common fix for this problem, which is to multiply by the penalty instead of dividing. - if (candidates->data[i].logit <= 0) { - candidates->data[i].logit *= penalty_repeat; - } else { - candidates->data[i].logit /= penalty_repeat; - } - - candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; - } - - candidates->sorted = false; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { - LM_GGML_ASSERT(ctx); - int64_t t_start_sample_us = lm_ggml_time_us(); - - bool allow_eog = false; - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - allow_eog = true; - break; - } - } - - std::vector, llama_partial_utf8>> candidates_decoded; - candidates_decoded.reserve(candidates->size); - - std::vector candidates_grammar; - candidates_grammar.reserve(candidates->size); - - for (size_t i = 0; i < candidates->size; ++i) { - const llama_token id = candidates->data[i].id; - const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id); - - if (llama_token_is_eog(&ctx->model, id)) { - if (!allow_eog) { - candidates->data[i].logit = -INFINITY; - } - } else if (piece.empty() || piece[0] == 0) { - candidates->data[i].logit = -INFINITY; - } else { - candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); - candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); - } - } - - const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); - for (const auto & reject : rejects) { - candidates->data[reject.index].logit = -INFINITY; - } - - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; -} - -static void llama_log_softmax(float * array, size_t size) { - float max_l = *std::max_element(array, array + size); - float sum = 0.f; - for (size_t i = 0; i < size; ++i) { - float p = expf(array[i] - max_l); - sum += p; - array[i] = p; - } - - for (size_t i = 0; i < size; ++i) { - array[i] = logf(array[i] / sum); - } -} - -void llama_sample_apply_guidance( - struct llama_context * ctx, - float * logits, - float * logits_guidance, - float scale) { - LM_GGML_ASSERT(ctx); - - const auto t_start_sample_us = lm_ggml_time_us(); - const auto n_vocab = llama_n_vocab(llama_get_model(ctx)); - - llama_log_softmax(logits, n_vocab); - llama_log_softmax(logits_guidance, n_vocab); - - for (int i = 0; i < n_vocab; ++i) { - auto & l = logits[i]; - const auto & g = logits_guidance[i]; - - l = scale * (l - g) + g; - } - - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; -} - -llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { - LM_GGML_ASSERT(ctx); - - auto N = float(llama_n_vocab(llama_get_model(ctx))); - int64_t t_start_sample_us; - t_start_sample_us = lm_ggml_time_us(); - - llama_sample_softmax(nullptr, candidates); - - // Estimate s_hat using the most probable m tokens - float s_hat = 0.0; - float sum_ti_bi = 0.0; - float sum_ti_sq = 0.0; - for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { - float t_i = logf(float(i + 2) / float(i + 1)); - float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); - sum_ti_bi += t_i * b_i; - sum_ti_sq += t_i * t_i; - } - s_hat = sum_ti_bi / sum_ti_sq; - - // Compute k from the estimated s_hat and target surprise value - float epsilon_hat = s_hat - 1; - float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); - - // Sample the next word X using top-k sampling - llama_sample_top_k(nullptr, candidates, int(k), 1); - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - llama_token X = llama_sample_token(ctx, candidates); - t_start_sample_us = lm_ggml_time_us(); - - // Compute error as the difference between observed surprise and target surprise value - size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return candidate.id == X; - })); - float observed_surprise = -log2f(candidates->data[X_idx].p); - float e = observed_surprise - tau; - - // Update mu using the learning rate and error - *mu = *mu - eta * e; - - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - return X; -} - -llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { - int64_t t_start_sample_us; - t_start_sample_us = lm_ggml_time_us(); - - llama_sample_softmax(ctx, candidates); - - // Truncate the words with surprise values greater than mu - candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return -log2f(candidate.p) > *mu; - })); - - if (candidates->size == 0) { - candidates->size = 1; - } - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } - - // Normalize the probabilities of the remaining words - llama_sample_softmax(ctx, candidates); - - // Sample the next word X from the remaining words - llama_token X = llama_sample_token(ctx, candidates); - t_start_sample_us = lm_ggml_time_us(); - - // Compute error as the difference between observed surprise and target surprise value - size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return candidate.id == X; - })); - float observed_surprise = -log2f(candidates->data[X_idx].p); - float e = observed_surprise - tau; - - // Update mu using the learning rate and error - *mu = *mu - eta * e; - - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - } - return X; -} - -llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { - const int64_t t_start_sample_us = lm_ggml_time_us(); - - // Find max element - auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit < b.logit; - }); - - llama_token result = max_iter->id; - if (ctx) { - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - ctx->n_sample++; - } - return result; -} - -llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) { - LM_GGML_ASSERT(ctx); - - const int64_t t_start_sample_us = lm_ggml_time_us(); - llama_sample_softmax(nullptr, candidates); - - std::vector probs; - probs.reserve(candidates->size); - for (size_t i = 0; i < candidates->size; ++i) { - probs.push_back(candidates->data[i].p); - } - - std::discrete_distribution<> dist(probs.begin(), probs.end()); - int idx = dist(rng); - - llama_token result = candidates->data[idx].id; - - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; - ctx->n_sample++; - return result; -} - -llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { - return llama_sample_token_with_rng(ctx, candidates, ctx->rng); -} - -void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { - const int64_t t_start_sample_us = lm_ggml_time_us(); - - if (llama_token_is_eog(&ctx->model, token)) { - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - return; - } - } - LM_GGML_ASSERT(false); - } - - const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token); - - // Note terminating 0 in decoded string - const auto decoded = decode_utf8(piece, grammar->partial_utf8); - const auto & code_points = decoded.first; - std::vector> tmp_new_stacks; - for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { - llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks); - grammar->stacks = tmp_new_stacks; - } - grammar->partial_utf8 = decoded.second; - LM_GGML_ASSERT(!grammar->stacks.empty()); - - ctx->t_sample_us += lm_ggml_time_us() - t_start_sample_us; -} - -// -// quantization -// - -struct quantize_state_internal { - const llama_model & model; - const llama_model_quantize_params * params; - - int n_attention_wv = 0; - int n_ffn_down = 0; - int n_ffn_gate = 0; - int n_ffn_up = 0; - int i_attention_wv = 0; - int i_ffn_down = 0; - int i_ffn_gate = 0; - int i_ffn_up = 0; - - int n_k_quantized = 0; - int n_fallback = 0; - - bool has_imatrix = false; - - // used to figure out if a model shares tok_embd with the output weight - bool has_output = false; - - quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) - : model(model) - , params(params) - {} -}; - -static void llama_tensor_dequantize_internal( - struct lm_ggml_tensor * tensor, std::vector> & output, std::vector & workers, - const size_t nelements, const int nthread -) { - if (output.size() < nelements) { - output.resize(nelements); - } - float * f32_output = (float *) output.data(); - - lm_ggml_type_traits_t qtype; - if (lm_ggml_is_quantized(tensor->type)) { - qtype = lm_ggml_internal_get_type_traits(tensor->type); - if (qtype.to_float == NULL) { - throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", lm_ggml_type_name(tensor->type))); - } - } else if (tensor->type != LM_GGML_TYPE_F16 && - tensor->type != LM_GGML_TYPE_BF16) { - throw std::runtime_error(format("cannot dequantize/convert tensor type %s", lm_ggml_type_name(tensor->type))); - } - - if (nthread < 2) { - if (tensor->type == LM_GGML_TYPE_F16) { - lm_ggml_fp16_to_fp32_row((lm_ggml_fp16_t *)tensor->data, f32_output, nelements); - } else if (tensor->type == LM_GGML_TYPE_BF16) { - lm_ggml_bf16_to_fp32_row((lm_ggml_bf16_t *)tensor->data, f32_output, nelements); - } else if (lm_ggml_is_quantized(tensor->type)) { - qtype.to_float(tensor->data, f32_output, nelements); - } else { - LM_GGML_ASSERT(false); // unreachable - } - return; - } - - size_t block_size; - if (tensor->type == LM_GGML_TYPE_F16 || - tensor->type == LM_GGML_TYPE_BF16) { - block_size = 1; - } else { - block_size = (size_t)lm_ggml_blck_size(tensor->type); - } - - size_t block_size_bytes = lm_ggml_type_size(tensor->type); - - LM_GGML_ASSERT(nelements % block_size == 0); - size_t nblocks = nelements / block_size; - size_t blocks_per_thread = nblocks / nthread; - size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count - - size_t in_buff_offs = 0; - size_t out_buff_offs = 0; - - for (int tnum = 0; tnum < nthread; tnum++) { - size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread - size_t thr_elems = thr_blocks * block_size; // number of elements for this thread - size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread - - auto compute = [qtype] (lm_ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { - if (typ == LM_GGML_TYPE_F16) { - lm_ggml_fp16_to_fp32_row((lm_ggml_fp16_t *)inbuf, outbuf, nels); - } else if (typ == LM_GGML_TYPE_BF16) { - lm_ggml_bf16_to_fp32_row((lm_ggml_bf16_t *)inbuf, outbuf, nels); - } else { - qtype.to_float(inbuf, outbuf, nels); - } - }; - workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); - in_buff_offs += thr_block_bytes; - out_buff_offs += thr_elems; - } - for (auto & w : workers) { w.join(); } - workers.clear(); -} - -static lm_ggml_type llama_tensor_get_type(quantize_state_internal & qs, lm_ggml_type new_type, const lm_ggml_tensor * tensor, llama_ftype ftype) { - const std::string name = lm_ggml_get_name(tensor); - - // TODO: avoid hardcoded tensor names - use the TN_* constants - const llm_arch arch = qs.model.arch; - const auto tn = LLM_TN(arch); - - auto use_more_bits = [](int i_layer, int n_layers) -> bool { - return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; - }; - const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); - auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { - if (n_expert > 1) { - // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly - // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work - // for getting the current layer as I initially thought, and we need to resort to parsing the - // tensor name. - if (sscanf(name, "blk.%d.", &i_layer) != 1) { - throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); - } - if (i_layer < 0 || i_layer >= n_layer) { - throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); - } - } - return std::make_pair(i_layer, n_layer); - }; - - // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings - // with the quantization of the output tensor - if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { - if (qs.params->output_tensor_type < LM_GGML_TYPE_COUNT) { - new_type = qs.params->output_tensor_type; - } else { - int nx = tensor->ne[0]; - if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { - new_type = LM_GGML_TYPE_Q8_0; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - new_type = LM_GGML_TYPE_Q5_K; - } - else if (new_type != LM_GGML_TYPE_Q8_0) { - new_type = LM_GGML_TYPE_Q6_K; - } - } - } else if (name == "token_embd.weight") { - if (qs.params->token_embedding_type < LM_GGML_TYPE_COUNT) { - new_type = qs.params->token_embedding_type; - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - new_type = LM_GGML_TYPE_Q2_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { - new_type = LM_GGML_TYPE_IQ3_S; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = LM_GGML_TYPE_IQ3_S; - } - else if (new_type == LM_GGML_TYPE_Q4_0_4_4 || new_type == LM_GGML_TYPE_Q4_0_4_8 || - new_type == LM_GGML_TYPE_Q4_0_8_8) { - new_type = LM_GGML_TYPE_Q4_0; - } - } - } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - if (name.find("attn_v.weight") != std::string::npos) { - if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = LM_GGML_TYPE_Q4_K; - else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? LM_GGML_TYPE_IQ3_S : LM_GGML_TYPE_Q2_K; - ++qs.i_attention_wv; + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + if (name.find("attn_v.weight") != std::string::npos) { + if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = LM_GGML_TYPE_Q4_K; + else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? LM_GGML_TYPE_IQ3_S : LM_GGML_TYPE_Q2_K; + ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { new_type = LM_GGML_TYPE_Q4_K; @@ -18816,6 +16226,10 @@ int32_t llama_lora_adapter_remove( return -1; } +void llama_lora_adapter_clear(struct llama_context * ctx) { + ctx->lora_adapters.clear(); +} + void llama_lora_adapter_free(struct llama_lora_adapter * adapter) { delete adapter; } @@ -19142,8 +16556,8 @@ struct llama_context * llama_new_context_with_model( ctx->abort_callback = params.abort_callback; ctx->abort_callback_data = params.abort_callback_data; - ctx->rng = std::mt19937(params.seed); - ctx->logits_all = params.logits_all; + ctx->sampling.rng = std::mt19937(params.seed); + ctx->logits_all = params.logits_all; uint32_t kv_size = cparams.n_ctx; lm_ggml_type type_k = params.type_k; @@ -19235,9 +16649,7 @@ struct llama_context * llama_new_context_with_model( for (int i = 0; i < lm_ggml_backend_sycl_get_device_count(); ++i) { lm_ggml_backend_t backend = lm_ggml_backend_sycl_init(i); if (backend == nullptr) { - int id_list[LM_GGML_SYCL_MAX_DEVICES]; - lm_ggml_sycl_get_gpu_list(id_list, LM_GGML_SYCL_MAX_DEVICES); - LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i); + LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i); llama_free(ctx); return nullptr; } @@ -19419,10 +16831,14 @@ void llama_free(struct llama_context * ctx) { delete ctx; } -const llama_model * llama_get_model(const struct llama_context * ctx) { +const struct llama_model * llama_get_model(const struct llama_context * ctx) { return &ctx->model; } +const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) { + return &ctx->model.vocab; +} + uint32_t llama_n_ctx(const struct llama_context * ctx) { return ctx->cparams.n_ctx; } @@ -19496,8 +16912,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { // all model arches should be listed explicitly here case LLM_ARCH_UNKNOWN: - LM_GGML_ASSERT(false && "unknown architecture"); - break; + LM_GGML_ABORT("unknown architecture"); } return LLAMA_ROPE_TYPE_NONE; @@ -20011,7 +17426,7 @@ static void llama_state_get_data_internal(struct llama_context * ctx, llama_data // copy rng { std::ostringstream rng_ss; - rng_ss << ctx->rng; + rng_ss << ctx->sampling.rng; const std::string & rng_str = rng_ss.str(); const size_t rng_size = rng_str.size(); @@ -20177,7 +17592,7 @@ size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { std::string rng_str((const char *)inp, rng_size); inp += rng_size; std::istringstream rng_ss(rng_str); - rng_ss >> ctx->rng; + rng_ss >> ctx->sampling.rng; LM_GGML_ASSERT(!rng_ss.fail()); } @@ -21061,7 +18476,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); #endif return nullptr; } @@ -21106,7 +18521,7 @@ float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG - LM_GGML_ASSERT(false); + LM_GGML_ABORT("fatal error"); #endif return nullptr; } @@ -21123,79 +18538,81 @@ float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id return it->second.data(); } +// +// vocab +// + const char * llama_token_get_text(const struct llama_model * model, llama_token token) { - LM_GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].text.c_str(); + return llama_token_get_text_impl(model->vocab, token); } float llama_token_get_score(const struct llama_model * model, llama_token token) { - LM_GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].score; + return llama_token_get_score_impl(model->vocab, token); } -llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) { - LM_GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].attr; +enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) { + return llama_token_get_attr_impl(model->vocab, token); } bool llama_token_is_eog(const struct llama_model * model, llama_token token) { - return token != -1 && ( - token == llama_token_eos(model) || - token == llama_token_eot(model) - ); + return llama_token_is_eog_impl(model->vocab, token); } bool llama_token_is_control(const struct llama_model * model, llama_token token) { - return llama_is_control_token(model->vocab, token); + return llama_token_is_control_impl(model->vocab, token); } llama_token llama_token_bos(const struct llama_model * model) { - return model->vocab.special_bos_id; + return llama_token_bos_impl(model->vocab); } llama_token llama_token_eos(const struct llama_model * model) { - return model->vocab.special_eos_id; + return llama_token_eos_impl(model->vocab); } llama_token llama_token_cls(const struct llama_model * model) { - return model->vocab.special_cls_id; + return llama_token_cls_impl(model->vocab); } llama_token llama_token_sep(const struct llama_model * model) { - return model->vocab.special_sep_id; + return llama_token_sep_impl(model->vocab); +} + +llama_token llama_token_nl (const struct llama_model * model) { + return llama_token_nl_impl(model->vocab); } -llama_token llama_token_nl(const struct llama_model * model) { - return model->vocab.linefeed_id; +llama_token llama_token_pad(const struct llama_model * model) { + return llama_token_pad_impl(model->vocab); } int32_t llama_add_bos_token(const struct llama_model * model) { - return model->vocab.tokenizer_add_bos; + return llama_add_bos_token_impl(model->vocab); } int32_t llama_add_eos_token(const struct llama_model * model) { - return model->vocab.tokenizer_add_eos; + return llama_add_eos_token_impl(model->vocab); } llama_token llama_token_prefix(const struct llama_model * model) { - return model->vocab.special_prefix_id; + return llama_token_prefix_impl(model->vocab); } llama_token llama_token_middle(const struct llama_model * model) { - return model->vocab.special_middle_id; + return llama_token_middle_impl(model->vocab); } llama_token llama_token_suffix(const struct llama_model * model) { - return model->vocab.special_suffix_id; + return llama_token_suffix_impl(model->vocab); } llama_token llama_token_eot(const struct llama_model * model) { - return model->vocab.special_eot_id; + return llama_token_eot_impl(model->vocab); } -llama_token llama_token_pad(const struct llama_model * model) { - return model->vocab.special_pad_id; -} +// +// tokenization +// int32_t llama_tokenize( const struct llama_model * model, @@ -21205,229 +18622,33 @@ int32_t llama_tokenize( int32_t n_tokens_max, bool add_special, bool parse_special) { - auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special); - if (n_tokens_max < (int) res.size()) { - // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); - return -((int) res.size()); - } - - for (size_t i = 0; i < res.size(); i++) { - tokens[i] = res[i]; - } - - return res.size(); -} - -static std::string llama_decode_text(const std::string & text) { - std::string decoded_text; - - const auto cpts = unicode_cpts_from_utf8(text); - for (const auto cpt : cpts) { - const auto utf8 = unicode_cpt_to_utf8(cpt); - try { - decoded_text += unicode_utf8_to_byte(utf8); - } catch (const std::out_of_range & /*e*/) { - decoded_text += "[UNK_BYTE_0x"; - for (const auto c : utf8) { - decoded_text += format("%02x", (uint8_t) c); - } - decoded_text += text + "]"; - } - } - - return decoded_text; + return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special); } -// does not write null-terminator to buf -int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) { - // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 - static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL; - const llama_token_attr attr = llama_token_get_attr(model, token); - if (!special && (attr & attr_special)) { - return 0; - } - - // copy piece chars to output text buffer - // skip up to 'lstrip' leading spaces before copying - auto _try_copy = [=] (const char * token, size_t size) -> int32_t { - for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) { - token++; - size--; - } - if (length < (int32_t)size) { - return -(int32_t) size; - } - memcpy(buf, token, size); - return (int32_t) size; - }; - - // if we have a cache - use it - { - const auto & cache = model->vocab.cache_token_to_piece; - - if (!cache.empty()) { - const auto & result = cache.at(token); - return _try_copy(result.data(), result.size()); - } - } - - if (0 <= token && token < llama_n_vocab(model)) { - const std::string & token_text = model->vocab.id_to_token[token].text; - switch (llama_vocab_get_type(model->vocab)) { - case LLAMA_VOCAB_TYPE_WPM: - case LLAMA_VOCAB_TYPE_SPM: - case LLAMA_VOCAB_TYPE_UGM: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { - return _try_copy(token_text.data(), token_text.size()); - } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { - std::string result = token_text; - llama_unescape_whitespace(result); - return _try_copy(result.data(), result.size()); - } else if (attr & LLAMA_TOKEN_ATTR_BYTE) { - char byte = (char) llama_token_to_byte(model->vocab, token); - return _try_copy((char*) &byte, 1); - } - break; - } - case LLAMA_VOCAB_TYPE_BPE: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { - return _try_copy(token_text.data(), token_text.size()); - } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { - std::string result = llama_decode_text(token_text); - return _try_copy(result.data(), result.size()); - } - break; - } - default: - LM_GGML_ASSERT(false); - } - } - return 0; +int32_t llama_token_to_piece( + const struct llama_model * model, + llama_token token, + char * buf, + int32_t length, + int32_t lstrip, + bool special) { + return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special); } int32_t llama_detokenize( - const struct llama_model * model, - const llama_token * tokens, - int32_t n_tokens, - char * text, - int32_t text_len_max, - bool remove_special, - bool unparse_special) { - int32_t avail = text_len_max; - int32_t total = 0; - - // remove the leading space - bool remove_space = model->vocab.tokenizer_add_space_prefix; - - if (remove_special && model->vocab.tokenizer_add_bos) { - if (n_tokens > 0 && tokens[0] == model->vocab.special_bos_id) { - remove_space = false; - n_tokens--; - tokens++; - } - } - - if (remove_special && model->vocab.tokenizer_add_eos) { - if (n_tokens > 0 && tokens[n_tokens-1] == model->vocab.special_eos_id) { - n_tokens--; - } - } - - for (int32_t i = 0; i < n_tokens; ++i) { - LM_GGML_ASSERT(avail >= 0); - int32_t n_chars = llama_token_to_piece(model, tokens[i], text, avail, remove_space, unparse_special); - remove_space = false; - if (n_chars < 0) { - avail = 0; - total -= n_chars; - } else if (n_chars > 0) { - avail -= n_chars; - text += n_chars; - total += n_chars; - } - } - - if (total > text_len_max) { - return -total; - } - - if (model->vocab.tokenizer_clean_spaces) { - text -= total; // restart text - - // first pass: characters ?!., //TODO: where do these characters come from? - const int32_t total1 = total; - total = total ? 1 : 0; - for (int32_t i = 1; i < total1; ++i) { - const char x = text[i]; - if (text[i - 1] == ' ') { - if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ," - total--; // remove space - } - } - text[total++] = x; - } - - // second pass: strip single apostrophe between spaces - const int32_t total2 = total; - total = total ? 1 : 0; - for (int32_t i = 1; i < total2; ++i) { - const char x = text[i]; - if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' " - total--; // remove prev space - text[++i] = '\0'; // remove next space - } - text[total++] = x; - } - - // third pass: apostrophe contractions //NOTE: this makes sense? - const int32_t total3 = total; - total = total ? 1 : 0; - for (int32_t i = 1; i < total3; ++i) { - const char x = text[i]; - if (text[i - 1] == ' ') { - if (x == '\'' && i + 1 < total3) { - const char x1 = text[i + 1]; - if (x1 == 't' || x1 == 'd') { // " 't", " 'd" - //total--; // remove space - } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm" - total--; // remove space - } else if (i + 2 < total3) { - const char x2 = text[i + 2]; - if ((x1 == 'l' && x2 == 'l')) { // " 'll" - //total--; // remove space - } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've" - total--; // remove space - } else { - //total--; // remove space - } - } else { - //total--; // remove space - } - } - } - text[total++] = x; - } - } - - return total <= text_len_max ? total : -total; + const struct llama_model * model, + const llama_token * tokens, + int32_t n_tokens, + char * text, + int32_t text_len_max, + bool remove_special, + bool unparse_special) { + return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special); } -// trim whitespace from the beginning and end of a string -static std::string trim(const std::string & str) { - size_t start = 0; - size_t end = str.size(); - while (start < end && isspace(str[start])) { - start += 1; - } - while (end > start && isspace(str[end - 1])) { - end -= 1; - } - return str.substr(start, end - start); -} +// +// chat templates +// // Simple version of "llama_apply_chat_template" that only works with strings // This function uses heuristic checks to determine commonly used template. It is not a jinja parser. @@ -21678,7 +18899,7 @@ static int32_t llama_chat_apply_template_internal( return dest.size(); } -LLAMA_API int32_t llama_chat_apply_template( +int32_t llama_chat_apply_template( const struct llama_model * model, const char * tmpl, const struct llama_chat_message * chat, @@ -21719,7 +18940,126 @@ LLAMA_API int32_t llama_chat_apply_template( return res; } -LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { +// +// grammar +// + +struct llama_grammar * llama_grammar_init( + const llama_grammar_element ** rules, + size_t n_rules, + size_t start_rule_index) { + return llama_grammar_init_impl(rules, n_rules, start_rule_index); +} + +void llama_grammar_free(struct llama_grammar * grammar) { + llama_grammar_free_impl(grammar); +} + +struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { + return llama_grammar_copy_impl(grammar); +} + +void llama_grammar_sample( + const struct llama_grammar * grammar, + const struct llama_context * ctx, + llama_token_data_array * candidates) { + llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates); +} + +void llama_sample_grammar( + struct llama_context * ctx, + llama_token_data_array * candidates, + const struct llama_grammar * grammar) { + llama_grammar_sample(grammar, ctx, candidates); +} + +void llama_grammar_accept_token( + struct llama_grammar * grammar, + struct llama_context * ctx, + llama_token token) { + llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token); +} + +// +// sampling +// + +void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { + llama_set_rng_seed_impl(&ctx->sampling, seed); +} + +void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { + llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates); +} + +void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) { + llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep); +} + +void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep); +} + +void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep); +} + +void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { + llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep); +} + +void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep); +} + +void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { + llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val); +} + +void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { + llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp); +} + +void llama_sample_repetition_penalties( + struct llama_context * ctx, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present) { + llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present); +} + +void llama_sample_apply_guidance( + struct llama_context * ctx, + float * logits, + float * logits_guidance, + float scale) { + llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale); +} + +llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { + return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu); +} + +llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { + return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu); +} + +llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { + return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates); +} + +llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) { + return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng); +} + +llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { + return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng); +} + +int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf"; if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) { return strlen(split_path); @@ -21748,11 +19088,11 @@ struct llama_timings llama_get_timings(struct llama_context * ctx) { /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, /*.t_end_ms =*/ 1.00 * lm_ggml_time_ms(), /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, - /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, + /*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us, /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, - /*.n_sample =*/ std::max(1, ctx->n_sample), + /*.n_sample =*/ std::max(1, ctx->sampling.n_sample), /*.n_p_eval =*/ std::max(0, ctx->n_p_eval), /*.n_eval =*/ std::max(1, ctx->n_eval), }; @@ -21775,10 +19115,11 @@ void llama_print_timings(struct llama_context * ctx) { } void llama_reset_timings(struct llama_context * ctx) { - ctx->t_start_us = lm_ggml_time_us(); - ctx->t_sample_us = ctx->n_sample = 0; + ctx->t_start_us = lm_ggml_time_us(); ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; + + ctx->sampling.reset_timings(); } const char * llama_print_system_info(void) { @@ -21804,11 +19145,7 @@ const char * llama_print_system_info(void) { s += "SSSE3 = " + std::to_string(lm_ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(lm_ggml_cpu_has_vsx()) + " | "; s += "MATMUL_INT8 = " + std::to_string(lm_ggml_cpu_has_matmul_int8()) + " | "; -#ifdef LM_GGML_USE_LLAMAFILE - s += "LLAMAFILE = 1 | "; -#else - s += "LLAMAFILE = 0 | "; -#endif + s += "LLAMAFILE = " + std::to_string(lm_ggml_cpu_has_llamafile()) + " | "; return s.c_str(); } @@ -21825,20 +19162,20 @@ void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n", 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval); fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n", - 1.0e-3 * ctx->t_sample_us / ctx->n_sample); + 1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample); fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); - fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); + fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->sampling.n_sample); fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); - fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); + fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->sampling.t_sample_us); fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", 1.0e6 * ctx->n_eval / ctx->t_eval_us); fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us); fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n", - 1.0e6 * ctx->n_sample / ctx->t_sample_us); + 1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us); } // For internal test use @@ -21877,14 +19214,14 @@ static void llama_log_internal_v(lm_ggml_log_level level, const char * format, v va_end(args_copy); } -static void llama_log_internal(lm_ggml_log_level level, const char * format, ...) { +void llama_log_internal(lm_ggml_log_level level, const char * format, ...) { va_list args; va_start(args, format); llama_log_internal_v(level, format, args); va_end(args); } -static void llama_log_callback_default(lm_ggml_log_level level, const char * text, void * user_data) { +void llama_log_callback_default(lm_ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); diff --git a/cpp/llama.h b/cpp/llama.h index 7ca44d5..b252686 100644 --- a/cpp/llama.h +++ b/cpp/llama.h @@ -529,12 +529,16 @@ extern "C" { struct llama_lora_adapter * adapter, float scale); - // Remove a LoRA adapter from given context + // Remove a specific LoRA adapter from given context // Return -1 if the adapter is not present in the context LLAMA_API int32_t llama_lora_adapter_remove( struct llama_context * ctx, struct llama_lora_adapter * adapter); + // Remove all LoRA adapters from given context + LLAMA_API void llama_lora_adapter_clear( + struct llama_context * ctx); + // Manually free a LoRA adapter // Note: loaded adapters will be free when the associated model is deleted LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter); @@ -906,10 +910,10 @@ extern "C" { LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model); + LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model); // Returns -1 if unknown, 1 for true or 0 for false. - LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model); + LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model); // Codellama infill tokens LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix @@ -965,6 +969,10 @@ extern "C" { bool remove_special, bool unparse_special); + // + // Chat templates + // + /// Apply chat template. Inspired by hf apply_chat_template() on python. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template @@ -1003,6 +1011,23 @@ extern "C" { LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar); + /// @details Apply constraints from grammar + LLAMA_API void llama_grammar_sample( + const struct llama_grammar * grammar, + const struct llama_context * ctx, + llama_token_data_array * candidates); + LLAMA_API DEPRECATED(void llama_sample_grammar( + struct llama_context * ctx, + llama_token_data_array * candidates, + const struct llama_grammar * grammar), + "use llama_grammar_sample instead"); + + /// @details Accepts the sampled token into the grammar + LLAMA_API void llama_grammar_accept_token( + struct llama_grammar * grammar, + struct llama_context * ctx, + llama_token token); + // // Sampling functions // @@ -1084,12 +1109,6 @@ extern "C" { llama_token_data_array * candidates, float temp); - /// @details Apply constraints from grammar - LLAMA_API void llama_sample_grammar( - struct llama_context * ctx, - llama_token_data_array * candidates, - const struct llama_grammar * grammar); - /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @@ -1127,12 +1146,6 @@ extern "C" { struct llama_context * ctx, llama_token_data_array * candidates); - /// @details Accepts the sampled token into the grammar - LLAMA_API void llama_grammar_accept_token( - struct llama_context * ctx, - struct llama_grammar * grammar, - llama_token token); - // // Model split // @@ -1175,38 +1188,45 @@ extern "C" { struct lm_ggml_tensor; +const std::vector> & llama_internal_get_tensor_map( + struct llama_context * ctx +); + struct llama_partial_utf8 { uint32_t value; // bit value so far (unshifted) int n_remain; // num bytes remaining; -1 indicates invalid sequence }; -struct llama_grammar { - const std::vector> rules; - std::vector> stacks; - - // buffer for partially generated UTF-8 sequence from accepted tokens - llama_partial_utf8 partial_utf8; -}; - struct llama_grammar_candidate { size_t index; const uint32_t * code_points; llama_partial_utf8 partial_utf8; }; -const std::vector> & llama_internal_get_tensor_map( - struct llama_context * ctx -); +using llama_grammar_rule = std::vector< llama_grammar_element>; +using llama_grammar_stack = std::vector; + +using llama_grammar_rules = std::vector; +using llama_grammar_stacks = std::vector; +using llama_grammar_candidates = std::vector; + +const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar); + llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar); void llama_grammar_accept( - const std::vector> & rules, - const std::vector> & stacks, - const uint32_t chr, - std::vector> & new_stacks); + const llama_grammar_rules & rules, + const llama_grammar_stacks & stacks, + const uint32_t chr, + llama_grammar_stacks & new_stacks); + +std::vector llama_grammar_reject_candidates_for_stack( + const llama_grammar_rules & rules, + const llama_grammar_stack & stack, + const llama_grammar_candidates & candidates); std::pair, llama_partial_utf8> decode_utf8( const std::string & src, - llama_partial_utf8 partial_start); + llama_partial_utf8 partial_start); // Randomly selects a token from the candidates based on their probabilities using given std::mt19937. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences. diff --git a/cpp/sampling.cpp b/cpp/sampling.cpp index 794aa43..e99bbae 100644 --- a/cpp/sampling.cpp +++ b/cpp/sampling.cpp @@ -330,7 +330,7 @@ static llama_token llama_sampling_sample_impl( llama_token_data_array single_token_data_array = { &single_token_data, 1, false }; // Apply grammar constraints to the single token - llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar); + llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array); // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY bool is_valid = single_token_data_array.data[0].logit != -INFINITY; @@ -421,7 +421,7 @@ static llama_token_data_array llama_sampling_prepare_impl( // apply grammar checks before sampling logic if (apply_grammar && ctx_sampling->grammar != NULL) { - llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar); + llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p); } return cur_p; @@ -455,6 +455,6 @@ void llama_sampling_accept( ctx_sampling->prev.push_back(id); if (ctx_sampling->grammar != NULL && apply_grammar) { - llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id); + llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id); } } diff --git a/cpp/unicode.cpp b/cpp/unicode.cpp index e05fb9d..46650bf 100644 --- a/cpp/unicode.cpp +++ b/cpp/unicode.cpp @@ -19,6 +19,12 @@ #include #include +size_t unicode_len_utf8(char src) { + const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; + uint8_t highbits = static_cast(src) >> 4; + return lookup[highbits]; +} + static std::string unicode_cpts_to_utf8(const std::vector & cps) { std::string result; for (size_t i = 0; i < cps.size(); ++i) { diff --git a/cpp/unicode.h b/cpp/unicode.h index 30b07ba..008532a 100644 --- a/cpp/unicode.h +++ b/cpp/unicode.h @@ -4,6 +4,8 @@ #include #include +// TODO: prefix all symbols with "llama_" + struct codepoint_flags { enum { UNDEFINED = 0x0001, @@ -46,6 +48,7 @@ struct codepoint_flags { } }; +size_t unicode_len_utf8(char src); std::string unicode_cpt_to_utf8(uint32_t cp); uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset); diff --git a/llama.cpp b/llama.cpp index 081fe43..2b1f616 160000 --- a/llama.cpp +++ b/llama.cpp @@ -1 +1 @@ -Subproject commit 081fe431aa8fb6307145c4feb3eed4f48cab19f8 +Subproject commit 2b1f616b208a4a21c4ee7a7eb85d822ff1d787af diff --git a/scripts/bootstrap.sh b/scripts/bootstrap.sh index 88a374d..195427e 100755 --- a/scripts/bootstrap.sh +++ b/scripts/bootstrap.sh @@ -14,16 +14,25 @@ cp ./llama.cpp/ggml/src/ggml-backend.c ./cpp/ggml-backend.c cp ./llama.cpp/ggml/src/ggml-backend-impl.h ./cpp/ggml-backend-impl.h cp ./llama.cpp/ggml/src/ggml-impl.h ./cpp/ggml-impl.h cp ./llama.cpp/ggml/src/ggml-common.h ./cpp/ggml-common.h -cp ./llama.cpp/include/llama.h ./cpp/llama.h -cp ./llama.cpp/src/llama.cpp ./cpp/llama.cpp cp ./llama.cpp/ggml/src/ggml-quants.h ./cpp/ggml-quants.h cp ./llama.cpp/ggml/src/ggml-quants.c ./cpp/ggml-quants.c +cp ./llama.cpp/ggml/src/llamafile/sgemm.h ./cpp/sgemm.h +cp ./llama.cpp/ggml/src/llamafile/sgemm.cpp ./cpp/sgemm.cpp +cp ./llama.cpp/ggml/src/ggml-aarch64.h ./cpp/ggml-aarch64.h +cp ./llama.cpp/ggml/src/ggml-aarch64.c ./cpp/ggml-aarch64.c +cp ./llama.cpp/include/llama.h ./cpp/llama.h +cp ./llama.cpp/src/llama.cpp ./cpp/llama.cpp +cp ./llama.cpp/src/llama-vocab.cpp ./cpp/llama-vocab.cpp +cp ./llama.cpp/src/llama-vocab.h ./cpp/llama-vocab.h +cp ./llama.cpp/src/llama-sampling.cpp ./cpp/llama-sampling.cpp +cp ./llama.cpp/src/llama-sampling.h ./cpp/llama-sampling.h +cp ./llama.cpp/src/llama-grammar.cpp ./cpp/llama-grammar.cpp +cp ./llama.cpp/src/llama-grammar.h ./cpp/llama-grammar.h +cp ./llama.cpp/src/llama-impl.h ./cpp/llama-impl.h cp ./llama.cpp/src/unicode.h ./cpp/unicode.h cp ./llama.cpp/src/unicode.cpp ./cpp/unicode.cpp cp ./llama.cpp/src/unicode-data.h ./cpp/unicode-data.h cp ./llama.cpp/src/unicode-data.cpp ./cpp/unicode-data.cpp -cp ./llama.cpp/ggml/src/llamafile/sgemm.h ./cpp/sgemm.h -cp ./llama.cpp/ggml/src/llamafile/sgemm.cpp ./cpp/sgemm.cpp cp ./llama.cpp/common/log.h ./cpp/log.h cp ./llama.cpp/common/common.h ./cpp/common.h cp ./llama.cpp/common/common.cpp ./cpp/common.cpp @@ -34,8 +43,6 @@ cp ./llama.cpp/common/json-schema-to-grammar.h ./cpp/json-schema-to-grammar.h cp ./llama.cpp/common/json-schema-to-grammar.cpp ./cpp/json-schema-to-grammar.cpp cp ./llama.cpp/common/sampling.h ./cpp/sampling.h cp ./llama.cpp/common/sampling.cpp ./cpp/sampling.cpp -cp ./llama.cpp/ggml/src/ggml-aarch64.h ./cpp/ggml-aarch64.h -cp ./llama.cpp/ggml/src/ggml-aarch64.c ./cpp/ggml-aarch64.c # List of files to process files=( @@ -47,6 +54,10 @@ files=( "./cpp/ggml-metal.m" "./cpp/llama.h" "./cpp/llama.cpp" + "./cpp/llama-vocab.cpp" + "./cpp/llama-sampling.cpp" + "./cpp/llama-grammar.cpp" + "./cpp/llama-impl.h" "./cpp/sampling.cpp" "./cpp/ggml-quants.h" "./cpp/ggml-quants.c" @@ -92,6 +103,7 @@ patch -p0 -d ./cpp < ./scripts/common.cpp.patch patch -p0 -d ./cpp < ./scripts/log.h.patch patch -p0 -d ./cpp < ./scripts/llama.cpp.patch patch -p0 -d ./cpp < ./scripts/ggml-metal.m.patch +patch -p0 -d ./cpp < ./scripts/ggml.c.patch if [ "$OS" = "Darwin" ]; then diff --git a/scripts/ggml.c.patch b/scripts/ggml.c.patch new file mode 100644 index 0000000..7cf3efe --- /dev/null +++ b/scripts/ggml.c.patch @@ -0,0 +1,15 @@ +--- ggml.c.orig 2024-07-27 14:24:52 ++++ ggml.c 2024-07-27 14:25:09 +@@ -144,9 +144,9 @@ + #if defined(__linux__) + #include + static void lm_ggml_print_backtrace_symbols(void) { +- void * trace[100]; +- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); +- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); ++ // void * trace[100]; ++ // int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); ++ // backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); + } + #else + static void lm_ggml_print_backtrace_symbols(void) { diff --git a/scripts/llama.cpp.patch b/scripts/llama.cpp.patch index d24585f..1c84810 100644 --- a/scripts/llama.cpp.patch +++ b/scripts/llama.cpp.patch @@ -1,8 +1,8 @@ ---- llama.cpp.orig 2024-05-29 09:16:58 -+++ llama.cpp 2024-05-29 09:16:59 -@@ -129,6 +129,17 @@ - #define LLAMA_LOG_WARN(...) llama_log_internal(LM_GGML_LOG_LEVEL_WARN , __VA_ARGS__) - #define LLAMA_LOG_ERROR(...) llama_log_internal(LM_GGML_LOG_LEVEL_ERROR, __VA_ARGS__) +--- llama.cpp.orig 2024-07-27 14:12:00 ++++ llama.cpp 2024-07-27 14:12:02 +@@ -105,6 +105,17 @@ + #define LLAMA_MAX_LAYERS 512 + #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2 +#if defined(__ANDROID__) && defined(RNLLAMA_ANDROID_ENABLE_LOGGING) +#include @@ -18,7 +18,7 @@ // // helpers // -@@ -1708,16 +1719,16 @@ +@@ -1691,16 +1702,16 @@ if (prefetch > 0) { // advise the kernel to preload the mapped memory From 96e8e9a5361d4a4f3e7f94dd65cc76700b282afa Mon Sep 17 00:00:00 2001 From: jhen Date: Sat, 27 Jul 2024 14:31:34 +0800 Subject: [PATCH 2/2] feat: remove lora_base --- .../main/java/com/rnllama/LlamaContext.java | 3 -- android/src/main/jni.cpp | 4 --- cpp/ggml.c.rej | 13 -------- docs/API/README.md | 16 +++++----- docs/API/classes/LlamaContext.md | 28 ++++++++-------- docs/API/classes/SchemaGrammarConverter.md | 32 +++++++++---------- example/ios/.xcode.env.local | 2 +- example/ios/Podfile.lock | 4 +-- ios/RNLlamaContext.mm | 1 - src/NativeRNLlama.ts | 1 - 10 files changed, 41 insertions(+), 63 deletions(-) delete mode 100644 cpp/ggml.c.rej diff --git a/android/src/main/java/com/rnllama/LlamaContext.java b/android/src/main/java/com/rnllama/LlamaContext.java index dad6fb5..b28d031 100644 --- a/android/src/main/java/com/rnllama/LlamaContext.java +++ b/android/src/main/java/com/rnllama/LlamaContext.java @@ -57,8 +57,6 @@ public LlamaContext(int id, ReactApplicationContext reactContext, ReadableMap pa params.hasKey("lora") ? params.getString("lora") : "", // float lora_scaled, params.hasKey("lora_scaled") ? (float) params.getDouble("lora_scaled") : 1.0f, - // String lora_base, - params.hasKey("lora_base") ? params.getString("lora_base") : "", // float rope_freq_base, params.hasKey("rope_freq_base") ? (float) params.getDouble("rope_freq_base") : 0.0f, // float rope_freq_scale @@ -306,7 +304,6 @@ protected static native long initContext( boolean use_mmap, String lora, float lora_scaled, - String lora_base, float rope_freq_base, float rope_freq_scale ); diff --git a/android/src/main/jni.cpp b/android/src/main/jni.cpp index f92cc49..ed171c9 100644 --- a/android/src/main/jni.cpp +++ b/android/src/main/jni.cpp @@ -131,7 +131,6 @@ Java_com_rnllama_LlamaContext_initContext( jboolean use_mmap, jstring lora_str, jfloat lora_scaled, - jstring lora_base_str, jfloat rope_freq_base, jfloat rope_freq_scale ) { @@ -158,10 +157,8 @@ Java_com_rnllama_LlamaContext_initContext( defaultParams.use_mmap = use_mmap; const char *lora_chars = env->GetStringUTFChars(lora_str, nullptr); - const char *lora_base_chars = env->GetStringUTFChars(lora_base_str, nullptr); if (lora_chars != nullptr && lora_chars[0] != '\0') { defaultParams.lora_adapter.push_back({lora_chars, lora_scaled}); - // defaultParams.lora_base = lora_base_chars; defaultParams.use_mmap = false; } @@ -180,7 +177,6 @@ Java_com_rnllama_LlamaContext_initContext( env->ReleaseStringUTFChars(model_path_str, model_path_chars); env->ReleaseStringUTFChars(lora_str, lora_chars); - env->ReleaseStringUTFChars(lora_base_str, lora_base_chars); return reinterpret_cast(llama->ctx); } diff --git a/cpp/ggml.c.rej b/cpp/ggml.c.rej deleted file mode 100644 index 45fd668..0000000 --- a/cpp/ggml.c.rej +++ /dev/null @@ -1,13 +0,0 @@ -@@ -144,9 +144,9 @@ - #if defined(__linux__) - #include - static void lm_ggml_print_backtrace_symbols(void) { -- void * trace[100]; -- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); -- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); -+ // void * trace[100]; -+ // int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); -+ // backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); - } - #else - static void lm_ggml_print_backtrace_symbols(void) { diff --git a/docs/API/README.md b/docs/API/README.md index c181545..b998afd 100644 --- a/docs/API/README.md +++ b/docs/API/README.md @@ -43,7 +43,7 @@ llama.rn #### Defined in -[index.ts:43](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L43) +[index.ts:43](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L43) ___ @@ -53,7 +53,7 @@ ___ #### Defined in -[index.ts:41](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L41) +[index.ts:41](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L41) ___ @@ -63,7 +63,7 @@ ___ #### Defined in -[index.ts:39](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L39) +[index.ts:39](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L39) ___ @@ -80,7 +80,7 @@ ___ #### Defined in -[index.ts:29](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L29) +[index.ts:29](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L29) ## Functions @@ -104,7 +104,7 @@ ___ #### Defined in -[grammar.ts:824](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L824) +[grammar.ts:824](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L824) ___ @@ -124,7 +124,7 @@ ___ #### Defined in -[index.ts:165](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L165) +[index.ts:166](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L166) ___ @@ -138,7 +138,7 @@ ___ #### Defined in -[index.ts:181](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L181) +[index.ts:182](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L182) ___ @@ -158,4 +158,4 @@ ___ #### Defined in -[index.ts:161](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L161) +[index.ts:162](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L162) diff --git a/docs/API/classes/LlamaContext.md b/docs/API/classes/LlamaContext.md index e789da5..984bc1d 100644 --- a/docs/API/classes/LlamaContext.md +++ b/docs/API/classes/LlamaContext.md @@ -41,7 +41,7 @@ #### Defined in -[index.ts:62](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L62) +[index.ts:62](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L62) ## Properties @@ -51,7 +51,7 @@ #### Defined in -[index.ts:56](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L56) +[index.ts:56](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L56) ___ @@ -61,7 +61,7 @@ ___ #### Defined in -[index.ts:54](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L54) +[index.ts:54](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L54) ___ @@ -71,7 +71,7 @@ ___ #### Defined in -[index.ts:60](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L60) +[index.ts:60](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L60) ___ @@ -81,7 +81,7 @@ ___ #### Defined in -[index.ts:58](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L58) +[index.ts:58](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L58) ## Methods @@ -104,7 +104,7 @@ ___ #### Defined in -[index.ts:134](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L134) +[index.ts:135](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L135) ___ @@ -125,7 +125,7 @@ ___ #### Defined in -[index.ts:89](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L89) +[index.ts:90](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L90) ___ @@ -145,7 +145,7 @@ ___ #### Defined in -[index.ts:126](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L126) +[index.ts:127](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L127) ___ @@ -165,7 +165,7 @@ ___ #### Defined in -[index.ts:130](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L130) +[index.ts:131](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L131) ___ @@ -187,7 +187,7 @@ Load cached prompt & completion state from a file. #### Defined in -[index.ts:78](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L78) +[index.ts:77](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L77) ___ @@ -201,7 +201,7 @@ ___ #### Defined in -[index.ts:156](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L156) +[index.ts:157](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L157) ___ @@ -225,7 +225,7 @@ Save current cached prompt & completion state to a file. #### Defined in -[index.ts:85](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L85) +[index.ts:86](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L86) ___ @@ -239,7 +239,7 @@ ___ #### Defined in -[index.ts:118](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L118) +[index.ts:119](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L119) ___ @@ -259,4 +259,4 @@ ___ #### Defined in -[index.ts:122](https://github.com/mybigday/llama.rn/blob/a2b459e/src/index.ts#L122) +[index.ts:123](https://github.com/mybigday/llama.rn/blob/f95f600/src/index.ts#L123) diff --git a/docs/API/classes/SchemaGrammarConverter.md b/docs/API/classes/SchemaGrammarConverter.md index 33088e1..8b9a535 100644 --- a/docs/API/classes/SchemaGrammarConverter.md +++ b/docs/API/classes/SchemaGrammarConverter.md @@ -46,7 +46,7 @@ #### Defined in -[grammar.ts:211](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L211) +[grammar.ts:211](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L211) ## Properties @@ -56,7 +56,7 @@ #### Defined in -[grammar.ts:201](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L201) +[grammar.ts:201](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L201) ___ @@ -66,7 +66,7 @@ ___ #### Defined in -[grammar.ts:203](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L203) +[grammar.ts:203](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L203) ___ @@ -76,7 +76,7 @@ ___ #### Defined in -[grammar.ts:199](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L199) +[grammar.ts:199](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L199) ___ @@ -90,7 +90,7 @@ ___ #### Defined in -[grammar.ts:207](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L207) +[grammar.ts:207](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L207) ___ @@ -100,7 +100,7 @@ ___ #### Defined in -[grammar.ts:209](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L209) +[grammar.ts:209](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L209) ___ @@ -114,7 +114,7 @@ ___ #### Defined in -[grammar.ts:205](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L205) +[grammar.ts:205](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L205) ## Methods @@ -135,7 +135,7 @@ ___ #### Defined in -[grammar.ts:693](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L693) +[grammar.ts:693](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L693) ___ @@ -156,7 +156,7 @@ ___ #### Defined in -[grammar.ts:224](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L224) +[grammar.ts:224](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L224) ___ @@ -179,7 +179,7 @@ ___ #### Defined in -[grammar.ts:710](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L710) +[grammar.ts:710](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L710) ___ @@ -200,7 +200,7 @@ ___ #### Defined in -[grammar.ts:312](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L312) +[grammar.ts:312](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L312) ___ @@ -220,7 +220,7 @@ ___ #### Defined in -[grammar.ts:518](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L518) +[grammar.ts:518](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L518) ___ @@ -241,7 +241,7 @@ ___ #### Defined in -[grammar.ts:323](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L323) +[grammar.ts:323](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L323) ___ @@ -255,7 +255,7 @@ ___ #### Defined in -[grammar.ts:813](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L813) +[grammar.ts:813](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L813) ___ @@ -276,7 +276,7 @@ ___ #### Defined in -[grammar.ts:247](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L247) +[grammar.ts:247](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L247) ___ @@ -297,4 +297,4 @@ ___ #### Defined in -[grammar.ts:529](https://github.com/mybigday/llama.rn/blob/a2b459e/src/grammar.ts#L529) +[grammar.ts:529](https://github.com/mybigday/llama.rn/blob/f95f600/src/grammar.ts#L529) diff --git a/example/ios/.xcode.env.local b/example/ios/.xcode.env.local index 1cb33d6..92bcef1 100644 --- a/example/ios/.xcode.env.local +++ b/example/ios/.xcode.env.local @@ -1 +1 @@ -export NODE_BINARY=/var/folders/4z/1d45cfts3936kdm7v9jl349r0000gn/T/yarn--1716945640903-0.9230388944694827/node +export NODE_BINARY=/var/folders/4z/1d45cfts3936kdm7v9jl349r0000gn/T/yarn--1722061680584-0.19771203690487615/node diff --git a/example/ios/Podfile.lock b/example/ios/Podfile.lock index ad7c273..e5e2c51 100644 --- a/example/ios/Podfile.lock +++ b/example/ios/Podfile.lock @@ -8,7 +8,7 @@ PODS: - hermes-engine/Pre-built (= 0.72.3) - hermes-engine/Pre-built (0.72.3) - libevent (2.1.12) - - llama-rn (0.3.1): + - llama-rn (0.3.4): - RCT-Folly - RCTRequired - RCTTypeSafety @@ -1261,7 +1261,7 @@ SPEC CHECKSUMS: glog: 04b94705f318337d7ead9e6d17c019bd9b1f6b1b hermes-engine: 10fbd3f62405c41ea07e71973ea61e1878d07322 libevent: 4049cae6c81cdb3654a443be001fb9bdceff7913 - llama-rn: c18368a2c6c8c20dc3e19fb7213b6225330c9156 + llama-rn: 1facf2ce116e23e89a526e30439f151eb03f460d RCT-Folly: 424b8c9a7a0b9ab2886ffe9c3b041ef628fd4fb1 RCTRequired: a2faf4bad4e438ca37b2040cb8f7799baa065c18 RCTTypeSafety: cb09f3e4747b6d18331a15eb05271de7441ca0b3 diff --git a/ios/RNLlamaContext.mm b/ios/RNLlamaContext.mm index 58819f2..4341862 100644 --- a/ios/RNLlamaContext.mm +++ b/ios/RNLlamaContext.mm @@ -62,7 +62,6 @@ + (instancetype)initWithParams:(NSDictionary *)params { defaultParams.lora_adapter.push_back({[params[@"lora"] UTF8String], lora_scaled}); defaultParams.use_mmap = false; } - if (params[@"lora_base"]) defaultParams.lora_base = [params[@"lora_base"] UTF8String]; if (params[@"rope_freq_base"]) defaultParams.rope_freq_base = [params[@"rope_freq_base"] floatValue]; if (params[@"rope_freq_scale"]) defaultParams.rope_freq_scale = [params[@"rope_freq_scale"] floatValue]; diff --git a/src/NativeRNLlama.ts b/src/NativeRNLlama.ts index 7ec08de..284de67 100644 --- a/src/NativeRNLlama.ts +++ b/src/NativeRNLlama.ts @@ -18,7 +18,6 @@ export type NativeContextParams = { lora?: string // lora_adaptor lora_scaled?: number - lora_base?: string rope_freq_base?: number rope_freq_scale?: number