-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathREADME
102 lines (82 loc) · 5.3 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
___ ____ _____ ____ _ _ _____ ___ __
| | /\ | \ | / \ | \ / | | / \ / |
|___| / \ | | | | | | \/ | | | \__
| \ /____\ | | | | | | | | | \
| \ / \ |____/ __|__ \____/ | | __|__ \___/ |__/
-------------------------------------------------------------------------
|<https://github.com/mvallieres/radiomics/>|
--> A package providing MATLAB programming tools for radiomics analysis.
-------------------------------------------------------------------------
REFERENCES:
[1] Vallières, M. et al. (2015). A radiomics model from joint FDG-PET and
MRI texture features for the prediction of lung metastases in soft-tissue
sarcomas of the extremities. Physics in Medicine and Biology, 60(14),
5471-5496. doi:10.1088/0031-9155/60/14/5471
[2] Zhou, H., Vallières, M., Bai, H.X. et al. (2017). MRI features predict
survival and molecular markers in diffuse lower-grade gliomas.
Neuro-Oncology, 19(6), 862-870. doi:10.1093/neuonc/now256
[3] Vallière, M. et al. (2017). Radiomics strategies for risk assessment
of tumour failure in head-and-neck cancer. Scientific Reports,
7:10117. doi:10.1038/s41598-017-10371-5
-------------------------------------------------------------------------
AUTHOR: Martin Vallières <[email protected]>
-------------------------------------------------------------------------
HISTORY:
- Version 1.0: May 2015
-------------------------------------------------------------------------
DISCLAIMER:
"I'm not a programmer, I'm just a scientist doing stuff!"
-------------------------------------------------------------------------
*** THANK YOU FOR YOUR INTEREST IN THIS PACKAGE ***
--> If you have any questions, comments or suggestions about this package,
please do not hesitate to contact me!
This package contains 5 folders:
1. 'TextureToolbox': MATLAB codes to perform texture analysis from an input
2D or 3D region of interest (ROI). This toolbox is self-contained and
can be used on its own outside of the radiomics package. In particular,
this texture analysis package implements wavelet band-pass filtering,
isotropic resampling, discretization length corrections and different
quantization tools. Please see ref. [1] for more details.
2. 'NonTextureFeatures': MATLAB codes to compute features other than textures
from an input 3D region of interest (ROI). Include features such as SUV
metrics, AUC-CSH, Percent Inactive, Size, Solidity, Volume and Eccentricity.
Please see ref. [1] for more details.
3. 'MultivariableModeling': MATLAB codes to perform multivariable analysis
operations such as logistic regression, bootstrapping, feature set
reduction, feature set selection, prediction performance estimation, etc.
4. 'Utilities': MATLAB codes used to perform different operations including
the computation of SUV maps, reading of directory containing DICOM imaging
data, conversion of RTstruct DICOM objects to 3D masks, etc.
5. 'STUDIES': MATLAB codes used for specific studies. To reproduce the
experiments of a given study, please see its corresponding folder.
- 'STS_study': Ref. [1]
A. Imaging/ROI data and clinical information is
available on The Cancer Imaging Archive (TCIA) website
under the following DOI:
<http://dx.doi.org/10.7937/K9/TCIA.2015.7GO2GSKS>.
- 'LGG_study': Ref. [2]
A. Texture data ("TEXTURES_TCGA.zip") is available
on Google Drive:
<https://drive.google.com/open?id=0B0fcZCGXT3nZWXM5d0t3OXVjQzA>
B. Imaging data is available on the TCIA website:
<http://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK>
C. ROI data is available on the TCIA website:
<https://doi.org/10.7937/K9/TCIA.2017.BD7SGWCA>
- 'HN_study': Ref. [3]
A. Imaging/ROI data and clinical information is available
on the TCIA website:
<http://doi.org/10.7937/K9/TCIA.2017.8oje5q00>
***************************************************************************
ACKNOWLEDGEMENTS: other software code
- Wei's GLRLM toolbox: Xunkai Wei, Gray Level Run Length Matrix Toolbox
v1.0, Software,Beijing Aeronautical Technology Research Center, 2007.
<http://www.mathworks.com/matlabcentral/fileexchange/17482-gray-level-run-length-matrix-toolbox>
- Q. Li: <http://www.mathworks.com/matlabcentral/fileexchange/23377-ellipsoid-fitting>
- CERR development team: <http://www.cerr.info/>
- Dirk-Jan Kroon (imresize3D.m): <http://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration/content//functions/imresize3d.m>
- David Reshef and Yakir Reshef: MINE version 1.0.1d <http://www.exploredata.net/>
- DREES development team: <http://www.cerr.info/drees>
- Enric Junqué de Fortuny (fastAUC.cpp): <http://www.mathworks.com/matlabcentral/fileexchange/41258-faster-roc-auc>
- François Beauducel (roundsd.m): <http://www.mathworks.com/matlabcentral/fileexchange/26212-round-with-significant-digits>
- Jos van der Geest (herrorbar.m): <http://www.mathworks.com/matlabcentral/fileexchange/3963-herrorbar>
***************************************************************************