-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathtrain_a3c_doom.py
124 lines (99 loc) · 4 KB
/
train_a3c_doom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import multiprocessing as mp
import chainer
from chainer import links as L
from chainer import functions as F
import cv2
import numpy as np
import policy
import v_function
import dqn_head
import a3c
import random_seed
import rmsprop_async
from init_like_torch import init_like_torch
import run_a3c
import doom_env
def phi(obs):
resized = cv2.resize(obs.image_buffer, (84, 84))
return resized.transpose(2, 0, 1).astype(np.float32) / 255
class A3CFF(chainer.ChainList, a3c.A3CModel):
def __init__(self, n_actions):
self.head = dqn_head.NIPSDQNHead(n_input_channels=3)
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
super().__init__(self.head, self.pi, self.v)
init_like_torch(self)
def pi_and_v(self, state, keep_same_state=False):
out = self.head(state)
return self.pi(out), self.v(out)
class A3CLSTM(chainer.ChainList, a3c.A3CModel):
def __init__(self, n_actions):
self.head = dqn_head.NIPSDQNHead(n_input_channels=3)
self.pi = policy.FCSoftmaxPolicy(
self.head.n_output_channels, n_actions)
self.v = v_function.FCVFunction(self.head.n_output_channels)
self.lstm = L.LSTM(self.head.n_output_channels,
self.head.n_output_channels)
super().__init__(self.head, self.lstm, self.pi, self.v)
init_like_torch(self)
def pi_and_v(self, state, keep_same_state=False):
out = self.head(state)
if keep_same_state:
prev_h, prev_c = self.lstm.h, self.lstm.c
out = self.lstm(out)
self.lstm.h, self.lstm.c = prev_h, prev_c
else:
out = self.lstm(out)
return self.pi(out), self.v(out)
def reset_state(self):
self.lstm.reset_state()
def unchain_backward(self):
self.lstm.h.unchain_backward()
self.lstm.c.unchain_backward()
def main():
import logging
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument('processes', type=int)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--outdir', type=str, default=None)
parser.add_argument('--scenario', type=str, default='basic')
parser.add_argument('--t-max', type=int, default=5)
parser.add_argument('--beta', type=float, default=1e-2)
parser.add_argument('--profile', action='store_true')
parser.add_argument('--steps', type=int, default=8 * 10 ** 7)
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--eval-frequency', type=int, default=10 ** 5)
parser.add_argument('--eval-n-runs', type=int, default=10)
parser.add_argument('--use-lstm', action='store_true')
parser.add_argument('--window-visible', action='store_true')
parser.set_defaults(window_visible=False)
parser.set_defaults(use_lstm=False)
args = parser.parse_args()
if args.seed is not None:
random_seed.set_random_seed(args.seed)
# Simultaneously launching multiple vizdoom processes makes program stuck,
# so use the global lock
env_lock = mp.Lock()
def make_env(process_idx, test):
with env_lock:
return doom_env.DoomEnv(window_visible=args.window_visible,
scenario=args.scenario)
n_actions = 3
def model_opt():
if args.use_lstm:
model = A3CLSTM(n_actions)
else:
model = A3CFF(n_actions)
opt = rmsprop_async.RMSpropAsync(lr=args.lr, eps=1e-1, alpha=0.99)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(40))
return model, opt
run_a3c.run_a3c(args.processes, make_env, model_opt, phi, t_max=args.t_max,
beta=args.beta, profile=args.profile, steps=args.steps,
eval_frequency=args.eval_frequency,
eval_n_runs=args.eval_n_runs, args=args)
if __name__ == '__main__':
main()