-
Notifications
You must be signed in to change notification settings - Fork 1
/
TorusLocalizer.c
599 lines (474 loc) · 19.9 KB
/
TorusLocalizer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#include "includes.h"
#include <memory.h>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "common.h"
#include "Visualization.h"
#define MAX_COLORS 18
static unsigned int COLORS[] = {
0x00FFFF,
0xFF00FF,
0xFFFF00,
0xFF0000,
0x00FF00,
0x0000FF,
0x0080FF,
0x8000FF,
0x80FF00,
0x00FF80,
0xFF0080,
0xFF8000,
0x008080,
0x800080,
0x808000,
0x000080,
0x008000,
0x800000
};
Matrix3x3 GetRotationMatrixForTorus(Point a, Point b)
{
Matrix3x3 result;
double v1[3] = { 0, 0, 1 };
double v2[3] = { a.x - b.x, a.y - b.y, a.z - b.z };
normalize_v3(v2);
rotation_between_vecs_to_mat3(result.val, v1, v2);
return result;
}
Point RotateAndTranslatePoint(Point p, Matrix3x3 rot, Point newOrigin)
{
Point q;
double pf[3] = { p.x, p.y, p.z };
//float pq[3];
//q.x = rot.val[0][0] * p.x + rot.val[0][1] * p.y + rot.val[0][2] * p.z + newOrigin.x;
//q.y = rot.val[1][0] * p.x + rot.val[1][1] * p.y + rot.val[1][2] * p.z + newOrigin.y;
//q.z = rot.val[2][0] * p.x + rot.val[2][1] * p.y + rot.val[2][2] * p.z + newOrigin.z;
q.x = rot.val[0][0] * p.x + rot.val[1][0] * p.y + rot.val[2][0] * p.z + newOrigin.x;
q.y = rot.val[0][1] * p.x + rot.val[1][1] * p.y + rot.val[2][1] * p.z + newOrigin.y;
q.z = rot.val[0][2] * p.x + rot.val[1][2] * p.y + rot.val[2][2] * p.z + newOrigin.z;
return q;
}
double angleFromPoints(Point p1, Point p2, Point center)
{
Point v1, v2, v1norm, v2norm;
v1.x = p1.x - center.x;
v1.y = p1.y - center.y;
v1.z = p1.z - center.z;
v2.x = p2.x - center.x;
v2.y = p2.y - center.y;
v2.z = p2.z - center.z;
double v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z);
v1norm.x = v1.x / v1mag;
v1norm.y = v1.y / v1mag;
v1norm.z = v1.z / v1mag;
double v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z);
v2norm.x = v2.x / v2mag;
v2norm.y = v2.y / v2mag;
v2norm.z = v2.z / v2mag;
double res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z;
double angle = acos(res);
return angle;
}
Point midpoint(Point a, Point b)
{
Point m;
m.x = (a.x + b.x) / 2;
m.y = (a.y + b.y) / 2;
m.z = (a.z + b.z) / 2;
return m;
}
// This is the second incarnation of the torus generator. It is intended to differ from the initial torus generator by
// producing a point cloud of a torus where the points density is more uniform across the torus. This will allow
// us to be more efficient in finding a solution.
void partialTorusGenerator(
Point p1,
Point p2,
double toroidalStartAngle,
double toroidalEndAngle,
double poloidalStartAngle,
double poloidalEndAngle,
double lighthouseAngle,
double toroidalPrecision,
Point **pointCloud)
{
double poloidalRadius = 0;
double toroidalRadius = 0;
Point m = midpoint(p1, p2);
double distanceBetweenPoints = distance(p1, p2);
// ideally should only need to be lighthouseAngle, but increasing it here keeps us from accidentally
// thinking the tori converge at the location of the tracked object instead of at the lighthouse.
double centralAngleToIgnore = lighthouseAngle * 3;
Matrix3x3 rot = GetRotationMatrixForTorus(p1, p2);
toroidalRadius = distanceBetweenPoints / (2 * tan(lighthouseAngle));
poloidalRadius = sqrt(pow(toroidalRadius, 2) + pow(distanceBetweenPoints / 2, 2));
double poloidalPrecision = M_PI * 2 / toroidalPrecision;
//unsigned int pointCount = toroidalPrecision * toroidalPrecision / 2 * (toroidalEndAngle - toroidalStartAngle) / (M_PI * 2) * (poloidalEndAngle - poloidalStartAngle) / (M_PI * 1);
//unsigned int pointCount = (unsigned int)(toroidalPrecision * ((M_PI - lighthouseAngle) * 2 / poloidalPrecision + 1) + 1);
// TODO: This calculation of the number of points that we will generate is excessively large (probably by about a factor of 2 or more) We can do better.
//float pointEstimate = (pointCount + 1000) * sizeof(Point) * 2 * M_PI / (toroidalEndAngle - toroidalStartAngle);
unsigned int pointCount = 0;
for (double poloidalStep = poloidalStartAngle; poloidalStep < poloidalEndAngle; poloidalStep += poloidalPrecision)
{
// here, we specify the number of steps that will occur on the toroidal circle for a given poloidal angle
// We do this so our point cloud will have a more even distribution of points across the surface of the torus.
double steps = (cos(poloidalStep) + 1) / 2 * toroidalPrecision;
double step_distance = 2 * M_PI / steps;
pointCount += (toroidalEndAngle - toroidalStartAngle) / step_distance + 2;
}
*pointCloud = malloc(pointCount * sizeof(Point));
assert(0 != *pointCloud);
(*pointCloud)[pointCount - 1].x = -1000;
(*pointCloud)[pointCount - 1].y = -1000;
(*pointCloud)[pointCount - 1].z = -1000; // need a better magic number or flag, but this'll do for now.
size_t currentPoint = 0;
for (double poloidalStep = poloidalStartAngle; poloidalStep < poloidalEndAngle; poloidalStep += poloidalPrecision)
{
// here, we specify the number of steps that will occur on the toroidal circle for a given poloidal angle
// We do this so our point cloud will have a more even distribution of points across the surface of the torus.
double steps = (cos(poloidalStep) + 1) / 2 * toroidalPrecision;
double step_distance = 2 * M_PI / steps;
//for (double toroidalStep = 0; toroidalStep < M_PI * 2; toroidalStep += TOROIDAL_PRECISON)
for (double toroidalStep = toroidalStartAngle; toroidalStep < toroidalEndAngle; toroidalStep += step_distance)
{
if (currentPoint >= pointCount - 1)
{
int a = 0;
}
assert(currentPoint < pointCount - 1);
(*pointCloud)[currentPoint].x = (toroidalRadius + poloidalRadius*cos(poloidalStep))*cos(toroidalStep);
(*pointCloud)[currentPoint].y = (toroidalRadius + poloidalRadius*cos(poloidalStep))*sin(toroidalStep);
(*pointCloud)[currentPoint].z = poloidalRadius*sin(poloidalStep);
(*pointCloud)[currentPoint] = RotateAndTranslatePoint((*pointCloud)[currentPoint], rot, m);
// TODO: HACK!!! Instead of doing anything with normals, we're "assuming" that all sensors point directly up
// and hence we know that nothing with a negative z value is a possible lightouse location.
// Before this code can go live, we'll have to take the normals into account and remove this hack.
if ((*pointCloud)[currentPoint].z > 0)
{
currentPoint++;
}
}
}
printf("%d / %d\n", currentPoint, pointCount);
(*pointCloud)[currentPoint].x = -1000;
(*pointCloud)[currentPoint].y = -1000;
(*pointCloud)[currentPoint].z = -1000;
}
void torusGenerator(Point p1, Point p2, double lighthouseAngle, Point **pointCloud)
{
double centralAngleToIgnore = lighthouseAngle * 6;
centralAngleToIgnore = 20.0 / 180.0 * M_PI;
printf("i: %f\n", centralAngleToIgnore / M_PI * 180);
partialTorusGenerator(p1, p2, 0, M_PI * 2, centralAngleToIgnore + M_PI, M_PI * 3, lighthouseAngle, DefaultPointsPerOuterDiameter, pointCloud);
//partialTorusGenerator(p1, p2, 0, M_PI * 2 / 24.0, 0, 0.5, lighthouseAngle, pointCloud);
return;
}
// What we're doing here is:
// * Given a point in space
// * And points and a lighthouse angle that implicitly define a torus
// * for that torus, what is the toroidal angle of the plane that will go through that point in space
// * and given that toroidal angle, what is the poloidal angle that will be directed toward that point in space?
//
// Given the toroidal and poloidal angles of a "good estimate" of a solution position, a caller of this function
// will be able to "draw" the point cloud of a torus in just the surface of the torus near the point in space.
// That way, the caller doesn't have to draw the entire torus in high resolution, just the part of the torus
// that is most likely to contain the best solution.
void estimateToroidalAndPoloidalAngleOfPoint(
Point torusP1,
Point torusP2,
double lighthouseAngle,
Point point,
double *toroidalAngle,
double *poloidalAngle)
{
// this is the rotation matrix that shows how to rotate the torus from being in a simple "default" orientation
// into the coordinate system of the tracked object
Matrix3x3 rot = GetRotationMatrixForTorus(torusP1, torusP2);
// We take the inverse of the rotation matrix, and this now defines a rotation matrix that will take us from
// the tracked object coordinate system into the "easy" or "default" coordinate system of the torus.
// Using this will allow us to derive angles much more simply by being in a "friendly" coordinate system.
rot = inverseM33(rot);
Point origin;
origin.x = 0;
origin.y = 0;
origin.z = 0;
Point m = midpoint(torusP1, torusP2);
// in this new coordinate system, we'll rename all of the points we care about to have an "F" after them
// This will be their representation in the "friendly" coordinate system
Point pointF;
// Okay, I lied a little above. In addition to the rotation matrix that we care about, there was also
// a translation that we did to move the origin. If we're going to get to the "friendly" coordinate system
// of the torus, we need to first undo the translation, then undo the rotation. Below, we're undoing the translation.
pointF.x = point.x - m.x;
pointF.y = point.y - m.y;
pointF.z = point.z - m.z;
// now we'll undo the rotation part.
pointF = RotateAndTranslatePoint(pointF, rot, origin);
// hooray, now pointF is in our more-friendly coordinate system.
// Now, it's time to figure out the toroidal angle to that point. This should be pretty easy.
// We will "flatten" the z dimension to only look at the x and y values. Then, we just need to measure the
// angle between a vector to pointF and a vector along the x axis.
*toroidalAngle = atan(pointF.y / pointF.x);
if (pointF.x < 0)
{
*toroidalAngle += M_PI;
}
// SCORE!! We've got the toroidal angle. We're half done!
// Okay, what next...? Now, we will need to rotate the torus *again* to make it easy to
// figure out the poloidal angle. We should rotate the entire torus by the toroidal angle
// so that the point we're focusin on will lie on the x/z plane. We then should translate the
// torus so that the center of the poloidal circle is at the origin. At that point, it will
// be trivial to determine the poloidal angle-- it will be the angle on the xz plane of a
// vector from the origin to the point.
// okay, instead of rotating the torus & point by the toroidal angle to get the point on
// the xz plane, we're going to take advantage of the radial symmetry of the torus
// (i.e. it's symmetric about the point we'd want to rotate it, so the rotation wouldn't
// change the torus at all). Therefore, we'll leave the torus as is, but we'll rotate the point
// This will only impact the x and y coordinates, and we'll use "G" as the postfix to represent
// this new coordinate system
Point pointG;
pointG.z = pointF.z;
pointG.y = 0;
pointG.x = sqrt(SQUARED(pointF.x) + SQUARED(pointF.y));
// okay, that ended up being easier than I expected. Now that we have the point on the xZ plane,
// our next step will be to shift it down so that the center of the poloidal circle is at the origin.
// As you may have noticed, y has now gone to zero, and from here on out, we can basically treat
// this as a 2D problem. I think we're getting close...
// I stole these lines from the torus generator. Gonna need the poloidal radius.
double distanceBetweenPoints = distance(torusP1, torusP2); // we don't care about the coordinate system of these points because we're just getting distance.
double toroidalRadius = distanceBetweenPoints / (2 * tan(lighthouseAngle));
double poloidalRadius = sqrt(pow(toroidalRadius, 2) + pow(distanceBetweenPoints / 2, 2));
// The center of the polidal circle already lies on the z axis at this point, so we won't shift z at all.
// The shift along the X axis will be the toroidal radius.
Point pointH;
pointH.z = pointG.z;
pointH.y = pointG.y;
pointH.x = pointG.x - toroidalRadius;
// Okay, almost there. If we treat pointH as a vector on the XZ plane, if we get its angle,
// that will be the poloidal angle we're looking for. (crosses fingers)
*poloidalAngle = atan(pointH.z / pointH.x);
if (pointH.x < 0)
{
*poloidalAngle += M_PI;
}
// Wow, that ended up being not so much code, but a lot of interesting trig.
// can't remember the last time I spent so much time working through each line of code.
return;
}
double FindSmallestDistance(Point p, Point* cloud)
{
Point *cp = cloud;
double smallestDistance = 10000000000000.0;
while (cp->x != -1000 || cp->y != -1000 || cp->z != -1000)
{
double distance = (SQUARED(cp->x - p.x) + SQUARED(cp->y - p.y) + SQUARED(cp->z - p.z));
if (distance < smallestDistance)
{
smallestDistance = distance;
}
cp++;
}
smallestDistance = sqrt(smallestDistance);
return smallestDistance;
}
// Given a cloud and a list of clouds, find the point on masterCloud that best matches clouds.
Point findBestPointMatch(Point *masterCloud, Point** clouds, int numClouds)
{
Point bestMatch = { 0 };
double bestDistance = 10000000000000.0;
Point *cp = masterCloud;
int point = 0;
while (cp->x != -1000 || cp->y != -1000 || cp->z != -1000)
{
point++;
if (point % 100 == 0)
{
printf(".");
}
double currentDistance = 0;
for (int i = 0; i < numClouds; i++)
{
if (clouds[i] == masterCloud)
{
continue;
}
Point* cloud = clouds[i];
currentDistance += FindSmallestDistance(*cp, cloud);
}
if (currentDistance < bestDistance)
{
bestDistance = currentDistance;
bestMatch = *cp;
}
cp++;
}
return bestMatch;
}
#define MAX_POINT_PAIRS 100
typedef struct
{
Point a;
Point b;
double angle;
} PointsAndAngle;
double angleBetweenSensors(TrackedSensor *a, TrackedSensor *b)
{
double angle = acos(cos(a->phi - b->phi)*cos(a->theta - b->theta));
double angle2 = acos(cos(b->phi - a->phi)*cos(b->theta - a->theta));
return angle;
}
double pythAngleBetweenSensors2(TrackedSensor *a, TrackedSensor *b)
{
double p = (a->phi - b->phi);
double d = (a->theta - b->theta);
double adjd = sin((a->phi + b->phi) / 2);
double adjP = sin((a->theta + b->theta) / 2);
double pythAngle = sqrt(SQUARED(p*adjP) + SQUARED(d*adjd));
return pythAngle;
}
Point SolveForLighthouse(TrackedObject *obj, char doLogOutput)
{
PointsAndAngle pna[MAX_POINT_PAIRS];
//Point lh = { 10, 0, 200 };
size_t pnaCount = 0;
for (unsigned int i = 0; i < obj->numSensors; i++)
{
for (unsigned int j = 0; j < i; j++)
{
if (pnaCount < MAX_POINT_PAIRS)
{
pna[pnaCount].a = obj->sensor[i].point;
pna[pnaCount].b = obj->sensor[j].point;
pna[pnaCount].angle = pythAngleBetweenSensors2(&obj->sensor[i], &obj->sensor[j]);
double pythAngle = sqrt(SQUARED(obj->sensor[i].phi - obj->sensor[j].phi) + SQUARED(obj->sensor[i].theta - obj->sensor[j].theta));
//double tmp = angleFromPoints(pna[pnaCount].a, pna[pnaCount].b, lh);
pnaCount++;
}
}
}
//Point **pointCloud = malloc(sizeof(Point*)* pnaCount);
Point **pointCloud = malloc(sizeof(void*)* pnaCount);
FILE *f = NULL;
if (doLogOutput)
{
f = fopen("pointcloud2.pcd", "wb");
writePcdHeader(f);
writeAxes(f);
}
for (unsigned int i = 0; i < pnaCount; i++)
{
torusGenerator(pna[i].a, pna[i].b, pna[i].angle, &(pointCloud[i]));
if (doLogOutput)
{
writePointCloud(f, pointCloud[i], COLORS[i%MAX_COLORS]);
}
}
//Point *pointCloud_ab = NULL;
//Point *pointCloud_ac = NULL;
//Point *pointCloud_bc = NULL;
//Point *pointCloud_ad = NULL;
//Point *pointCloud_bd = NULL;
//Point *pointCloud_cd = NULL;
//torusGenerator(a, b, angleFromPoints(a, b, lh), &pointCloud_ab);
//torusGenerator(a, c, angleFromPoints(a, c, lh), &pointCloud_ac);
//torusGenerator(b, c, angleFromPoints(b, c, lh), &pointCloud_bc);
//torusGenerator(a, d, angleFromPoints(a, d, lh), &pointCloud_ad);
//torusGenerator(b, d, angleFromPoints(b, d, lh), &pointCloud_bd);
//torusGenerator(c, d, angleFromPoints(c, d, lh), &pointCloud_cd);
//markPointWithStar(f, lh, 0xFF0000);
//drawLineBetweenPoints(f, a, b, 255);
//drawLineBetweenPoints(f, b, c, 255);
//drawLineBetweenPoints(f, a, c, 255);
//drawLineBetweenPoints(f, a, d, 255);
//drawLineBetweenPoints(f, b, d, 255);
//drawLineBetweenPoints(f, c, d, 255);
Point bestMatchA = findBestPointMatch(pointCloud[0], pointCloud, pnaCount);
if (doLogOutput)
{
markPointWithStar(f, bestMatchA, 0xFF0000);
}
printf("(%f,%f,%f)\n", bestMatchA.x, bestMatchA.y, bestMatchA.z);
// Now, let's add an extra patch or torus near the point we just found.
double toroidalAngle = 0;
double poloidalAngle = 0;
Point **pointCloud2 = malloc(sizeof(void*)* pnaCount);
for (unsigned int i = 0; i < pnaCount; i++)
{
estimateToroidalAndPoloidalAngleOfPoint(
pna[i].a,
pna[i].b,
pna[i].angle,
bestMatchA,
&toroidalAngle,
&poloidalAngle);
partialTorusGenerator(pna[i].a, pna[i].b, toroidalAngle - 0.2, toroidalAngle + 0.2, poloidalAngle - 0.2, poloidalAngle + 0.2, pna[i].angle, 800, &(pointCloud2[i]));
if (doLogOutput)
{
writePointCloud(f, pointCloud2[i], COLORS[i%MAX_COLORS]);
}
}
Point bestMatchB = findBestPointMatch(pointCloud2[0], pointCloud2, pnaCount);
if (doLogOutput)
{
markPointWithStar(f, bestMatchB, 0x00FF00);
}
printf("(%f,%f,%f)\n", bestMatchB.x, bestMatchB.y, bestMatchB.z);
Point **pointCloud3 = malloc(sizeof(void*)* pnaCount);
for (unsigned int i = 0; i < pnaCount; i++)
{
estimateToroidalAndPoloidalAngleOfPoint(
pna[i].a,
pna[i].b,
pna[i].angle,
bestMatchB,
&toroidalAngle,
&poloidalAngle);
partialTorusGenerator(pna[i].a, pna[i].b, toroidalAngle - 0.05, toroidalAngle + 0.05, poloidalAngle - 0.05, poloidalAngle + 0.05, pna[i].angle, 3000, &(pointCloud3[i]));
if (doLogOutput)
{
writePointCloud(f, pointCloud3[i], COLORS[i%MAX_COLORS]);
}
}
Point bestMatchC = findBestPointMatch(pointCloud3[0], pointCloud3, pnaCount);
if (doLogOutput)
{
markPointWithStar(f, bestMatchC, 0xFFFFFF);
}
printf("(%f,%f,%f)\n", bestMatchC.x, bestMatchC.y, bestMatchC.z);
if (doLogOutput)
{
updateHeader(f);
fclose(f);
}
return bestMatchA;
}
static Point makeUnitPoint(Point *p)
{
Point newP;
double r = sqrt(p->x*p->x + p->y*p->y + p->z*p->z);
newP.x = p->x / r;
newP.y = p->y / r;
newP.z = p->z / r;
return newP;
}
static double getPhi(Point p)
{
// double phi = acos(p.z / (sqrt(p.x*p.x + p.y*p.y + p.z*p.z)));
// double phi = atan(sqrt(p.x*p.x + p.y*p.y)/p.z);
double phi = atan(p.x / p.z);
return phi;
}
static double getTheta(Point p)
{
//double theta = atan(p.y / p.x);
double theta = atan(p.x / p.y);
return theta;
}
// subtraction
static Point PointSub(Point a, Point b)
{
Point newPoint;
newPoint.x = a.x - b.x;
newPoint.y = a.y - b.y;
newPoint.z = a.z - b.z;
return newPoint;
}