forked from bzier/gym-mupen64plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrad_cam.py
229 lines (197 loc) · 7.84 KB
/
grad_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import pickle
import collections
import random
import torch
import numpy as np
from torchvision import transforms
import pdb
from collections import deque
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
import gym
from PIL import Image, ImageEnhance, ImageOps
import imageio.v2 as imageio
from tqdm import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class ActorNet(nn.Module):
def __init__(self, max_action, input_shape=(4, 128, 128), action_dim=5):
super(ActorNet, self).__init__()
self.max_action = max_action
self.conv_layers = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=1),
nn.ReLU(),
nn.Flatten()
)
self.flattened_size = self._get_conv_output(input_shape)
self.fc = nn.Linear(self.flattened_size, 512)
self.mean = nn.Sequential(
nn.Linear(512, 256),
nn.Linear(256, action_dim - 3)
)
self.log_std = nn.Sequential(
nn.Linear(512, 256),
nn.Linear(256, action_dim - 3)
)
self.binary_logits = nn.Sequential(
nn.Linear(512, 256),
nn.Linear(256, 3)
)
self.forward_bias = nn.Parameter(torch.tensor(10.0))
def _get_conv_output(self, shape):
with torch.no_grad():
input = torch.zeros(1, *shape)
output = self.conv_layers(input)
return int(np.prod(output.size()))
def forward(self, state):
x = self.conv_layers(state)
x = F.relu(self.fc(x))
mean = self.mean(x)
log_std = self.log_std(x)
log_std = torch.clamp(log_std, -20, 2)
std = log_std.exp()
binary_logits = self.binary_logits(x)
binary_logits[:, 0] += self.forward_bias
return mean, std, binary_logits
class ActorNetVisualize(ActorNet):
def __init__(self, *args, **kwargs):
super(ActorNetVisualize, self).__init__(*args, **kwargs)
self.gradients = None
self.activations = None
def activations_hook(self, grad):
self.gradients = grad
def forward(self, state):
x = self.conv_layers(state)
x.register_hook(self.activations_hook)
self.activations = x
x = F.relu(self.fc(x))
mean = self.mean(x)
log_std = self.log_std(x)
log_std = torch.clamp(log_std, -20, 2)
std = log_std.exp()
binary_logits = self.binary_logits(x)
binary_logits[:, 0] += self.forward_bias
return mean, std, binary_logits
class Agent():
def __init__(self):
self.max_action = torch.tensor([80.0, 80.0, 1, 1, 1]).cuda()
self.actor_net = ActorNetVisualize(self.max_action).to(device)
self.actor_net.load_state_dict(torch.load('actor_net_dict.pth'))
def choose_action(self, state):
mean, std, binary_logits = self.actor_net(state)
dist = torch.distributions.Normal(mean, std)
continuous_action = dist.sample()
continuous_action = torch.tanh(continuous_action)
continuous_action = continuous_action * 80
binary_dist = torch.distributions.Bernoulli(logits=binary_logits)
binary_action = binary_dist.sample()
action = torch.cat([continuous_action, binary_action], dim=-1)
return action.detach().cpu().numpy()
def visualize_features(self, state, original_observation, output_path):
self.actor_net.eval()
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mean, std, binary_logits = self.actor_net(state)
action = mean.mean()
action.backward()
gradients = self.actor_net.gradients
activations = self.actor_net.activations
grad_cam = compute_grad_cam(gradients, activations)
visualize_and_save(original_observation, grad_cam, output_path)
self.actor_net.train()
def compute_grad_cam(gradients, activations):
b, c, h, w = 1, 128, 12, 12
gradients = gradients.view(b, c, h, w)
activations = activations.view(b, c, h, w)
weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
grad_cam = torch.sum(weights * activations, dim=1, keepdim=True)
grad_cam = F.relu(grad_cam)
grad_cam = F.interpolate(grad_cam, size=(480, 640), mode='bilinear', align_corners=False)
epsilon = 1e-8
grad_cam -= grad_cam.min()
grad_cam /= (grad_cam.max() + epsilon)
return grad_cam
def visualize_and_save(original_observation, grad_cam, output_path):
grad_cam = grad_cam.cpu().detach().numpy().squeeze()
grad_cam -= grad_cam.min()
grad_cam /= (grad_cam.max() + 1e-8)
heatmap = Image.fromarray(np.uint8(255 * grad_cam))
heatmap = ImageOps.colorize(heatmap, black="blue", white="red")
original_observation = np.array(original_observation)
original_observation = Image.fromarray(original_observation).convert("L")
original_observation = ImageOps.colorize(original_observation, black="black", white="white")
blended = Image.blend(original_observation, heatmap, alpha=0.5)
blended.save(output_path)
class ReplayEnv():
def __init__(self, replay_file):
self.cur_idx = 0
self.replay_file = replay_file
with open(self.replay_file, 'rb') as f:
self.replay_data = pickle.load(f)
def reset(self):
self.cur_idx = 0
ob = self.replay_data['obs'][self.cur_idx]
reward = self.replay_data['reward'][self.cur_idx]
done = self.replay_data['done'][self.cur_idx]
info = {}
self.cur_idx += 1
return ob
def step(self, action):
ob = self.replay_data['obs'][self.cur_idx]
reward = self.replay_data['reward'][self.cur_idx]
done = self.replay_data['done'][self.cur_idx]
info = {}
self.cur_idx += 1
if self.cur_idx == len(self.replay_data['obs']) - 1:
self.cur_idx = 0
return ob, reward, done, info
class FrameStack():
def __init__(self, env, k):
self.env = env
self.k = k
self.frames = deque([], maxlen=k)
self.preprocess = transforms.Compose([
transforms.ToPILImage(),
transforms.Grayscale(),
transforms.Resize((128, 128)),
transforms.ToTensor()
])
def reset(self):
ob = self.env.reset()
for _ in range(self.k):
self.frames.append(self._preprocess_frame(ob))
return self._get_ob()
def step(self, action):
ob, reward, done, info = self.env.step(action)
self.frames.append(self._preprocess_frame(ob))
return self._get_ob(), reward, done, info
def _get_ob(self):
return torch.stack(list(self.frames), dim=0).squeeze()
def _preprocess_frame(self, frame):
return self.preprocess(frame)
def main():
replay_file = 'Luigi-Raceway-easy1.pkl'
FRAME_STACK = 4
replay_env = ReplayEnv(replay_file)
env = FrameStack(replay_env, FRAME_STACK)
agent = Agent()
state = env.reset()
episode_length = len(replay_env.replay_data['obs'])
frames = []
for _ in tqdm(range(episode_length), desc="Generating Grad-CAM Images"):
action = agent.choose_action(state.unsqueeze(0).to(device))
next_state, reward, done, info = env.step(action)
original_observation = replay_env.replay_data['obs'][replay_env.cur_idx]
output_image_path = 'temp_output_image.png'
agent.visualize_features(next_state, original_observation, output_image_path)
frame = imageio.imread(output_image_path)
frames.append(frame)
state = next_state
output_video_path = 'episode_gradcam_video.mp4'
imageio.mimwrite(output_video_path, frames, fps=30)
print('Grad-Cam video saved successfully')
if __name__ == "__main__":
main()