diff --git a/README.md b/README.md
index 8010c4d..4ed4abb 100644
--- a/README.md
+++ b/README.md
@@ -7,7 +7,8 @@ It demonstrates how a neural network with convolutional and fully connected laye
```
numpy
scipy
-tensorly
+scikit-tensor-py3
+tensorly-musco
absl-py
tqdm
tensorflow-gpu (TensorRT support)
diff --git a/dependencies/scikit-tensor/LICENSE b/dependencies/scikit-tensor/LICENSE
deleted file mode 100644
index 94a9ed0..0000000
--- a/dependencies/scikit-tensor/LICENSE
+++ /dev/null
@@ -1,674 +0,0 @@
- GNU GENERAL PUBLIC LICENSE
- Version 3, 29 June 2007
-
- Copyright (C) 2007 Free Software Foundation, Inc.
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
- Preamble
-
- The GNU General Public License is a free, copyleft license for
-software and other kinds of works.
-
- The licenses for most software and other practical works are designed
-to take away your freedom to share and change the works. By contrast,
-the GNU General Public License is intended to guarantee your freedom to
-share and change all versions of a program--to make sure it remains free
-software for all its users. We, the Free Software Foundation, use the
-GNU General Public License for most of our software; it applies also to
-any other work released this way by its authors. You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-them if you wish), that you receive source code or can get it if you
-want it, that you can change the software or use pieces of it in new
-free programs, and that you know you can do these things.
-
- To protect your rights, we need to prevent others from denying you
-these rights or asking you to surrender the rights. Therefore, you have
-certain responsibilities if you distribute copies of the software, or if
-you modify it: responsibilities to respect the freedom of others.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must pass on to the recipients the same
-freedoms that you received. You must make sure that they, too, receive
-or can get the source code. And you must show them these terms so they
-know their rights.
-
- Developers that use the GNU GPL protect your rights with two steps:
-(1) assert copyright on the software, and (2) offer you this License
-giving you legal permission to copy, distribute and/or modify it.
-
- For the developers' and authors' protection, the GPL clearly explains
-that there is no warranty for this free software. For both users' and
-authors' sake, the GPL requires that modified versions be marked as
-changed, so that their problems will not be attributed erroneously to
-authors of previous versions.
-
- Some devices are designed to deny users access to install or run
-modified versions of the software inside them, although the manufacturer
-can do so. This is fundamentally incompatible with the aim of
-protecting users' freedom to change the software. The systematic
-pattern of such abuse occurs in the area of products for individuals to
-use, which is precisely where it is most unacceptable. Therefore, we
-have designed this version of the GPL to prohibit the practice for those
-products. If such problems arise substantially in other domains, we
-stand ready to extend this provision to those domains in future versions
-of the GPL, as needed to protect the freedom of users.
-
- Finally, every program is threatened constantly by software patents.
-States should not allow patents to restrict development and use of
-software on general-purpose computers, but in those that do, we wish to
-avoid the special danger that patents applied to a free program could
-make it effectively proprietary. To prevent this, the GPL assures that
-patents cannot be used to render the program non-free.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS
-
- 0. Definitions.
-
- "This License" refers to version 3 of the GNU General Public License.
-
- "Copyright" also means copyright-like laws that apply to other kinds of
-works, such as semiconductor masks.
-
- "The Program" refers to any copyrightable work licensed under this
-License. Each licensee is addressed as "you". "Licensees" and
-"recipients" may be individuals or organizations.
-
- To "modify" a work means to copy from or adapt all or part of the work
-in a fashion requiring copyright permission, other than the making of an
-exact copy. The resulting work is called a "modified version" of the
-earlier work or a work "based on" the earlier work.
-
- A "covered work" means either the unmodified Program or a work based
-on the Program.
-
- To "propagate" a work means to do anything with it that, without
-permission, would make you directly or secondarily liable for
-infringement under applicable copyright law, except executing it on a
-computer or modifying a private copy. Propagation includes copying,
-distribution (with or without modification), making available to the
-public, and in some countries other activities as well.
-
- To "convey" a work means any kind of propagation that enables other
-parties to make or receive copies. Mere interaction with a user through
-a computer network, with no transfer of a copy, is not conveying.
-
- An interactive user interface displays "Appropriate Legal Notices"
-to the extent that it includes a convenient and prominently visible
-feature that (1) displays an appropriate copyright notice, and (2)
-tells the user that there is no warranty for the work (except to the
-extent that warranties are provided), that licensees may convey the
-work under this License, and how to view a copy of this License. If
-the interface presents a list of user commands or options, such as a
-menu, a prominent item in the list meets this criterion.
-
- 1. Source Code.
-
- The "source code" for a work means the preferred form of the work
-for making modifications to it. "Object code" means any non-source
-form of a work.
-
- A "Standard Interface" means an interface that either is an official
-standard defined by a recognized standards body, or, in the case of
-interfaces specified for a particular programming language, one that
-is widely used among developers working in that language.
-
- The "System Libraries" of an executable work include anything, other
-than the work as a whole, that (a) is included in the normal form of
-packaging a Major Component, but which is not part of that Major
-Component, and (b) serves only to enable use of the work with that
-Major Component, or to implement a Standard Interface for which an
-implementation is available to the public in source code form. A
-"Major Component", in this context, means a major essential component
-(kernel, window system, and so on) of the specific operating system
-(if any) on which the executable work runs, or a compiler used to
-produce the work, or an object code interpreter used to run it.
-
- The "Corresponding Source" for a work in object code form means all
-the source code needed to generate, install, and (for an executable
-work) run the object code and to modify the work, including scripts to
-control those activities. However, it does not include the work's
-System Libraries, or general-purpose tools or generally available free
-programs which are used unmodified in performing those activities but
-which are not part of the work. For example, Corresponding Source
-includes interface definition files associated with source files for
-the work, and the source code for shared libraries and dynamically
-linked subprograms that the work is specifically designed to require,
-such as by intimate data communication or control flow between those
-subprograms and other parts of the work.
-
- The Corresponding Source need not include anything that users
-can regenerate automatically from other parts of the Corresponding
-Source.
-
- The Corresponding Source for a work in source code form is that
-same work.
-
- 2. Basic Permissions.
-
- All rights granted under this License are granted for the term of
-copyright on the Program, and are irrevocable provided the stated
-conditions are met. This License explicitly affirms your unlimited
-permission to run the unmodified Program. The output from running a
-covered work is covered by this License only if the output, given its
-content, constitutes a covered work. This License acknowledges your
-rights of fair use or other equivalent, as provided by copyright law.
-
- You may make, run and propagate covered works that you do not
-convey, without conditions so long as your license otherwise remains
-in force. You may convey covered works to others for the sole purpose
-of having them make modifications exclusively for you, or provide you
-with facilities for running those works, provided that you comply with
-the terms of this License in conveying all material for which you do
-not control copyright. Those thus making or running the covered works
-for you must do so exclusively on your behalf, under your direction
-and control, on terms that prohibit them from making any copies of
-your copyrighted material outside their relationship with you.
-
- Conveying under any other circumstances is permitted solely under
-the conditions stated below. Sublicensing is not allowed; section 10
-makes it unnecessary.
-
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
-
- No covered work shall be deemed part of an effective technological
-measure under any applicable law fulfilling obligations under article
-11 of the WIPO copyright treaty adopted on 20 December 1996, or
-similar laws prohibiting or restricting circumvention of such
-measures.
-
- When you convey a covered work, you waive any legal power to forbid
-circumvention of technological measures to the extent such circumvention
-is effected by exercising rights under this License with respect to
-the covered work, and you disclaim any intention to limit operation or
-modification of the work as a means of enforcing, against the work's
-users, your or third parties' legal rights to forbid circumvention of
-technological measures.
-
- 4. Conveying Verbatim Copies.
-
- You may convey verbatim copies of the Program's source code as you
-receive it, in any medium, provided that you conspicuously and
-appropriately publish on each copy an appropriate copyright notice;
-keep intact all notices stating that this License and any
-non-permissive terms added in accord with section 7 apply to the code;
-keep intact all notices of the absence of any warranty; and give all
-recipients a copy of this License along with the Program.
-
- You may charge any price or no price for each copy that you convey,
-and you may offer support or warranty protection for a fee.
-
- 5. Conveying Modified Source Versions.
-
- You may convey a work based on the Program, or the modifications to
-produce it from the Program, in the form of source code under the
-terms of section 4, provided that you also meet all of these conditions:
-
- a) The work must carry prominent notices stating that you modified
- it, and giving a relevant date.
-
- b) The work must carry prominent notices stating that it is
- released under this License and any conditions added under section
- 7. This requirement modifies the requirement in section 4 to
- "keep intact all notices".
-
- c) You must license the entire work, as a whole, under this
- License to anyone who comes into possession of a copy. This
- License will therefore apply, along with any applicable section 7
- additional terms, to the whole of the work, and all its parts,
- regardless of how they are packaged. This License gives no
- permission to license the work in any other way, but it does not
- invalidate such permission if you have separately received it.
-
- d) If the work has interactive user interfaces, each must display
- Appropriate Legal Notices; however, if the Program has interactive
- interfaces that do not display Appropriate Legal Notices, your
- work need not make them do so.
-
- A compilation of a covered work with other separate and independent
-works, which are not by their nature extensions of the covered work,
-and which are not combined with it such as to form a larger program,
-in or on a volume of a storage or distribution medium, is called an
-"aggregate" if the compilation and its resulting copyright are not
-used to limit the access or legal rights of the compilation's users
-beyond what the individual works permit. Inclusion of a covered work
-in an aggregate does not cause this License to apply to the other
-parts of the aggregate.
-
- 6. Conveying Non-Source Forms.
-
- You may convey a covered work in object code form under the terms
-of sections 4 and 5, provided that you also convey the
-machine-readable Corresponding Source under the terms of this License,
-in one of these ways:
-
- a) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by the
- Corresponding Source fixed on a durable physical medium
- customarily used for software interchange.
-
- b) Convey the object code in, or embodied in, a physical product
- (including a physical distribution medium), accompanied by a
- written offer, valid for at least three years and valid for as
- long as you offer spare parts or customer support for that product
- model, to give anyone who possesses the object code either (1) a
- copy of the Corresponding Source for all the software in the
- product that is covered by this License, on a durable physical
- medium customarily used for software interchange, for a price no
- more than your reasonable cost of physically performing this
- conveying of source, or (2) access to copy the
- Corresponding Source from a network server at no charge.
-
- c) Convey individual copies of the object code with a copy of the
- written offer to provide the Corresponding Source. This
- alternative is allowed only occasionally and noncommercially, and
- only if you received the object code with such an offer, in accord
- with subsection 6b.
-
- d) Convey the object code by offering access from a designated
- place (gratis or for a charge), and offer equivalent access to the
- Corresponding Source in the same way through the same place at no
- further charge. You need not require recipients to copy the
- Corresponding Source along with the object code. If the place to
- copy the object code is a network server, the Corresponding Source
- may be on a different server (operated by you or a third party)
- that supports equivalent copying facilities, provided you maintain
- clear directions next to the object code saying where to find the
- Corresponding Source. Regardless of what server hosts the
- Corresponding Source, you remain obligated to ensure that it is
- available for as long as needed to satisfy these requirements.
-
- e) Convey the object code using peer-to-peer transmission, provided
- you inform other peers where the object code and Corresponding
- Source of the work are being offered to the general public at no
- charge under subsection 6d.
-
- A separable portion of the object code, whose source code is excluded
-from the Corresponding Source as a System Library, need not be
-included in conveying the object code work.
-
- A "User Product" is either (1) a "consumer product", which means any
-tangible personal property which is normally used for personal, family,
-or household purposes, or (2) anything designed or sold for incorporation
-into a dwelling. In determining whether a product is a consumer product,
-doubtful cases shall be resolved in favor of coverage. For a particular
-product received by a particular user, "normally used" refers to a
-typical or common use of that class of product, regardless of the status
-of the particular user or of the way in which the particular user
-actually uses, or expects or is expected to use, the product. A product
-is a consumer product regardless of whether the product has substantial
-commercial, industrial or non-consumer uses, unless such uses represent
-the only significant mode of use of the product.
-
- "Installation Information" for a User Product means any methods,
-procedures, authorization keys, or other information required to install
-and execute modified versions of a covered work in that User Product from
-a modified version of its Corresponding Source. The information must
-suffice to ensure that the continued functioning of the modified object
-code is in no case prevented or interfered with solely because
-modification has been made.
-
- If you convey an object code work under this section in, or with, or
-specifically for use in, a User Product, and the conveying occurs as
-part of a transaction in which the right of possession and use of the
-User Product is transferred to the recipient in perpetuity or for a
-fixed term (regardless of how the transaction is characterized), the
-Corresponding Source conveyed under this section must be accompanied
-by the Installation Information. But this requirement does not apply
-if neither you nor any third party retains the ability to install
-modified object code on the User Product (for example, the work has
-been installed in ROM).
-
- The requirement to provide Installation Information does not include a
-requirement to continue to provide support service, warranty, or updates
-for a work that has been modified or installed by the recipient, or for
-the User Product in which it has been modified or installed. Access to a
-network may be denied when the modification itself materially and
-adversely affects the operation of the network or violates the rules and
-protocols for communication across the network.
-
- Corresponding Source conveyed, and Installation Information provided,
-in accord with this section must be in a format that is publicly
-documented (and with an implementation available to the public in
-source code form), and must require no special password or key for
-unpacking, reading or copying.
-
- 7. Additional Terms.
-
- "Additional permissions" are terms that supplement the terms of this
-License by making exceptions from one or more of its conditions.
-Additional permissions that are applicable to the entire Program shall
-be treated as though they were included in this License, to the extent
-that they are valid under applicable law. If additional permissions
-apply only to part of the Program, that part may be used separately
-under those permissions, but the entire Program remains governed by
-this License without regard to the additional permissions.
-
- When you convey a copy of a covered work, you may at your option
-remove any additional permissions from that copy, or from any part of
-it. (Additional permissions may be written to require their own
-removal in certain cases when you modify the work.) You may place
-additional permissions on material, added by you to a covered work,
-for which you have or can give appropriate copyright permission.
-
- Notwithstanding any other provision of this License, for material you
-add to a covered work, you may (if authorized by the copyright holders of
-that material) supplement the terms of this License with terms:
-
- a) Disclaiming warranty or limiting liability differently from the
- terms of sections 15 and 16 of this License; or
-
- b) Requiring preservation of specified reasonable legal notices or
- author attributions in that material or in the Appropriate Legal
- Notices displayed by works containing it; or
-
- c) Prohibiting misrepresentation of the origin of that material, or
- requiring that modified versions of such material be marked in
- reasonable ways as different from the original version; or
-
- d) Limiting the use for publicity purposes of names of licensors or
- authors of the material; or
-
- e) Declining to grant rights under trademark law for use of some
- trade names, trademarks, or service marks; or
-
- f) Requiring indemnification of licensors and authors of that
- material by anyone who conveys the material (or modified versions of
- it) with contractual assumptions of liability to the recipient, for
- any liability that these contractual assumptions directly impose on
- those licensors and authors.
-
- All other non-permissive additional terms are considered "further
-restrictions" within the meaning of section 10. If the Program as you
-received it, or any part of it, contains a notice stating that it is
-governed by this License along with a term that is a further
-restriction, you may remove that term. If a license document contains
-a further restriction but permits relicensing or conveying under this
-License, you may add to a covered work material governed by the terms
-of that license document, provided that the further restriction does
-not survive such relicensing or conveying.
-
- If you add terms to a covered work in accord with this section, you
-must place, in the relevant source files, a statement of the
-additional terms that apply to those files, or a notice indicating
-where to find the applicable terms.
-
- Additional terms, permissive or non-permissive, may be stated in the
-form of a separately written license, or stated as exceptions;
-the above requirements apply either way.
-
- 8. Termination.
-
- You may not propagate or modify a covered work except as expressly
-provided under this License. Any attempt otherwise to propagate or
-modify it is void, and will automatically terminate your rights under
-this License (including any patent licenses granted under the third
-paragraph of section 11).
-
- However, if you cease all violation of this License, then your
-license from a particular copyright holder is reinstated (a)
-provisionally, unless and until the copyright holder explicitly and
-finally terminates your license, and (b) permanently, if the copyright
-holder fails to notify you of the violation by some reasonable means
-prior to 60 days after the cessation.
-
- Moreover, your license from a particular copyright holder is
-reinstated permanently if the copyright holder notifies you of the
-violation by some reasonable means, this is the first time you have
-received notice of violation of this License (for any work) from that
-copyright holder, and you cure the violation prior to 30 days after
-your receipt of the notice.
-
- Termination of your rights under this section does not terminate the
-licenses of parties who have received copies or rights from you under
-this License. If your rights have been terminated and not permanently
-reinstated, you do not qualify to receive new licenses for the same
-material under section 10.
-
- 9. Acceptance Not Required for Having Copies.
-
- You are not required to accept this License in order to receive or
-run a copy of the Program. Ancillary propagation of a covered work
-occurring solely as a consequence of using peer-to-peer transmission
-to receive a copy likewise does not require acceptance. However,
-nothing other than this License grants you permission to propagate or
-modify any covered work. These actions infringe copyright if you do
-not accept this License. Therefore, by modifying or propagating a
-covered work, you indicate your acceptance of this License to do so.
-
- 10. Automatic Licensing of Downstream Recipients.
-
- Each time you convey a covered work, the recipient automatically
-receives a license from the original licensors, to run, modify and
-propagate that work, subject to this License. You are not responsible
-for enforcing compliance by third parties with this License.
-
- An "entity transaction" is a transaction transferring control of an
-organization, or substantially all assets of one, or subdividing an
-organization, or merging organizations. If propagation of a covered
-work results from an entity transaction, each party to that
-transaction who receives a copy of the work also receives whatever
-licenses to the work the party's predecessor in interest had or could
-give under the previous paragraph, plus a right to possession of the
-Corresponding Source of the work from the predecessor in interest, if
-the predecessor has it or can get it with reasonable efforts.
-
- You may not impose any further restrictions on the exercise of the
-rights granted or affirmed under this License. For example, you may
-not impose a license fee, royalty, or other charge for exercise of
-rights granted under this License, and you may not initiate litigation
-(including a cross-claim or counterclaim in a lawsuit) alleging that
-any patent claim is infringed by making, using, selling, offering for
-sale, or importing the Program or any portion of it.
-
- 11. Patents.
-
- A "contributor" is a copyright holder who authorizes use under this
-License of the Program or a work on which the Program is based. The
-work thus licensed is called the contributor's "contributor version".
-
- A contributor's "essential patent claims" are all patent claims
-owned or controlled by the contributor, whether already acquired or
-hereafter acquired, that would be infringed by some manner, permitted
-by this License, of making, using, or selling its contributor version,
-but do not include claims that would be infringed only as a
-consequence of further modification of the contributor version. For
-purposes of this definition, "control" includes the right to grant
-patent sublicenses in a manner consistent with the requirements of
-this License.
-
- Each contributor grants you a non-exclusive, worldwide, royalty-free
-patent license under the contributor's essential patent claims, to
-make, use, sell, offer for sale, import and otherwise run, modify and
-propagate the contents of its contributor version.
-
- In the following three paragraphs, a "patent license" is any express
-agreement or commitment, however denominated, not to enforce a patent
-(such as an express permission to practice a patent or covenant not to
-sue for patent infringement). To "grant" such a patent license to a
-party means to make such an agreement or commitment not to enforce a
-patent against the party.
-
- If you convey a covered work, knowingly relying on a patent license,
-and the Corresponding Source of the work is not available for anyone
-to copy, free of charge and under the terms of this License, through a
-publicly available network server or other readily accessible means,
-then you must either (1) cause the Corresponding Source to be so
-available, or (2) arrange to deprive yourself of the benefit of the
-patent license for this particular work, or (3) arrange, in a manner
-consistent with the requirements of this License, to extend the patent
-license to downstream recipients. "Knowingly relying" means you have
-actual knowledge that, but for the patent license, your conveying the
-covered work in a country, or your recipient's use of the covered work
-in a country, would infringe one or more identifiable patents in that
-country that you have reason to believe are valid.
-
- If, pursuant to or in connection with a single transaction or
-arrangement, you convey, or propagate by procuring conveyance of, a
-covered work, and grant a patent license to some of the parties
-receiving the covered work authorizing them to use, propagate, modify
-or convey a specific copy of the covered work, then the patent license
-you grant is automatically extended to all recipients of the covered
-work and works based on it.
-
- A patent license is "discriminatory" if it does not include within
-the scope of its coverage, prohibits the exercise of, or is
-conditioned on the non-exercise of one or more of the rights that are
-specifically granted under this License. You may not convey a covered
-work if you are a party to an arrangement with a third party that is
-in the business of distributing software, under which you make payment
-to the third party based on the extent of your activity of conveying
-the work, and under which the third party grants, to any of the
-parties who would receive the covered work from you, a discriminatory
-patent license (a) in connection with copies of the covered work
-conveyed by you (or copies made from those copies), or (b) primarily
-for and in connection with specific products or compilations that
-contain the covered work, unless you entered into that arrangement,
-or that patent license was granted, prior to 28 March 2007.
-
- Nothing in this License shall be construed as excluding or limiting
-any implied license or other defenses to infringement that may
-otherwise be available to you under applicable patent law.
-
- 12. No Surrender of Others' Freedom.
-
- If conditions are imposed on you (whether by court order, agreement or
-otherwise) that contradict the conditions of this License, they do not
-excuse you from the conditions of this License. If you cannot convey a
-covered work so as to satisfy simultaneously your obligations under this
-License and any other pertinent obligations, then as a consequence you may
-not convey it at all. For example, if you agree to terms that obligate you
-to collect a royalty for further conveying from those to whom you convey
-the Program, the only way you could satisfy both those terms and this
-License would be to refrain entirely from conveying the Program.
-
- 13. Use with the GNU Affero General Public License.
-
- Notwithstanding any other provision of this License, you have
-permission to link or combine any covered work with a work licensed
-under version 3 of the GNU Affero General Public License into a single
-combined work, and to convey the resulting work. The terms of this
-License will continue to apply to the part which is the covered work,
-but the special requirements of the GNU Affero General Public License,
-section 13, concerning interaction through a network will apply to the
-combination as such.
-
- 14. Revised Versions of this License.
-
- The Free Software Foundation may publish revised and/or new versions of
-the GNU General Public License from time to time. Such new versions will
-be similar in spirit to the present version, but may differ in detail to
-address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
-Program specifies that a certain numbered version of the GNU General
-Public License "or any later version" applies to it, you have the
-option of following the terms and conditions either of that numbered
-version or of any later version published by the Free Software
-Foundation. If the Program does not specify a version number of the
-GNU General Public License, you may choose any version ever published
-by the Free Software Foundation.
-
- If the Program specifies that a proxy can decide which future
-versions of the GNU General Public License can be used, that proxy's
-public statement of acceptance of a version permanently authorizes you
-to choose that version for the Program.
-
- Later license versions may give you additional or different
-permissions. However, no additional obligations are imposed on any
-author or copyright holder as a result of your choosing to follow a
-later version.
-
- 15. Disclaimer of Warranty.
-
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
-HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
-OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
-THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
-IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
-ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
-
- 16. Limitation of Liability.
-
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
-WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
-THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
-GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
-USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
-DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
-EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
-SUCH DAMAGES.
-
- 17. Interpretation of Sections 15 and 16.
-
- If the disclaimer of warranty and limitation of liability provided
-above cannot be given local legal effect according to their terms,
-reviewing courts shall apply local law that most closely approximates
-an absolute waiver of all civil liability in connection with the
-Program, unless a warranty or assumption of liability accompanies a
-copy of the Program in return for a fee.
-
- END OF TERMS AND CONDITIONS
-
- How to Apply These Terms to Your New Programs
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-state the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
-
- Copyright (C)
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
-
-Also add information on how to contact you by electronic and paper mail.
-
- If the program does terminal interaction, make it output a short
-notice like this when it starts in an interactive mode:
-
- Copyright (C)
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
-The hypothetical commands `show w' and `show c' should show the appropriate
-parts of the General Public License. Of course, your program's commands
-might be different; for a GUI interface, you would use an "about box".
-
- You should also get your employer (if you work as a programmer) or school,
-if any, to sign a "copyright disclaimer" for the program, if necessary.
-For more information on this, and how to apply and follow the GNU GPL, see
-.
-
- The GNU General Public License does not permit incorporating your program
-into proprietary programs. If your program is a subroutine library, you
-may consider it more useful to permit linking proprietary applications with
-the library. If this is what you want to do, use the GNU Lesser General
-Public License instead of this License. But first, please read
-.
diff --git a/dependencies/scikit-tensor/MANIFEST.in b/dependencies/scikit-tensor/MANIFEST.in
deleted file mode 100644
index c38a949..0000000
--- a/dependencies/scikit-tensor/MANIFEST.in
+++ /dev/null
@@ -1,6 +0,0 @@
-include *.rst
-recursive-include docs *
-recursive-include examples *
-recursive-include sktensor *.c *.h *.pyx *.pxd
-recursive-include sktensor/datasets *.csv *.csv.gz *.rst *.jpg *.txt
-include LICENSE
diff --git a/dependencies/scikit-tensor/setup.cfg b/dependencies/scikit-tensor/setup.cfg
deleted file mode 100644
index b88034e..0000000
--- a/dependencies/scikit-tensor/setup.cfg
+++ /dev/null
@@ -1,2 +0,0 @@
-[metadata]
-description-file = README.md
diff --git a/dependencies/scikit-tensor/setup.py b/dependencies/scikit-tensor/setup.py
deleted file mode 100644
index c70c9ad..0000000
--- a/dependencies/scikit-tensor/setup.py
+++ /dev/null
@@ -1,115 +0,0 @@
-#!/usr/bin/env python
-descr = """Python module for multilinear algebra and tensor factorizations"""
-
-import os
-import sys
-
-DISTNAME = 'scikit-tensor'
-DESCRIPTION = descr
-MAINTAINER = 'Maximilian Nickel',
-MAINTAINER_EMAIL = 'mnick@mit.edu',
-URL = 'http://github.com/mnick/scikit-tensor'
-LICENSE = 'GPLv3'
-DOWNLOAD_URL = URL
-PACKAGE_NAME = 'sktensor'
-EXTRA_INFO = dict(
- classifiers=[
- "Development Status :: 3 - Alpha",
- 'Intended Audience :: Developers',
- 'Intended Audience :: Science/Research',
- 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
- 'Topic :: Scientific/Engineering',
- 'Topic :: Software Development',
- 'Operating System :: Microsoft :: Windows',
- 'Operating System :: POSIX',
- 'Operating System :: Unix',
- 'Operating System :: MacOS',
- 'Programming Language :: Python :: 2',
- 'Programming Language :: Python :: 2.6',
- 'Programming Language :: Python :: 2.7',
- 'Programming Language :: Python :: 3',
- 'Programming Language :: Python :: 3.3',
- ]
-)
-
-try:
- import setuptools # If you want to enable 'python setup.py develop'
- EXTRA_INFO.update(dict(
- zip_safe=False, # the package can run out of an .egg file
- include_package_data=True,
- ))
-except:
- print('setuptools module not found.')
- print("Install setuptools if you want to enable 'python setup.py develop'.")
-
-
-def configuration(parent_package='', top_path=None, package_name=DISTNAME):
- if os.path.exists('MANIFEST'):
- os.remove('MANIFEST')
-
- from numpy.distutils.misc_util import Configuration
- config = Configuration(None, parent_package, top_path)
-
- # Avoid non-useful msg: "Ignoring attempt to set 'name' (from ... "
- config.set_options(
- ignore_setup_xxx_py=True,
- assume_default_configuration=True,
- delegate_options_to_subpackages=True,
- quiet=True
- )
-
- config.add_subpackage(PACKAGE_NAME)
- return config
-
-
-def get_version():
- """Obtain the version number"""
- import imp
- mod = imp.load_source('version', os.path.join(PACKAGE_NAME, 'version.py'))
- return mod.__version__
-
-
-def setup_package():
-# Call the setup function
- metadata = dict(
- name=DISTNAME,
- maintainer=MAINTAINER,
- maintainer_email=MAINTAINER_EMAIL,
- description=DESCRIPTION,
- license=LICENSE,
- url=URL,
- download_url=DOWNLOAD_URL,
- version=get_version(),
- install_requires=[
- 'numpy',
- 'scipy',
- 'nose'
- ],
- #test_suite="nose.collector",
- **EXTRA_INFO
- )
-
- if (len(sys.argv) >= 2
- and ('--common' in sys.argv[1:] or sys.argv[1]
- in ('--common-commands', 'egg_info', '--version', 'clean'))):
-
- # For these actions, NumPy is not required.
- #
- # They are required to succeed without Numpy for example when
- # pip is used to install Scikit when Numpy is not yet present in
- # the system.
- try:
- from setuptools import setup
- except ImportError:
- from distutils.core import setup
-
- metadata['version'] = get_version()
- else:
- metadata['configuration'] = configuration
- from numpy.distutils.core import setup
-
-
- setup(**metadata)
-
-if __name__ == "__main__":
- setup_package()
diff --git a/dependencies/scikit-tensor/sktensor/__init__.py b/dependencies/scikit-tensor/sktensor/__init__.py
deleted file mode 100644
index 95b01ef..0000000
--- a/dependencies/scikit-tensor/sktensor/__init__.py
+++ /dev/null
@@ -1,14 +0,0 @@
-from .version import __version__
-
-from .utils import *
-from .core import *
-
-# data types
-from .sptensor import sptensor, unfolded_sptensor
-from .dtensor import dtensor, unfolded_dtensor
-from .ktensor import ktensor
-
-# import algorithms
-from .cp import als as cp_als
-from .tucker import hooi as tucker_hooi
-from .tucker import hooi as tucker_hosvd
diff --git a/dependencies/scikit-tensor/sktensor/core.py b/dependencies/scikit-tensor/sktensor/core.py
deleted file mode 100644
index 4935458..0000000
--- a/dependencies/scikit-tensor/sktensor/core.py
+++ /dev/null
@@ -1,407 +0,0 @@
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import numpy as np
-from numpy import array, dot, zeros, ones, arange, kron
-from numpy import setdiff1d
-from scipy.linalg import eigh
-from scipy.sparse import issparse as issparse_mat
-from scipy.sparse import csr_matrix
-from scipy.sparse.linalg import eigsh
-from abc import ABCMeta, abstractmethod
-from .pyutils import is_sequence, func_attr
-#from coremod import khatrirao
-
-import sys
-import types
-
-module_funs = []
-
-
-def modulefunction(func):
- module_funs.append(func_attr(func, 'name'))
-
-
-class tensor_mixin(object, metaclass=ABCMeta):
- """
- Base tensor class from which all tensor classes are subclasses.
- Can not be instaniated
-
- See also
- --------
- sktensor.dtensor : Subclass for *dense* tensors.
- sktensor.sptensor : Subclass for *sparse* tensors.
- """
-
- def ttm(self, V, mode=None, transp=False, without=False):
- """
- Tensor times matrix product
-
- Parameters
- ----------
- V : M x N array_like or list of M_i x N_i array_likes
- Matrix or list of matrices for which the tensor times matrix
- products should be performed
- mode : int or list of int's, optional
- Modes along which the tensor times matrix products should be
- performed
- transp: boolean, optional
- If True, tensor times matrix products are computed with
- transpositions of matrices
- without: boolean, optional
- It True, tensor times matrix products are performed along all
- modes **except** the modes specified via parameter ``mode``
-
-
- Examples
- --------
- Create dense tensor
-
- >>> T = zeros((3, 4, 2))
- >>> T[:, :, 0] = [[ 1, 4, 7, 10], [ 2, 5, 8, 11], [3, 6, 9, 12]]
- >>> T[:, :, 1] = [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]
- >>> T = dtensor(T)
-
- Create matrix
-
- >>> V = array([[1, 3, 5], [2, 4, 6]])
-
- Multiply tensor with matrix along mode 0
-
- >>> Y = T.ttm(V, 0)
- >>> Y[:, :, 0]
- array([[ 22., 49., 76., 103.],
- [ 28., 64., 100., 136.]])
- >>> Y[:, :, 1]
- array([[ 130., 157., 184., 211.],
- [ 172., 208., 244., 280.]])
-
- """
- if mode is None:
- mode = list(range(self.ndim))
- if isinstance(V, np.ndarray):
- Y = self._ttm_compute(V, mode, transp)
- elif is_sequence(V):
- dims, vidx = check_multiplication_dims(mode, self.ndim, len(V), vidx=True, without=without)
- Y = self._ttm_compute(V[vidx[0]], dims[0], transp)
- for i in range(1, len(dims)):
- Y = Y._ttm_compute(V[vidx[i]], dims[i], transp)
- return Y
-
- def ttv(self, v, modes=[], without=False):
- """
- Tensor times vector product
-
- Parameters
- ----------
- v : 1-d array or tuple of 1-d arrays
- Vector to be multiplied with tensor.
- modes : array_like of integers, optional
- Modes in which the vectors should be multiplied.
- without : boolean, optional
- If True, vectors are multiplied in all modes **except** the
- modes specified in ``modes``.
-
- """
- if not isinstance(v, tuple):
- v = (v, )
- dims, vidx = check_multiplication_dims(modes, self.ndim, len(v), vidx=True, without=without)
- for i in range(len(dims)):
- if not len(v[vidx[i]]) == self.shape[dims[i]]:
- raise ValueError('Multiplicant is wrong size')
- remdims = np.setdiff1d(list(range(self.ndim)), dims)
- return self._ttv_compute(v, dims, vidx, remdims)
-
- #@abstractmethod
- #def ttt(self, other, modes=None):
- # pass
-
- @abstractmethod
- def _ttm_compute(self, V, mode, transp):
- pass
-
- @abstractmethod
- def _ttv_compute(self, v, dims, vidx, remdims):
- pass
-
- @abstractmethod
- def unfold(self, rdims, cdims=None, transp=False):
- pass
-
- @abstractmethod
- def uttkrp(self, U, mode):
- """
- Unfolded tensor times Khatri-Rao product:
- :math:`M = \\unfold{X}{3} (U_1 \kr \cdots \kr U_N)`
-
- Computes the _matrix_ product of the unfolding
- of a tensor and the Khatri-Rao product of multiple matrices.
- Efficient computations are perfomed by the respective
- tensor implementations.
-
- Parameters
- ----------
- U : list of array-likes
- Matrices for which the Khatri-Rao product is computed and
- which are multiplied with the tensor in mode ``mode``.
- mode: int
- Mode in which the Khatri-Rao product of ``U`` is multiplied
- with the tensor.
-
- Returns
- -------
- M : np.ndarray
- Matrix which is the result of the matrix product of the unfolding of
- the tensor and the Khatri-Rao product of ``U``
-
- See also
- --------
- For efficient computations of unfolded tensor times Khatri-Rao products
- for specialiized tensors see also
- dtensor.uttkrp, sptensor.uttkrp, ktensor.uttkrp, ttensor.uttkrp
-
- References
- ----------
- .. [1] B.W. Bader, T.G. Kolda
- Efficient Matlab Computations With Sparse and Factored Tensors
- SIAM J. Sci. Comput, Vol 30, No. 1, pp. 205--231, 2007
- """
- pass
-
- @abstractmethod
- def transpose(self, axes=None):
- """
- Compute transpose of tensors.
-
- Parameters
- ----------
- axes : array_like of ints, optional
- Permute the axes according to the values given.
-
- Returns
- -------
- d : tensor_mixin
- tensor with axes permuted.
-
- See also
- --------
- dtensor.transpose, sptensor.transpose
- """
- pass
-
-
-def istensor(X):
- return isinstance(X, tensor_mixin)
-
-
-# dynamically create module level functions
-conv_funcs = [
- 'norm',
- 'transpose',
- 'ttm',
- 'ttv',
- 'unfold',
-]
-
-for fname in conv_funcs:
- def call_on_me(obj, *args, **kwargs):
- if not istensor(obj):
- raise ValueError('%s() object must be tensor (%s)' % (fname, type(obj)))
- func = getattr(obj, fname)
- return func(*args, **kwargs)
-
- nfunc = types.FunctionType(
- func_attr(call_on_me, 'code'),
- {
- 'getattr': getattr,
- 'fname': fname,
- 'istensor': istensor,
- 'ValueError': ValueError,
- 'type': type
- },
- name=fname,
- argdefs=func_attr(call_on_me, 'defaults'),
- closure=func_attr(call_on_me, 'closure')
- )
- setattr(sys.modules[__name__], fname, nfunc)
-
-
-def check_multiplication_dims(dims, N, M, vidx=False, without=False):
- dims = array(dims, ndmin=1)
- if len(dims) == 0:
- dims = arange(N)
- if without:
- dims = setdiff1d(list(range(N)), dims)
- if not np.in1d(dims, arange(N)).all():
- raise ValueError('Invalid dimensions')
- P = len(dims)
- sidx = np.argsort(dims)
- sdims = dims[sidx]
- if vidx:
- if M > N:
- raise ValueError('More multiplicants than dimensions')
- if M != N and M != P:
- raise ValueError('Invalid number of multiplicants')
- if P == M:
- vidx = sidx
- else:
- vidx = sdims
- return sdims, vidx
- else:
- return sdims
-
-
-def innerprod(X, Y):
- """
- Inner prodcut with a Tensor
- """
- return dot(X.flatten(), Y.flatten())
-
-
-def nvecs(X, n, rank, do_flipsign=True, dtype=np.float):
- """
- Eigendecomposition of mode-n unfolding of a tensor
- """
- Xn = X.unfold(n)
- if issparse_mat(Xn):
- Xn = csr_matrix(Xn, dtype=dtype)
- Y = Xn.dot(Xn.T)
- _, U = eigsh(Y, rank, which='LM')
- else:
- Y = Xn.dot(Xn.T)
- N = Y.shape[0]
- _, U = eigh(Y, eigvals=(N - rank, N - 1))
- #_, U = eigsh(Y, rank, which='LM')
- # reverse order of eigenvectors such that eigenvalues are decreasing
- U = array(U[:, ::-1])
- # flip sign
- if do_flipsign:
- U = flipsign(U)
- return U
-
-
-def flipsign(U):
- """
- Flip sign of factor matrices such that largest magnitude
- element will be positive
- """
- midx = abs(U).argmax(axis=0)
- for i in range(U.shape[1]):
- if U[midx[i], i] < 0:
- U[:, i] = -U[:, i]
- return U
-
-
-def center(X, n):
- Xn = unfold(X, n)
- N = Xn.shape[0]
- m = Xn.sum(axis=0) / N
- m = kron(m, ones((N, 1)))
- Xn = Xn - m
- return fold(Xn, n)
-
-
-def center_matrix(X):
- m = X.mean(axis=0)
- return X - m
-
-
-def scale(X, n):
- Xn = unfold(X, n)
- m = np.float_(np.sqrt((Xn ** 2).sum(axis=1)))
- m[m == 0] = 1
- for i in range(Xn.shape[0]):
- Xn[i, :] = Xn[i] / m[i]
- return fold(Xn, n, X.shape)
-
-
-# TODO more efficient cython implementation
-def khatrirao(A, reverse=False):
- """
- Compute the columnwise Khatri-Rao product.
-
- Parameters
- ----------
- A : tuple of ndarrays
- Matrices for which the columnwise Khatri-Rao product should be computed
-
- reverse : boolean
- Compute Khatri-Rao product in reverse order
-
- Examples
- --------
- >>> A = np.random.randn(5, 2)
- >>> B = np.random.randn(4, 2)
- >>> C = khatrirao((A, B))
- >>> C.shape
- (20, 2)
- >>> (C[:, 0] == np.kron(A[:, 0], B[:, 0])).all()
- true
- >>> (C[:, 1] == np.kron(A[:, 1], B[:, 1])).all()
- true
- """
-
- if not isinstance(A, tuple):
- raise ValueError('A must be a tuple of array likes')
- N = A[0].shape[1]
- M = 1
- for i in range(len(A)):
- if A[i].ndim != 2:
- raise ValueError('A must be a tuple of matrices (A[%d].ndim = %d)' % (i, A[i].ndim))
- elif N != A[i].shape[1]:
- raise ValueError('All matrices must have same number of columns')
- M *= A[i].shape[0]
- matorder = arange(len(A))
- if reverse:
- matorder = matorder[::-1]
- # preallocate
- P = np.zeros((M, N), dtype=A[0].dtype)
- for n in range(N):
- ab = A[matorder[0]][:, n]
- for j in range(1, len(matorder)):
- ab = np.kron(ab, A[matorder[j]][:, n])
- P[:, n] = ab
- return P
-
-
-def teneye(dim, order):
- """
- Create tensor with superdiagonal all one, rest zeros
- """
- I = zeros(dim ** order)
- for f in range(dim):
- idd = f
- for i in range(1, order):
- idd = idd + dim ** (i - 1) * (f - 1)
- I[idd] = 1
- return I.reshape(ones(order) * dim)
-
-
-def tvecmat(m, n):
- d = m * n
- i2 = arange(d).reshape(m, n).T.flatten()
- Tmn = zeros((d, d))
- Tmn[arange(d), i2] = 1
- return Tmn
-
- #i = arange(d);
- #rI = m * (i-1)-(m*n-1) * floor((i-1)/n)
- #print rI
- #I1s = s2i((d,d), rI, arange(d))
- #print I1s
- #Tmn[I1s] = 1
- #return Tmn.reshape((d,d)).T
-
-# vim: set et:
diff --git a/dependencies/scikit-tensor/sktensor/cp.py b/dependencies/scikit-tensor/sktensor/cp.py
deleted file mode 100644
index d710b73..0000000
--- a/dependencies/scikit-tensor/sktensor/cp.py
+++ /dev/null
@@ -1,207 +0,0 @@
-# coding: utf-8
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-"""
-This module holds diffent algorithms to compute the CP decompositions, i.e.
-algorithms where
-
-.. math:: \\ten{X} \\approx \sum_{r=1}^{rank} \\vec{u}_r^{(1)} \outer \cdots \outer \\vec{u}_r^{(N)}
-
-"""
-import logging
-import time
-import numpy as np
-from numpy import array, dot, ones, sqrt
-from scipy.linalg import pinv
-from numpy.random import rand
-from .core import nvecs, norm
-from .ktensor import ktensor
-
-_log = logging.getLogger('CP')
-_DEF_MAXITER = 500
-_DEF_INIT = 'nvecs'
-_DEF_CONV = 1e-5
-_DEF_FIT_METHOD = 'full'
-_DEF_TYPE = np.float
-
-__all__ = [
- 'als',
- 'opt',
- 'wopt'
-]
-
-
-def als(X, rank, **kwargs):
- """
- Alternating least-sqaures algorithm to compute the CP decompositions.
-
- Parameters
- ----------
- X : tensor_mixin
- The tensor to be decomposed.
- rank : int
- Tensor rank of the decompositions.
- init : {'random', 'nvecs'}, optional
- The initialization method to use.
- - random : Factor matrices are initialized randomly.
- - nvecs : Factor matrices are initialzed via HOSVD.
- (default 'nvecs')
- max_iter : int, optional
- Maximium number of iterations of the ALS algorithm.
- (default 500)
- fit_method : {'full', None}
- The method to compute the fit of the factorization
- - 'full' : Compute least-squares fit of the dense approximation of.
- X and X.
- - None : Do not compute the fit of the factorization, but iterate
- until ``max_iter`` (Useful for large-scale tensors).
- (default 'full')
- conv : float
- Convergence tolerance on difference of fit between iterations
- (default 1e-5)
-
- Returns
- -------
- P : ktensor
- Rank ``rank`` factorization of X. ``P.U[i]`` corresponds to the factor
- matrix for the i-th mode. ``P.lambda[i]`` corresponds to the weight
- of the i-th mode.
- fit : float
- Fit of the factorization compared to ``X``
- itr : int
- Number of iterations that were needed until convergence
- exectimes : ndarray of floats
- Time needed for each single iteration
-
- Examples
- --------
- Create random dense tensor
-
- >>> from sktensor import dtensor, ktensor
- >>> U = [np.random.rand(i,3) for i in (20, 10, 14)]
- >>> T = dtensor(ktensor(U).toarray())
-
- Compute rank-3 CP decompositions of ``T`` with ALS
-
- >>> P, fit, itr, _ = als(T, 3)
-
- Result is a decomposed tensor stored as a Kruskal operator
-
- >>> type(P)
-
-
- Factorization should be close to original data
-
- >>> np.allclose(T, P.totensor())
- True
-
- References
- ----------
- .. [1] Kolda, T. G. & Bader, B. W.
- Tensor Decompositions and Applications.
- SIAM Rev. 51, 455–500 (2009).
- .. [2] Harshman, R. A.
- Foundations of the PARAFAC procedure: models and conditions for an 'explanatory' multimodal factor analysis.
- UCLA Working Papers in Phonetics 16, (1970).
- .. [3] Carroll, J. D., Chang, J. J.
- Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decompositions.
- Psychometrika 35, 283–319 (1970).
- """
-
- # init options
- ainit = kwargs.pop('init', _DEF_INIT)
- maxiter = kwargs.pop('max_iter', _DEF_MAXITER)
- fit_method = kwargs.pop('fit_method', _DEF_FIT_METHOD)
- conv = kwargs.pop('conv', _DEF_CONV)
- dtype = kwargs.pop('dtype', _DEF_TYPE)
- if not len(kwargs) == 0:
- raise ValueError('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- N = X.ndim
- normX = norm(X)
-
- U = _init(ainit, X, N, rank, dtype)
- fit = 0
- exectimes = []
- for itr in range(maxiter):
- tic = time.clock()
- fitold = fit
-
- for n in range(N):
- Unew = X.uttkrp(U, n)
- Y = ones((rank, rank), dtype=dtype)
- for i in (list(range(n)) + list(range(n + 1, N))):
- Y = Y * dot(U[i].T, U[i])
- Unew = Unew.dot(pinv(Y))
- # Normalize
- if itr == 0:
- lmbda = sqrt((Unew ** 2).sum(axis=0))
- else:
- lmbda = Unew.max(axis=0)
- lmbda[lmbda < 1] = 1
- U[n] = Unew / lmbda
-
- P = ktensor(U, lmbda)
- if fit_method == 'full':
- normresidual = normX ** 2 + P.norm() ** 2 - 2 * P.innerprod(X)
- fit = 1 - (normresidual / normX ** 2)
- else:
- fit = itr
- fitchange = abs(fitold - fit)
- exectimes.append(time.clock() - tic)
- _log.debug(
- '[%3d] fit: %.5f | delta: %7.1e | secs: %.5f' %
- (itr, fit, fitchange, exectimes[-1])
- )
- if itr > 0 and fitchange < conv:
- break
-
- return P, fit, itr, array(exectimes)
-
-
-def opt(X, rank, **kwargs):
- ainit = kwargs.pop('init', _DEF_INIT)
- maxiter = kwargs.pop('maxIter', _DEF_MAXITER)
- conv = kwargs.pop('conv', _DEF_CONV)
- dtype = kwargs.pop('dtype', _DEF_TYPE)
- if not len(kwargs) == 0:
- raise ValueError('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- N = X.ndim
- U = _init(ainit, X, N, rank, dtype)
-
-
-def wopt(X, rank, **kwargs):
- raise NotImplementedError()
-
-
-def _init(init, X, N, rank, dtype):
- """
- Initialization for CP models
- """
- Uinit = [None for _ in range(N)]
- if isinstance(init, list):
- Uinit = init
- elif init == 'random':
- for n in range(1, N):
- Uinit[n] = array(rand(X.shape[n], rank), dtype=dtype)
- elif init == 'nvecs':
- for n in range(1, N):
- Uinit[n] = array(nvecs(X, n, rank), dtype=dtype)
- else:
- raise 'Unknown option (init=%s)' % str(init)
- return Uinit
-
-# vim: set et:
diff --git a/dependencies/scikit-tensor/sktensor/dedicom.py b/dependencies/scikit-tensor/sktensor/dedicom.py
deleted file mode 100644
index c4311f7..0000000
--- a/dependencies/scikit-tensor/sktensor/dedicom.py
+++ /dev/null
@@ -1,276 +0,0 @@
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import logging
-import time
-import numpy as np
-from numpy import dot, ones, zeros, diag, kron, outer, array, prod, eye
-from numpy.linalg import norm, solve, eigvals
-from numpy.random import rand
-from scipy.linalg import qr
-from scipy.sparse.linalg import eigsh
-from scipy.optimize import fmin_l_bfgs_b, fmin_ncg, fmin_tnc
-from scipy.sparse import issparse
-
-_DEF_MAXITER = 500
-_DEF_INIT = 'nvecs'
-_DEF_PROJ = True
-_DEF_CONV = 1e-5
-_DEF_NNE = -1
-_DEF_OPTFUNC = 'lbfgs'
-
-_log = logging.getLogger('DEDICOM')
-np.seterr(invalid='raise')
-
-
-def asalsan(X, rank, **kwargs):
- """
- ASALSAN algorithm to compute the three-way DEDICOM decompositions
- of a tensor
-
- See
- ---
- .. [1] Brett W. Bader, Richard A. Harshman, Tamara G. Kolda
- "Temporal analysis of semantic graphs using ASALSAN"
- 7th International Conference on Data Mining, 2007
-
- .. [2] Brett W. Bader, Richard A. Harshman, Tamara G. Kolda
- "Temporal analysis of Social Networks using Three-way DEDICOM"
- Technical Report, 2006
- """
- # init options
- ainit = kwargs.pop('init', _DEF_INIT)
- proj = kwargs.pop('proj', _DEF_PROJ)
- maxIter = kwargs.pop('maxIter', _DEF_MAXITER)
- conv = kwargs.pop('conv', _DEF_CONV)
- nne = kwargs.pop('nne', _DEF_NNE)
- optfunc = kwargs.pop('optfunc', _DEF_OPTFUNC)
- if not len(kwargs) == 0:
- raise BaseException('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- # init starting points
- D = ones((len(X), rank))
- sz = X[0].shape
- n = sz[0]
- R = rand(rank, rank)
- if ainit == 'random':
- A = rand(n, rank)
- elif ainit == 'nvecs':
- S = zeros((n, n))
- T = zeros((n, n))
- for i in range(len(X)):
- T = X[i]
- S = S + T + T.T
- evals, A = eigsh(S, rank)
- if nne > 0:
- A[A < 0] = 0
- if proj:
- Q, A2 = qr(A)
- X2 = __projectSlices(X, Q)
- R = __updateR(X2, A2, D, R, nne)
- else:
- R = __updateR(X, A, D, R, nne)
- elif isinstance(ainit, np.ndarray):
- A = ainit
- else:
- raise 'Unknown init option ("%s")' % ainit
-
- # perform decompositions
- if issparse(X[0]):
- normX = [norm(M.data) ** 2 for M in X]
- Xflat = [M.tolil().reshape((1, prod(M.shape))).tocsr() for M in X]
- else:
- normX = [norm(M) ** 2 for M in X]
- Xflat = [M.flatten() for M in X]
- M = zeros((n, n))
- normXSum = sum(normX)
- #normX = norm(X)**2
- fit = fitold = f = fitchange = 0
- exectimes = []
- for iters in range(maxIter):
- tic = time.clock()
- fitold = fit
- A = __updateA(X, A, D, R, nne)
- if proj:
- Q, A2 = qr(A)
- X2 = __projectSlices(X, Q)
- R = __updateR(X2, A2, D, R, nne)
- D, f = __updateD(X2, A2, D, R, nne, optfunc)
- else:
- R = __updateR(X, A, D, R, nne)
- D, f = __updateD(X, A, D, R, nne, optfunc)
-
- # compute fit
- f = 0
- for i in range(len(X)):
- AD = dot(A, diag(D[i, :]))
- M = dot(dot(AD, R), AD.T)
- f += normX[i] + norm(M) ** 2 - 2 * Xflat[i].dot(M.flatten())
- f *= 0.5
- fit = 1 - (f / normXSum)
- fitchange = abs(fitold - fit)
-
- exectimes.append(time.clock() - tic)
-
- # print iter info when debugging is enabled
- _log.debug('[%3d] fit: %.5f | delta: %7.1e | secs: %.5f' % (
- iters, fit, fitchange, exectimes[-1]
- ))
-
- if iters > 1 and fitchange < conv:
- break
- return A, R, D, fit, iters, array(exectimes)
-
-
-def __updateA(X, A, D, R, nne):
- rank = A.shape[1]
- F = zeros((X[0].shape[0], rank))
- E = zeros((rank, rank))
-
- AtA = dot(A.T, A)
- for i in range(len(X)):
- Dk = diag(D[i, :])
- DRD = dot(Dk, dot(R, Dk))
- DRtD = DRD.T
- F += X[i].dot(dot(A, DRtD)) + X[i].T.dot(dot(A, DRD))
- E += dot(DRD, dot(AtA, DRtD)) + dot(DRtD, dot(AtA, DRD))
- if nne > 0:
- E = dot(A, E) + nne
- A = A * (F / E)
- else:
- A = solve(E.T, F.T).T
- return A
-
-
-def __updateR(X, A, D, R, nne):
- r = A.shape[1] ** 2
- T = zeros((r, r))
- t = zeros(r)
- for i in range(len(X)):
- AD = dot(A, diag(D[i, :]))
- ADt = AD.T
- tmp = dot(ADt, AD)
- T = T + kron(tmp, tmp)
- tmp = dot(ADt, X[i].dot(AD))
- t = t + tmp.flatten()
- r = A.shape[1]
- if nne > 0:
- Rflat = R.flatten()
- T = dot(T, Rflat) + nne
- R = (Rflat * t / T).reshape(r, r)
- else:
- # TODO check if this is correct
- R = solve(T, t).reshape(r, r)
- #R = (pinv(T + eye(r ** 2)).dot(t)).reshape(r, r)
- return R
-
-
-def __updateD(X, A, D, R, nne, optfunc):
- f = 0
- for i in range(len(X)):
- d = D[i, :]
- u = Updater(X[i], A, R)
- if nne > 0:
- bounds = len(d) * [(0, None)]
- res = fmin_l_bfgs_b(
- u.updateD_F, d, u.updateD_G, factr=1e12, bounds=bounds
- )
- else:
- if optfunc == 'lbfgs':
- res = fmin_l_bfgs_b(u.updateD_F, d, u.updateD_G, factr=1e12)
- D[i, :] = res[0]
- f += res[1]
- elif optfunc == 'ncg':
- res = fmin_ncg(
- u.updateD_F, d, u.updateD_G, fhess=u.updateD_H,
- full_output=True, disp=False
- )
- # TODO: check return value of ncg and update D, f
- raise NotImplementedError()
- elif optfunc == 'tnc':
- res = fmin_tnc(u.updateD_F, d, u.updateD_G, disp=False)
- # TODO: check return value of tnc and update D, f
- raise NotImplementedError()
- return D, f
-
-
-class Updater:
- def __init__(self, Z, A, R):
- self.Z = Z
- self.A = A
- self.R = R
- self.x = None
-
- def precompute(self, x, cache=True):
- if not cache or self.x is None or (x != self.x).any():
- self.AD = dot(self.A, diag(x))
- self.ADt = self.AD.T
- self.E = self.Z - dot(self.AD, dot(self.R, self.ADt))
-
- def updateD_F(self, x):
- self.precompute(x)
- return norm(self.E, 'fro') ** 2
-
- def updateD_G(self, x):
- """
- Compute Gradient for update of D
-
- See [2] for derivation of Gradient
- """
- self.precompute(x)
- g = zeros(len(x))
- Ai = zeros(self.A.shape[0])
- for i in range(len(g)):
- Ai = self.A[:, i]
- g[i] = (self.E * (dot(self.AD, outer(self.R[:, i], Ai)) +
- dot(outer(Ai, self.R[i, :]), self.ADt))).sum()
- return -2 * g
-
- def updateD_H(self, x):
- """
- Compute Hessian for update of D
-
- See [2] for derivation of Hessian
- """
- self.precompute(x)
- H = zeros((len(x), len(x)))
- Ai = zeros(self.A.shape[0])
- Aj = zeros(Ai.shape)
- for i in range(len(x)):
- Ai = self.A[:, i]
- ti = dot(self.AD, outer(self.R[:, i], Ai)) + dot(outer(Ai, self.R[i, :]), self.ADt)
-
- for j in range(i, len(x)):
- Aj = self.A[:, j]
- tj = outer(Ai, Aj)
- H[i, j] = (
- self.E * (self.R[i, j] * tj + self.R[j, i] * tj.T) -
- ti * (
- dot(self.AD, outer(self.R[:, j], Aj)) +
- dot(outer(Aj, self.R[j, :]), self.ADt)
- )
- ).sum()
- H[j, i] = H[i, j]
- H *= -2
- e = eigvals(H).min()
- H = H + (eye(H.shape[0]) * e)
- return H
-
-
-def __projectSlices(X, Q):
- X2 = []
- for i in range(len(X)):
- X2.append(Q.T.dot(X[i].dot(Q)))
- return X2
diff --git a/dependencies/scikit-tensor/sktensor/dtensor.py b/dependencies/scikit-tensor/sktensor/dtensor.py
deleted file mode 100644
index 45f4ed9..0000000
--- a/dependencies/scikit-tensor/sktensor/dtensor.py
+++ /dev/null
@@ -1,194 +0,0 @@
-# sktensor.dtensor - base class for dense tensors
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import numpy as np
-from numpy import array, prod, argsort
-from .core import tensor_mixin, khatrirao
-from .pyutils import inherit_docstring_from, from_to_without
-
-
-__all__ = [
- 'dtensor',
- 'unfolded_dtensor',
-]
-
-
-class dtensor(tensor_mixin, np.ndarray):
- """
- Class to store **dense** tensors
-
- Parameters
- ----------
- input_array : np.ndarray
- Multidimenional numpy array which holds the entries of the tensor
-
- Examples
- --------
- Create dense tensor from numpy array
-
- >>> T = np.zeros((3, 4, 2))
- >>> T[:, :, 0] = [[ 1, 4, 7, 10], [ 2, 5, 8, 11], [3, 6, 9, 12]]
- >>> T[:, :, 1] = [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]
- >>> T = dtensor(T)
- """
-
- def __new__(cls, input_array):
- obj = np.asarray(input_array).view(cls)
- return obj
-
- def __array_wrap__(self, out_arr, context=None):
- return np.ndarray.__array_wrap__(self, out_arr, context)
-
- def __eq__(self, other):
- return np.equal(self, other)
-
- def _ttm_compute(self, V, mode, transp):
- sz = array(self.shape)
- r1, r2 = from_to_without(0, self.ndim, mode, separate=True)
- #r1 = list(range(0, mode))
- #r2 = list(range(mode + 1, self.ndim))
- order = [mode] + r1 + r2
- newT = self.transpose(axes=order)
- newT = newT.reshape(sz[mode], prod(sz[r1 + list(range(mode + 1, len(sz)))]))
- if transp:
- newT = V.T.dot(newT)
- p = V.shape[1]
- else:
- newT = V.dot(newT)
- p = V.shape[0]
- newsz = [p] + list(sz[:mode]) + list(sz[mode + 1:])
- newT = newT.reshape(newsz)
- # transpose + argsort(order) equals ipermute
- newT = newT.transpose(argsort(order))
- return dtensor(newT)
-
- def _ttv_compute(self, v, dims, vidx, remdims):
- """
- Tensor times vector product
-
- Parameter
- ---------
- """
- if not isinstance(v, tuple):
- raise ValueError('v must be a tuple of vectors')
- ndim = self.ndim
- order = list(remdims) + list(dims)
- if ndim > 1:
- T = self.transpose(order)
- sz = array(self.shape)[order]
- for i in np.arange(len(dims), 0, -1):
- T = T.reshape((sz[:ndim - 1].prod(), sz[ndim - 1]))
- T = T.dot(v[vidx[i - 1]])
- ndim -= 1
- if ndim > 0:
- T = T.reshape(sz[:ndim])
- return T
-
- def ttt(self, other, modes=None):
- pass
-
- def unfold(self, mode):
- """
- Unfolds a dense tensor in mode n.
-
- Parameters
- ----------
- mode : int
- Mode in which tensor is unfolded
-
- Returns
- -------
- unfolded_dtensor : unfolded_dtensor object
- Tensor unfolded along mode
-
- Examples
- --------
- Create dense tensor from numpy array
-
- >>> T = np.zeros((3, 4, 2))
- >>> T[:, :, 0] = [[ 1, 4, 7, 10], [ 2, 5, 8, 11], [3, 6, 9, 12]]
- >>> T[:, :, 1] = [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]
- >>> T = dtensor(T)
-
- Unfolding of dense tensors
-
- >>> T.unfold(0)
- array([[ 1., 4., 7., 10., 13., 16., 19., 22.],
- [ 2., 5., 8., 11., 14., 17., 20., 23.],
- [ 3., 6., 9., 12., 15., 18., 21., 24.]])
- >>> T.unfold(1)
- array([[ 1., 2., 3., 13., 14., 15.],
- [ 4., 5., 6., 16., 17., 18.],
- [ 7., 8., 9., 19., 20., 21.],
- [ 10., 11., 12., 22., 23., 24.]])
- >>> T.unfold(2)
- array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
- 12.],
- [ 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23.,
- 24.]])
- """
-
- sz = array(self.shape)
- N = len(sz)
- order = ([mode], from_to_without(N - 1, -1, mode, step=-1, skip=-1))
- newsz = (sz[order[0]][0], prod(sz[order[1]]))
- arr = self.transpose(axes=(order[0] + order[1]))
- arr = arr.reshape(newsz)
- return unfolded_dtensor(arr, mode, self.shape)
-
- def norm(self):
- """
- Computes the Frobenius norm for dense tensors
- :math:`norm(X) = \sqrt{\sum_{i_1,\ldots,i_N} x_{i_1,\ldots,i_N}^2}`
-
- References
- ----------
- [Kolda and Bader, 2009; p.457]
- """
- return np.linalg.norm(self)
-
- @inherit_docstring_from(tensor_mixin)
- def uttkrp(self, U, n):
- order = list(range(n)) + list(range(n + 1, self.ndim))
- Z = khatrirao(tuple(U[i] for i in order), reverse=True)
- return self.unfold(n).dot(Z)
-
- @inherit_docstring_from(tensor_mixin)
- def transpose(self, axes=None):
- return dtensor(np.transpose(array(self), axes=axes))
-
-
-class unfolded_dtensor(np.ndarray):
-
- def __new__(cls, input_array, mode, ten_shape):
- obj = np.asarray(input_array).view(cls)
- obj.ten_shape = ten_shape
- obj.mode = mode
- return obj
-
- def __array_finalize__(self, obj):
- if obj is None:
- return
- self.ten_shape = getattr(obj, 'ten_shape', None)
- self.mode = getattr(obj, 'mode', None)
-
- def fold(self):
- shape = array(self.ten_shape)
- N = len(shape)
- order = ([self.mode], from_to_without(0, N, self.mode, reverse=True))
- arr = self.reshape(tuple(shape[order[0]],) + tuple(shape[order[1]]))
- arr = np.transpose(arr, argsort(order[0] + order[1]))
- return dtensor(arr)
diff --git a/dependencies/scikit-tensor/sktensor/indscal.py b/dependencies/scikit-tensor/sktensor/indscal.py
deleted file mode 100644
index bf0d712..0000000
--- a/dependencies/scikit-tensor/sktensor/indscal.py
+++ /dev/null
@@ -1,75 +0,0 @@
-from numpy import zeros, dot, diag
-from numpy.random import rand
-from scipy.linalg import svd, norm, orth
-from scipy.sparse.linalg import eigsh
-import time
-import logging
-
-_log = logging.getLogger('INDSCAL')
-
-_DEF_MAXITER = 50
-_DEF_INIT = 'random'
-_DEF_CONV = 1e-7
-
-
-def orth_als(X, ncomp, **kwargs):
-
- ainit = kwargs.pop('init', _DEF_INIT)
- maxiter = kwargs.pop('max_iter', _DEF_MAXITER)
- conv = kwargs.pop('conv', _DEF_CONV)
- if not len(kwargs) == 0:
- raise ValueError('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- K = len(X)
- normX = sum([norm(Xk)**2 for Xk in X])
-
- A = init(X, ainit, ncomp)
- fit = 0
- exectimes = []
- for itr in range(maxiter):
- tic = time.time()
- fitold = fit
- D = _updateD(X, A)
- A = _updateA(X, A, D)
-
- fit = sum([norm(X[k] - dot(A, dot(diag(D[k, :]), A.T)))**2 for k in range(K)])
- fit = 1 - fit / normX
- fitchange = abs(fitold - fit)
-
- exectimes.append(time.time() - tic)
- _log.info('[%3d] fit: %0.5f | delta: %7.1e | secs: %.5f' % (
- itr, fit, fitchange, exectimes[-1]
- ))
- if itr > 0 and fitchange < conv:
- break
- return A, D
-
-
-def _updateA(X, A, D):
- G = zeros(A.shape)
- for k in range(len(X)):
- G = G + dot(X[k], dot(A, diag(D[k, :])))
- U, _, Vt = svd(G, full_matrices=0)
- A = dot(U, Vt)
- return A
-
-
-def _updateD(X, A):
- K, R = len(X), A.shape[1]
- D = zeros((K, R))
- for k in range(K):
- D[k, :] = diag(dot(A.T, dot(X[k], A)))
- D[D < 0] = 0
- return D
-
-
-def init(X, init, ncomp):
- N, K = X[0].shape[0], len(X)
- if init == 'random':
- A = orth(rand(N, ncomp))
- elif init == 'nvecs':
- S = zeros(N, N)
- for k in range(K):
- S = S + X[k] + X[k].T
- _, A = eigsh(S, ncomp)
- return A
diff --git a/dependencies/scikit-tensor/sktensor/ktensor.py b/dependencies/scikit-tensor/sktensor/ktensor.py
deleted file mode 100644
index 4803228..0000000
--- a/dependencies/scikit-tensor/sktensor/ktensor.py
+++ /dev/null
@@ -1,205 +0,0 @@
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import numpy as np
-from numpy import dot, ones, array, outer, zeros, prod, sum
-from sktensor.core import khatrirao, tensor_mixin
-from sktensor.dtensor import dtensor
-
-__all__ = [
- 'ktensor',
- 'vectorized_ktensor',
-]
-
-
-class ktensor(object):
- """
- Tensor stored in decomposed form as a Kruskal operator.
-
- Intended Usage
- The Kruskal operator is particularly useful to store
- the results of a CP decompositions.
-
- Parameters
- ----------
- U : list of ndarrays
- Factor matrices from which the tensor representation
- is created. All factor matrices ``U[i]`` must have the
- same number of columns, but can have different
- number of rows.
- lmbda : array_like of floats, optional
- Weights for each dimension of the Kruskal operator.
- ``len(lambda)`` must be equal to ``U[i].shape[1]``
-
- See also
- --------
- sktensor.dtensor : Dense tensors
- sktensor.sptensor : Sparse tensors
- sktensor.ttensor : Tensors stored in form of the Tucker operator
-
- References
- ----------
- .. [1] B.W. Bader, T.G. Kolda
- Efficient Matlab Computations With Sparse and Factored Tensors
- SIAM J. Sci. Comput, Vol 30, No. 1, pp. 205--231, 2007
- """
-
- def __init__(self, U, lmbda=None):
- self.U = U
- self.shape = tuple(Ui.shape[0] for Ui in U)
- self.ndim = len(self.shape)
- self.rank = U[0].shape[1]
- self.lmbda = lmbda
- if not all(array([Ui.shape[1] for Ui in U]) == self.rank):
- raise ValueError('Dimension mismatch of factor matrices')
- if lmbda is None:
- self.lmbda = ones(self.rank)
-
- def __eq__(self, other):
- if isinstance(other, ktensor):
- # avoid costly elementwise comparison for obvious cases
- if self.ndim != other.ndim or self.shape != other.shape:
- return False
- # do elementwise comparison
- return all(
- [(self.U[i] == other.U[i]).all() for i in range(self.ndim)] +
- [(self.lmbda == other.lmbda).all()]
- )
- else:
- # TODO implement __eq__ for tensor_mixins and ndarrays
- raise NotImplementedError()
-
- def uttkrp(self, U, mode):
-
- """
- Unfolded tensor times Khatri-Rao product for Kruskal tensors
-
- Parameters
- ----------
- X : tensor_mixin
- Tensor whose unfolding should be multiplied.
- U : list of array_like
- Matrices whose Khatri-Rao product should be multiplied.
- mode : int
- Mode in which X should be unfolded.
-
- See also
- --------
- sktensor.sptensor.uttkrp : Efficient computation of uttkrp for sparse tensors
- ttensor.uttkrp : Efficient computation of uttkrp for Tucker operators
- """
- N = self.ndim
- if mode == 1:
- R = U[1].shape[1]
- else:
- R = U[0].shape[1]
- W = np.tile(self.lmbda, 1, R)
- for i in list(range(mode)) + list(range(mode + 1, N)):
- W = W * dot(self.U[i].T, U[i])
- return dot(self.U[mode], W)
-
- def norm(self):
- """
- Efficient computation of the Frobenius norm for ktensors
-
- Returns
- -------
- norm : float
- Frobenius norm of the ktensor
- """
- N = len(self.shape)
- coef = outer(self.lmbda, self.lmbda)
- for i in range(N):
- coef = coef * dot(self.U[i].T, self.U[i])
- return np.sqrt(coef.sum())
-
- def innerprod(self, X):
- """
- Efficient computation of the inner product of a ktensor with another tensor
-
- Parameters
- ----------
- X : tensor_mixin
- Tensor to compute the inner product with.
-
- Returns
- -------
- p : float
- Inner product between ktensor and X.
- """
- N = len(self.shape)
- R = len(self.lmbda)
- res = 0
- for r in range(R):
- vecs = []
- for n in range(N):
- vecs.append(self.U[n][:, r])
- res += self.lmbda[r] * X.ttv(tuple(vecs))
- return res
-
- def toarray(self):
- """
- Converts a ktensor into a dense multidimensional ndarray
-
- Returns
- -------
- arr : np.ndarray
- Fully computed multidimensional array whose shape matches
- the original ktensor.
- """
- A = dot(self.lmbda, khatrirao(tuple(self.U)).T)
- return A.reshape(self.shape)
-
- def totensor(self):
- """
- Converts a ktensor into a dense tensor
-
- Returns
- -------
- arr : dtensor
- Fully computed multidimensional array whose shape matches
- the original ktensor.
- """
- return dtensor(self.toarray())
-
- def tovec(self):
- v = zeros(sum([s * self.rank for s in self.shape]))
- offset = 0
- for M in self.U:
- noff = offset + prod(M.shape)
- v[offset:noff] = M.flatten()
- offset = noff
- return vectorized_ktensor(v, self.shape, self.lmbda)
-
-
-class vectorized_ktensor(object):
-
- def __init__(self, v, shape, lmbda):
- self.v = v
- self.shape = shape
- self.lmbda = lmbda
-
- def toktensor(self):
- order = len(self.shape)
- rank = len(self.v) / sum(self.shape)
- U = [None for _ in range(order)]
- offset = 0
- for i in range(order):
- noff = offset + self.shape[i] * rank
- U[i] = self.v[offset:noff].reshape((self.shape[i], rank))
- offset = noff
- return ktensor(U, self.lmbda)
-
-# vim: set et:
diff --git a/dependencies/scikit-tensor/sktensor/pyutils.py b/dependencies/scikit-tensor/sktensor/pyutils.py
deleted file mode 100644
index d6be0e0..0000000
--- a/dependencies/scikit-tensor/sktensor/pyutils.py
+++ /dev/null
@@ -1,62 +0,0 @@
-def inherit_docstring_from(cls):
- def docstring_inheriting_decorator(fn):
- fn.__doc__ = getattr(cls, fn.__name__).__doc__
- return fn
- return docstring_inheriting_decorator
-
-
-def is_sequence(obj):
- """
- Helper function to determine sequences
- across Python 2.x and 3.x
- """
- try:
- from collections import Sequence
- except ImportError:
- from operator import isSequenceType
- return isSequenceType(obj)
- else:
- return isinstance(obj, Sequence)
-
-
-def is_number(obj):
- """
- Helper function to determine numbers
- across Python 2.x and 3.x
- """
- try:
- from numbers import Number
- except ImportError:
- from operator import isNumberType
- return isNumberType(obj)
- else:
- return isinstance(obj, Number)
-
-
-def func_attr(f, attr):
- """
- Helper function to get the attribute of a function
- like, name, code, defaults across Python 2.x and 3.x
- """
- if hasattr(f, 'func_%s' % attr):
- return getattr(f, 'func_%s' % attr)
- elif hasattr(f, '__%s__' % attr):
- return getattr(f, '__%s__' % attr)
- else:
- raise ValueError('Object %s has no attr' % (str(f), attr))
-
-
-def from_to_without(frm, to, without, step=1, skip=1, reverse=False, separate=False):
- """
- Helper function to create ranges with missing entries
- """
- if reverse:
- frm, to = (to - 1), (frm - 1)
- step *= -1
- skip *= -1
- a = list(range(frm, without, step))
- b = list(range(without + skip, to, step))
- if separate:
- return a, b
- else:
- return a + b
diff --git a/dependencies/scikit-tensor/sktensor/rescal.py b/dependencies/scikit-tensor/sktensor/rescal.py
deleted file mode 100644
index ed2647a..0000000
--- a/dependencies/scikit-tensor/sktensor/rescal.py
+++ /dev/null
@@ -1,299 +0,0 @@
-# coding: utf-8
-# rescal.py - python script to compute the RESCAL tensor factorization
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import logging
-import time
-import numpy as np
-from numpy import dot, zeros, array, eye, kron, prod
-from numpy.linalg import norm, solve, inv, svd
-from scipy.sparse import csr_matrix, issparse
-from scipy.sparse.linalg import eigsh
-from numpy.random import rand
-
-__version__ = "0.5"
-__all__ = ['als']
-
-_DEF_MAXITER = 100
-_DEF_INIT = 'nvecs'
-_DEF_CONV = 1e-4
-_DEF_LMBDA = 0
-_DEF_ATTR = []
-_DEF_NO_FIT = 1e9
-_DEF_FIT_METHOD = None
-
-_log = logging.getLogger('RESCAL')
-
-
-def als(X, rank, **kwargs):
- """
- RESCAL-ALS algorithm to compute the RESCAL tensor factorization.
-
-
- Parameters
- ----------
- X : list
- List of frontal slices X_k of the tensor X.
- The shape of each X_k is ('N', 'N').
- X_k's are expected to be instances of scipy.sparse.csr_matrix
- rank : int
- Rank of the factorization
- lmbdaA : float, optional
- Regularization parameter for A factor matrix. 0 by default
- lmbdaR : float, optional
- Regularization parameter for R_k factor matrices. 0 by default
- lmbdaV : float, optional
- Regularization parameter for V_l factor matrices. 0 by default
- attr : list, optional
- List of sparse ('N', 'L_l') attribute matrices. 'L_l' may be different
- for each attribute
- init : string, optional
- Initialization method of the factor matrices. 'nvecs' (default)
- initializes A based on the eigenvectors of X. 'random' initializes
- the factor matrices randomly.
- compute_fit : boolean, optional
- If true, compute the fit of the factorization compared to X.
- For large sparse tensors this should be turned of. None by default.
- maxIter : int, optional
- Maximium number of iterations of the ALS algorithm. 500 by default.
- conv : float, optional
- Stop when residual of factorization is less than conv. 1e-5 by default
-
- Returns
- -------
- A : ndarray
- array of shape ('N', 'rank') corresponding to the factor matrix A
- R : list
- list of 'M' arrays of shape ('rank', 'rank') corresponding to the
- factor matrices R_k
- fval : float
- function value of the factorization
- itr : int
- number of iterations until convergence
- exectimes : ndarray
- execution times to compute the updates in each iteration
-
- Examples
- --------
- >>> X1 = csr_matrix(([1,1,1], ([2,1,3], [0,2,3])), shape=(4, 4))
- >>> X2 = csr_matrix(([1,1,1,1], ([0,2,3,3], [0,1,2,3])), shape=(4, 4))
- >>> A, R, fval, iter, exectimes = rescal([X1, X2], 2)
-
- See
- ---
- For a full description of the algorithm see:
- .. [1] Maximilian Nickel, Volker Tresp, Hans-Peter-Kriegel,
- "A Three-Way Model for Collective Learning on Multi-Relational Data",
- ICML 2011, Bellevue, WA, USA
-
- .. [2] Maximilian Nickel, Volker Tresp, Hans-Peter-Kriegel,
- "Factorizing YAGO: Scalable Machine Learning for Linked Data"
- WWW 2012, Lyon, France
- """
-
- # ------------ init options ----------------------------------------------
- ainit = kwargs.pop('init', _DEF_INIT)
- maxIter = kwargs.pop('maxIter', _DEF_MAXITER)
- conv = kwargs.pop('conv', _DEF_CONV)
- lmbdaA = kwargs.pop('lambda_A', _DEF_LMBDA)
- lmbdaR = kwargs.pop('lambda_R', _DEF_LMBDA)
- lmbdaV = kwargs.pop('lambda_V', _DEF_LMBDA)
- func_compute_fval = kwargs.pop('compute_fval', _DEF_FIT_METHOD)
- orthogonalize = kwargs.pop('orthogonalize', False)
- P = kwargs.pop('attr', _DEF_ATTR)
- dtype = kwargs.pop('dtype', np.float)
-
- # ------------- check input ----------------------------------------------
- if not len(kwargs) == 0:
- raise ValueError('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- # check frontal slices have same size and are matrices
- sz = X[0].shape
- for i in range(len(X)):
- if X[i].ndim != 2:
- raise ValueError('Frontal slices of X must be matrices')
- if X[i].shape != sz:
- raise ValueError('Frontal slices of X must be all of same shape')
- #if not issparse(X[i]):
- #raise ValueError('X[%d] is not a sparse matrix' % i)
-
- if func_compute_fval is None:
- if orthogonalize:
- func_compute_fval = _compute_fval_orth
- elif prod(X[0].shape) * len(X) > _DEF_NO_FIT:
- _log.warn('For large tensors automatic computation of fit is disabled by default\nTo compute the fit, call rescal.als with "compute_fit=True"\nPlease note that this might cause memory and runtime problems')
- func_compute_fval = None
- else:
- func_compute_fval = _compute_fval
-
- n = sz[0]
- k = len(X)
-
- _log.debug(
- '[Config] rank: %d | maxIter: %d | conv: %7.1e | lmbda: %7.1e' %
- (rank, maxIter, conv, lmbdaA)
- )
- _log.debug('[Config] dtype: %s / %s' % (dtype, X[0].dtype))
-
- # ------- convert X and P to CSR ------------------------------------------
- for i in range(k):
- if issparse(X[i]):
- X[i] = X[i].tocsr()
- X[i].sort_indices()
- for i in range(len(P)):
- if issparse(P[i]):
- P[i] = P[i].tocoo().tocsr()
- P[i].sort_indices()
-
- # ---------- initialize A ------------------------------------------------
- _log.debug('Initializing A')
- if ainit == 'random':
- A = array(rand(n, rank), dtype=dtype)
- elif ainit == 'nvecs':
- S = csr_matrix((n, n), dtype=dtype)
- for i in range(k):
- S = S + X[i]
- S = S + X[i].T
- _, A = eigsh(csr_matrix(S, dtype=dtype, shape=(n, n)), rank)
- A = array(A, dtype=dtype)
- else:
- raise ValueError('Unknown init option ("%s")' % ainit)
-
- # ------- initialize R and Z ---------------------------------------------
- R = _updateR(X, A, lmbdaR)
- Z = _updateZ(A, P, lmbdaV)
-
- # precompute norms of X
- normX = [sum(M.data ** 2) for M in X]
-
- # ------ compute factorization ------------------------------------------
- fit = fitchange = fitold = f = 0
- exectimes = []
- for itr in range(maxIter):
- tic = time.time()
- fitold = fit
- A = _updateA(X, A, R, P, Z, lmbdaA, orthogonalize)
- R = _updateR(X, A, lmbdaR)
- Z = _updateZ(A, P, lmbdaV)
-
- # compute fit value
- if func_compute_fval is not None:
- fit = func_compute_fval(X, A, R, P, Z, lmbdaA, lmbdaR, lmbdaV, normX)
- else:
- fit = np.Inf
-
- fitchange = abs(fitold - fit)
-
- toc = time.time()
- exectimes.append(toc - tic)
-
- _log.debug('[%3d] fval: %0.5f | delta: %7.1e | secs: %.5f' % (
- itr, fit, fitchange, exectimes[-1]
- ))
- if itr > 0 and fitchange < conv:
- break
- return A, R, f, itr + 1, array(exectimes)
-
-
-# ------------------ Update A ------------------------------------------------
-def _updateA(X, A, R, P, Z, lmbdaA, orthogonalize):
- """Update step for A"""
- n, rank = A.shape
- F = zeros((n, rank), dtype=A.dtype)
- E = zeros((rank, rank), dtype=A.dtype)
-
- AtA = dot(A.T, A)
-
- for i in range(len(X)):
- F += X[i].dot(dot(A, R[i].T)) + X[i].T.dot(dot(A, R[i]))
- E += dot(R[i], dot(AtA, R[i].T)) + dot(R[i].T, dot(AtA, R[i]))
-
- # regularization
- I = lmbdaA * eye(rank, dtype=A.dtype)
-
- # attributes
- for i in range(len(Z)):
- F += P[i].dot(Z[i].T)
- E += dot(Z[i], Z[i].T)
-
- # finally compute update for A
- A = solve(I + E.T, F.T).T
- return orth(A) if orthogonalize else A
-
-
-# ------------------ Update R ------------------------------------------------
-def _updateR(X, A, lmbdaR):
- rank = A.shape[1]
- U, S, Vt = svd(A, full_matrices=False)
- Shat = kron(S, S)
- Shat = (Shat / (Shat ** 2 + lmbdaR)).reshape(rank, rank)
- R = []
- for i in range(len(X)):
- Rn = Shat * dot(U.T, X[i].dot(U))
- Rn = dot(Vt.T, dot(Rn, Vt))
- R.append(Rn)
- return R
-
-
-# ------------------ Update Z ------------------------------------------------
-def _updateZ(A, P, lmbdaZ):
- Z = []
- if len(P) == 0:
- return Z
- #_log.debug('Updating Z (Norm EQ, %d)' % len(P))
- pinvAt = inv(dot(A.T, A) + lmbdaZ * eye(A.shape[1], dtype=A.dtype))
- pinvAt = dot(pinvAt, A.T).T
- for i in range(len(P)):
- if issparse(P[i]):
- Zn = P[i].tocoo().T.tocsr().dot(pinvAt).T
- else:
- Zn = dot(pinvAt.T, P[i])
- Z.append(Zn)
- return Z
-
-
-def _compute_fval(X, A, R, P, Z, lmbdaA, lmbdaR, lmbdaZ, normX):
- """Compute fit for full slices"""
- f = lmbdaA * norm(A) ** 2
- for i in range(len(X)):
- ARAt = dot(A, dot(R[i], A.T))
- f += (norm(X[i] - ARAt) ** 2) / normX[i] + lmbdaR * norm(R[i]) ** 2
- return f
-
-
-def _compute_fval_orth(X, A, R, P, Z, lmbdaA, lmbdaR, lmbdaZ, normX):
- f = lmbdaA * norm(A) ** 2
- for i in range(len(X)):
- f += (normX[i] - norm(R[i]) ** 2) / normX[i] + lmbdaR * norm(R[i]) ** 2
- return f
-
-
-def sptensor_to_list(X):
- from scipy.sparse import lil_matrix
- if X.ndim != 3:
- raise ValueError('Only third-order tensors are supported (ndim=%d)' % X.ndim)
- if X.shape[0] != X.shape[1]:
- raise ValueError('First and second mode must be of identical length')
- N = X.shape[0]
- K = X.shape[2]
- res = [lil_matrix((N, N)) for _ in range(K)]
- for n in range(X.nnz()):
- res[X.subs[2][n]][X.subs[0][n], X.subs[1][n]] = X.vals[n]
- return res
-
-def orth(A):
- [U, _, Vt] = svd(A, full_matrices=0)
- return dot(U, Vt)
diff --git a/dependencies/scikit-tensor/sktensor/setup.py b/dependencies/scikit-tensor/sktensor/setup.py
deleted file mode 100644
index 1f272ce..0000000
--- a/dependencies/scikit-tensor/sktensor/setup.py
+++ /dev/null
@@ -1,7 +0,0 @@
-def configuration(parent_package='', top_path=None):
- from numpy.distutils.misc_util import Configuration
- config = Configuration('sktensor', parent_package, top_path)
-
- config.add_subpackage('tests')
-
- return config
diff --git a/dependencies/scikit-tensor/sktensor/sptensor.py b/dependencies/scikit-tensor/sktensor/sptensor.py
deleted file mode 100644
index 9c4c8a4..0000000
--- a/dependencies/scikit-tensor/sktensor/sptensor.py
+++ /dev/null
@@ -1,399 +0,0 @@
-# sktensor.sptensor - base module for sparse tensors
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import numpy as np
-from numpy import zeros, ones, array, arange, copy, ravel_multi_index, unravel_index
-from numpy import setdiff1d, hstack, hsplit, vsplit, sort, prod, lexsort, unique, bincount
-from scipy.sparse import coo_matrix
-from scipy.sparse import issparse as issparse_mat
-from sktensor.core import tensor_mixin
-from sktensor.utils import accum
-from sktensor.dtensor import unfolded_dtensor
-from sktensor.pyutils import inherit_docstring_from, from_to_without
-
-
-__all__ = [
- 'concatenate',
- 'fromarray',
- 'sptensor',
- 'unfolded_sptensor',
-]
-
-
-class sptensor(tensor_mixin):
- """
- A sparse tensor.
-
- Data is stored in COOrdinate format.
-
- Sparse tensors can be instantiated via
-
- Parameters
- ----------
- subs : n-tuple of array-likes
- Subscripts of the nonzero entries in the tensor.
- Length of tuple n must be equal to dimension of tensor.
- vals : array-like
- Values of the nonzero entries in the tensor.
- shape : n-tuple, optional
- Shape of the sparse tensor.
- Length of tuple n must be equal to dimension of tensor.
- dtype : dtype, optional
- Type of the entries in the tensor
- accumfun : function pointer
- Function to be accumulate duplicate entries
-
- Examples
- --------
- >>> S = sptensor(([0,1,2], [3,2,0], [2,2,2]), [1,1,1], shape=(10, 20, 5), dtype=np.float)
- >>> S.shape
- (10, 20, 5)
- >>> S.dtype
-
- """
-
- def __init__(self, subs, vals, shape=None, dtype=None, accumfun=None, issorted=False):
- if not isinstance(subs, tuple):
- raise ValueError('Subscripts must be a tuple of array-likes')
- if len(subs[0]) != len(vals):
- raise ValueError('Subscripts and values must be of equal length')
- if dtype is None:
- dtype = array(vals).dtype
- for i in range(len(subs)):
- if array(subs[i]).dtype.kind != 'i':
- raise ValueError('Subscripts must be integers')
-
- vals = array(vals, dtype=dtype)
- if accumfun is not None:
- vals, subs = accum(
- subs, vals,
- issorted=False, with_subs=True, func=accumfun
- )
- self.subs = subs
- self.vals = vals
- self.dtype = dtype
- self.issorted = issorted
- self.accumfun = accumfun
-
- if shape is None:
- self.shape = tuple(array(subs).max(axis=1).flatten() + 1)
- else:
- self.shape = tuple(int(d) for d in shape)
- self.ndim = len(subs)
-
- def __eq__(self, other):
- if isinstance(other, sptensor):
- self._sort()
- other._sort()
- return (self.vals == other.vals).all() and (array(self.subs) == array(other.subs)).all()
- elif isinstance(other, np.ndarray):
- return (self.toarray() == other).all()
- else:
- raise NotImplementedError('Unsupported object class for sptensor.__eq__ (%s)' % type(other))
-
- def __getitem__(self, idx):
- # TODO check performance
- if len(idx) != self.ndim:
- raise ValueError('subscripts must be complete')
- sidx = ones(len(self.vals))
- for i in range(self.ndim):
- sidx = np.logical_and(self.subs[i] == idx[i], sidx)
- vals = self.vals[sidx]
- if len(vals) == 0:
- vals = 0
- elif len(vals) > 1:
- if self.accumfun is None:
- raise ValueError('Duplicate entries without specified accumulation function')
- vals = self.accumfun(vals)
- return vals
-
- def __sub__(self, other):
- if isinstance(other, np.ndarray):
- res = -other
- res[self.subs] += self.vals
- else:
- raise NotImplementedError()
- return res
-
- def _sort(self):
- # TODO check performance
- subs = array(self.subs)
- sidx = lexsort(subs)
- self.subs = tuple(z.flatten()[sidx] for z in vsplit(subs, len(self.shape)))
- self.vals = self.vals[sidx]
- self.issorted = True
-
- def _ttm_compute(self, V, mode, transp):
- Z = self.unfold(mode, transp=True).tocsr()
- if transp:
- V = V.T
- Z = Z.dot(V.T)
- shape = copy(self.shape)
- shape[mode] = V.shape[0]
- if issparse_mat(Z):
- newT = unfolded_sptensor((Z.data, (Z.row, Z.col)), [mode], None, shape=shape).fold()
- else:
- newT = unfolded_dtensor(Z.T, mode, shape).fold()
-
- return newT
-
- def _ttv_compute(self, v, dims, vidx, remdims):
- nvals = self.vals
- nsubs = self.subs
- for i in range(len(dims)):
- idx = nsubs[dims[i]]
- w = v[vidx[i]]
- nvals = nvals * w[idx]
-
- # Case 1: all dimensions used -> return sum
- if len(remdims) == 0:
- return nvals.sum()
-
- nsubs = tuple(self.subs[i] for i in remdims)
- nshp = tuple(self.shape[i] for i in remdims)
-
- # Case 2: result is a vector
- if len(remdims) == 1:
- usubs = unique(nsubs[0])
- bins = usubs.searchsorted(nsubs[0])
- c = bincount(bins, weights=nvals)
- (nz,) = c.nonzero()
- return sptensor((usubs[nz],), c[nz], nshp)
-
- # Case 3: result is an array
- return sptensor(nsubs, nvals, shape=nshp, accumfun=np.sum)
-
- def _ttm_me_compute(self, V, edims, sdims, transp):
- """
- Assume Y = T x_i V_i for i = 1...n can fit into memory
- """
- shapeY = np.copy(self.shape)
-
- # Determine size of Y
- for n in np.union1d(edims, sdims):
- shapeY[n] = V[n].shape[1] if transp else V[n].shape[0]
-
- # Allocate Y (final result) and v (vectors for elementwise computations)
- Y = zeros(shapeY)
- shapeY = array(shapeY)
- v = [None for _ in range(len(edims))]
-
- for i in range(np.prod(shapeY[edims])):
- rsubs = unravel_index(shapeY[edims], i)
-
- def unfold(self, rdims, cdims=None, transp=False):
- if isinstance(rdims, type(1)):
- rdims = [rdims]
- if transp:
- cdims = rdims
- rdims = setdiff1d(list(range(self.ndim)), cdims)[::-1]
- elif cdims is None:
- cdims = setdiff1d(list(range(self.ndim)), rdims)[::-1]
- if not (arange(self.ndim) == sort(hstack((rdims, cdims)))).all():
- raise ValueError(
- 'Incorrect specification of dimensions (rdims: %s, cdims: %s)'
- % (str(rdims), str(cdims))
- )
- M = prod([self.shape[r] for r in rdims])
- N = prod([self.shape[c] for c in cdims])
- ridx = _build_idx(self.subs, self.vals, rdims, self.shape)
- cidx = _build_idx(self.subs, self.vals, cdims, self.shape)
- return unfolded_sptensor((self.vals, (ridx, cidx)), (M, N), rdims, cdims, self.shape)
-
- @inherit_docstring_from(tensor_mixin)
- def uttkrp(self, U, mode):
- R = U[1].shape[1] if mode == 0 else U[0].shape[1]
- #dims = list(range(0, mode)) + list(range(mode + 1, self.ndim))
- dims = from_to_without(0, self.ndim, mode)
- V = zeros((self.shape[mode], R))
- for r in range(R):
- Z = tuple(U[n][:, r] for n in dims)
- TZ = self.ttv(Z, mode, without=True)
- if isinstance(TZ, sptensor):
- V[TZ.subs, r] = TZ.vals
- else:
- V[:, r] = self.ttv(Z, mode, without=True)
- return V
-
- @inherit_docstring_from(tensor_mixin)
- def transpose(self, axes=None):
- """
- Compute transpose of sparse tensors.
-
- Parameters
- ----------
- axes : array_like of ints, optional
- Permute the axes according to the values given.
-
- Returns
- -------
- d : dtensor
- dtensor with axes permuted.
- """
- if axes is None:
- raise NotImplementedError(
- 'Sparse tensor transposition without axes argument is not supported'
- )
- nsubs = tuple([self.subs[idx] for idx in axes])
- nshape = [self.shape[idx] for idx in axes]
- return sptensor(nsubs, self.vals, nshape)
-
- def concatenate(self, tpl, axis=None):
- """
- Concatenates sparse tensors.
-
- Parameters
- ----------
- tpl : tuple of sparse tensors
- Tensors to be concatenated.
- axis : int, optional
- Axis along which concatenation should take place
- """
- if axis is None:
- raise NotImplementedError(
- 'Sparse tensor concatenation without axis argument is not supported'
- )
- T = self
- for i in range(1, len(tpl)):
- T = _single_concatenate(T, tpl[i], axis=axis)
- return T
-
- def norm(self):
- """
- Frobenius norm for tensors
-
- References
- ----------
- [Kolda and Bader, 2009; p.457]
- """
- return np.linalg.norm(self.vals)
-
- def toarray(self):
- A = zeros(self.shape)
- A.put(ravel_multi_index(self.subs, tuple(self.shape)), self.vals)
- return A
-
-
-class unfolded_sptensor(coo_matrix):
- """
- An unfolded sparse tensor.
-
- Data is stored in form of a sparse COO matrix.
- Unfolded_sptensor objects additionall hold information about the
- original tensor, such that re-folding the tensor into its original
- shape can be done easily.
-
- Unfolded_sptensor objects can be instantiated via
-
- Parameters
- ----------
- tpl : (data, (i, j)) tuple
- Construct sparse matrix from three arrays:
- 1. ``data[:]`` the entries of the matrix, in any order
- 2. ``i[:]`` the row indices of the matrix entries
- 3. ``j[:]`` the column indices of the matrix entries
- where ``A[i[k], j[k]] = data[k]``.
- shape : tuple of integers
- Shape of the unfolded tensor.
- rdims : array_like of integers
- Modes of the original tensor that are mapped onto rows.
- cdims : array_like of integers
- Modes of the original tensor that are mapped onto columns.
- ten_shape : tuple of integers
- Shape of the original tensor.
- dtype : np.dtype, optional
- Data type of the unfolded tensor.
- copy : boolean, optional
- If true, data and subscripts are copied.
-
- Returns
- -------
- M : unfolded_sptensor
- Sparse matrix in COO format where ``rdims`` are mapped to rows and
- ``cdims`` are mapped to columns of the matrix.
- """
-
- def __init__(self, tpl, shape, rdims, cdims, ten_shape, dtype=None, copy=False):
- self.ten_shape = array(ten_shape)
- if isinstance(rdims, int):
- rdims = [rdims]
- if cdims is None:
- cdims = setdiff1d(list(range(len(self.ten_shape))), rdims)[::-1]
- self.rdims = rdims
- self.cdims = cdims
- super(unfolded_sptensor, self).__init__(tpl, shape=shape, dtype=dtype, copy=copy)
-
- def fold(self):
- """
- Recreate original tensor by folding unfolded_sptensor according toc
- ``ten_shape``.
-
- Returns
- -------
- T : sptensor
- Sparse tensor that is created by refolding according to ``ten_shape``.
- """
- nsubs = zeros((len(self.data), len(self.ten_shape)), dtype=np.int)
- if len(self.rdims) > 0:
- nidx = unravel_index(self.row, self.ten_shape[self.rdims])
- for i in range(len(self.rdims)):
- nsubs[:, self.rdims[i]] = nidx[i]
- if len(self.cdims) > 0:
- nidx = unravel_index(self.col, self.ten_shape[self.cdims])
- for i in range(len(self.cdims)):
- nsubs[:, self.cdims[i]] = nidx[i]
- nsubs = [z.flatten() for z in hsplit(nsubs, len(self.ten_shape))]
- return sptensor(tuple(nsubs), self.data, self.ten_shape)
-
-
-def fromarray(A):
- """Create a sptensor from a dense numpy array"""
- subs = np.nonzero(A)
- vals = A[subs]
- return sptensor(subs, vals, shape=A.shape, dtype=A.dtype)
-
-
-def _single_concatenate(ten, other, axis):
- tshape = ten.shape
- oshape = other.shape
- if len(tshape) != len(oshape):
- raise ValueError("len(tshape) != len(oshape")
- oaxes = setdiff1d(list(range(len(tshape))), [axis])
- for i in oaxes:
- if tshape[i] != oshape[i]:
- raise ValueError("Dimensions must match")
- nsubs = [None for _ in range(len(tshape))]
- for i in oaxes:
- nsubs[i] = np.concatenate((ten.subs[i], other.subs[i]))
- nsubs[axis] = np.concatenate((
- ten.subs[axis], other.subs[axis] + tshape[axis]
- ))
- nvals = np.concatenate((ten.vals, other.vals))
- nshape = np.copy(tshape)
- nshape[axis] = tshape[axis] + oshape[axis]
- return sptensor(nsubs, nvals, nshape)
-
-
-def _build_idx(subs, vals, dims, tshape):
- shape = array([tshape[d] for d in dims], ndmin=1)
- dims = array(dims, ndmin=1)
- if len(shape) == 0:
- idx = ones(len(vals), dtype=vals.dtype)
- elif len(subs) == 0:
- idx = array(tuple())
- else:
- idx = ravel_multi_index(tuple(subs[i] for i in dims), shape)
- return idx
diff --git a/dependencies/scikit-tensor/sktensor/tests/__init__.py b/dependencies/scikit-tensor/sktensor/tests/__init__.py
deleted file mode 100644
index e69de29..0000000
diff --git a/dependencies/scikit-tensor/sktensor/tests/sptensor_fixture.py b/dependencies/scikit-tensor/sktensor/tests/sptensor_fixture.py
deleted file mode 100644
index e3da1db..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/sptensor_fixture.py
+++ /dev/null
@@ -1,21 +0,0 @@
-from numpy import array
-import pytest
-
-
-@pytest.fixture
-def subs():
- return (
- array([0, 1, 0, 5, 7, 8]),
- array([2, 0, 4, 5, 3, 9]),
- array([0, 1, 2, 2, 1, 0])
- )
-
-
-@pytest.fixture
-def vals():
- return array([1, 2, 3, 4, 5, 6.1])
-
-
-@pytest.fixture
-def shape():
- return (10, 12, 3)
diff --git a/dependencies/scikit-tensor/sktensor/tests/sptensor_rand_fixture.py b/dependencies/scikit-tensor/sktensor/tests/sptensor_rand_fixture.py
deleted file mode 100644
index 2f47ca3..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/sptensor_rand_fixture.py
+++ /dev/null
@@ -1,27 +0,0 @@
-from numpy.random import randint, seed
-import pytest
-
-
-@pytest.fixture
-def sptensor_seed():
- return seed(5)
-
-
-@pytest.fixture
-def sz():
- return 100
-
-
-@pytest.fixture
-def vals(sptensor_seed, sz):
- return randint(0, 100, sz)
-
-
-@pytest.fixture
-def shape():
- return (25, 11, 18, 7, 2)
-
-
-@pytest.fixture
-def subs(sptensor_seed, shape, sz):
- return tuple(randint(0, shape[i], sz) for i in range(len(shape)))
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_base.py b/dependencies/scikit-tensor/sktensor/tests/test_base.py
deleted file mode 100644
index 11f99ba..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_base.py
+++ /dev/null
@@ -1,93 +0,0 @@
-from numpy import array
-from numpy.random import randn
-from sktensor.core import *
-from sktensor import dtensor, sptensor, ktensor
-from .ttm_fixture import T, U, Y
-from .sptensor_fixture import shape, vals, subs
-
-
-def test_check_multiplication_dims():
- ndims = 3
- M = 2
- assert ([1, 2] == check_multiplication_dims(0, ndims, M, without=True)).all()
- assert ([0, 2] == check_multiplication_dims(1, ndims, M, without=True)).all()
- assert ([0, 1] == check_multiplication_dims(2, ndims, M, without=True)).all()
-
-
-def test_khatrirao():
- A = array([
- [1, 2, 3],
- [4, 5, 6],
- [7, 8, 9]
- ])
- B = array([
- [1, 4, 7],
- [2, 5, 8],
- [3, 6, 9]
- ])
- C = array([
- [1, 8, 21],
- [2, 10, 24],
- [3, 12, 27],
- [4, 20, 42],
- [8, 25, 48],
- [12, 30, 54],
- [7, 32, 63],
- [14, 40, 72],
- [21, 48, 81]
- ])
-
- D = khatrirao((A, B))
- assert C.shape == D.shape
- assert (C == D).all()
-
-
-def test_dense_fold(T):
- X = dtensor(T)
- I, J, K = T.shape
- X1 = X[:, :, 0]
- X2 = X[:, :, 1]
-
- U = X.unfold(0)
- assert (3, 8) == U.shape
- for j in range(J):
- assert (U[:, j] == X1[:, j]).all()
- assert (U[:, j + J] == X2[:, j]).all()
-
- U = X.unfold(1)
- assert (4, 6) == U.shape
- for i in range(I):
- assert (U[:, i] == X1[i, :]).all()
- assert (U[:, i + I] == X2[i, :]).all()
-
- U = X.unfold(2)
- assert (2, 12) == U.shape
- for k in range(U.shape[1]):
- assert (U[:, k] == array([X1.flatten('F')[k], X2.flatten('F')[k]])).all()
-
-
-def test_dtensor_fold_unfold():
- sz = (10, 35, 3, 12)
- X = dtensor(randn(*sz))
- for i in range(4):
- U = X.unfold(i).fold()
- assert (X == U).all()
-
-
-def test_dtensor_ttm(T, U, Y):
- X = dtensor(T)
- Y2 = X.ttm(U, 0)
- assert (2, 4, 2) == Y2.shape
- assert (Y == Y2).all()
-
-
-def test_spttv(subs, vals, shape):
- #subs = (
- # array([0, 1, 0, 5, 7, 8]),
- # array([2, 0, 4, 5, 3, 9]),
- # array([0, 1, 2, 2, 1, 0])
- #)
- #vals = array([1, 1, 1, 1, 1, 1])
- S = sptensor(subs, vals, shape=shape)
- K = ktensor([randn(shape[0], 2), randn(shape[1], 2), randn(shape[2], 2)])
- K.innerprod(S)
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_dtensor.py b/dependencies/scikit-tensor/sktensor/tests/test_dtensor.py
deleted file mode 100644
index cd02da9..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_dtensor.py
+++ /dev/null
@@ -1,53 +0,0 @@
-from numpy import array
-from numpy.random import randn
-from sktensor.dtensor import dtensor
-from .ttm_fixture import T, U, Y
-
-
-def test_new():
- sz = (10, 23, 5)
- A = randn(*sz)
- T = dtensor(A)
- assert A.ndim == T.ndim
- assert A.shape == T.shape
- assert (A == T).all()
- assert (T == A).all()
-
-
-def test_dense_fold(T):
- X = dtensor(T)
- I, J, K = T.shape
- X1 = X[:, :, 0]
- X2 = X[:, :, 1]
-
- U = X.unfold(0)
- assert (3, 8) == U.shape
- for j in range(J):
- assert (U[:, j] == X1[:, j]).all()
- assert (U[:, j + J] == X2[:, j]).all()
-
- U = X.unfold(1)
- assert (4, 6) == U.shape
- for i in range(I):
- assert (U[:, i] == X1[i, :]).all()
- assert (U[:, i + I] == X2[i, :]).all()
-
- U = X.unfold(2)
- assert (2, 12) == U.shape
- for k in range(U.shape[1]):
- assert (U[:, k] == array([X1.flatten('F')[k], X2.flatten('F')[k]])).all()
-
-
-def test_dtensor_fold_unfold():
- sz = (10, 35, 3, 12)
- X = dtensor(randn(*sz))
- for i in range(4):
- U = X.unfold(i).fold()
- assert (X == U).all()
-
-
-def test_dtensor_ttm(T, Y, U):
- X = dtensor(T)
- Y2 = X.ttm(U, 0)
- assert (2, 4, 2) == Y2.shape
- assert (Y == Y2).all()
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_ktensor.py b/dependencies/scikit-tensor/sktensor/tests/test_ktensor.py
deleted file mode 100644
index b05eaef..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_ktensor.py
+++ /dev/null
@@ -1,14 +0,0 @@
-from numpy.random import randn
-from sktensor import ktensor
-
-
-def test_vectorization():
- rank = 5
- shape = (5, 27, 3, 13)
- U = [randn(s, rank) for s in shape]
- K = ktensor(U)
- v = K.tovec()
- K2 = v.toktensor()
-
- assert sum([s * rank for s in shape]) == len(v.v)
- assert K == K2
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_pyutils.py b/dependencies/scikit-tensor/sktensor/tests/test_pyutils.py
deleted file mode 100644
index 71db480..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_pyutils.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from sktensor.pyutils import *
-
-
-def test_from_to_without():
- frm, to, without = 2, 88, 47
- lst = list(range(frm, without)) + list(range(without + 1, to))
- assert lst == from_to_without(frm, to, without)
-
- rlst = list(range(to - 1, without, -1)) + list(range(without - 1, frm - 1,-1))
- assert rlst == from_to_without(frm, to, without, reverse=True)
- assert lst[::-1] == from_to_without(frm, to, without, reverse=True)
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_sptensor.py b/dependencies/scikit-tensor/sktensor/tests/test_sptensor.py
deleted file mode 100644
index c22046e..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_sptensor.py
+++ /dev/null
@@ -1,183 +0,0 @@
-import pytest
-import numpy as np
-from numpy import ones, zeros, array, setdiff1d, allclose
-from numpy.random import randint
-from sktensor.dtensor import dtensor
-from sktensor.sptensor import sptensor, fromarray
-from .ttm_fixture import T, U, Y
-from .sptensor_rand_fixture import subs, vals, shape, sptensor_seed, sz
-
-
-def setup_diagonal():
- """
- Setup data for a 20x20x20 diagonal tensor
- """
- n = 20
- shape = (n, n, n)
- subs = [np.arange(0, shape[i]) for i in range(len(shape))]
- vals = ones(n)
- return tuple(subs), vals, shape
-
-
-def test_init(subs, vals, shape):
- """
- Creation of new sptensor objects
- """
- T = sptensor(subs, vals, shape)
- assert len(shape) == T.ndim
- assert (array(shape) == T.shape).all()
-
- T = sptensor(subs, vals)
- tshape = array(subs).max(axis=1) + 1
- assert len(subs) == len(T.shape)
- assert (tshape == array(T.shape)).all()
-
-
-def test_init_diagonal():
- subs, vals, shape = setup_diagonal()
- T = sptensor(subs, vals, shape)
- assert len(shape) == T.ndim
- assert (array(shape) == T.shape).all()
-
- T = sptensor(subs, vals)
- assert len(subs) == len(T.shape)
- assert (shape == array(T.shape)).all()
-
-
-def test_non2Dsubs():
- with pytest.raises(ValueError):
- sptensor(randint(0, 10, 18).reshape(3, 3, 2), ones(10))
-
-
-def test_nonEqualLength(subs):
- with pytest.raises(ValueError):
- sptensor(subs, ones(len(subs) + 1))
-
-
-def test_unfold(T, subs, vals, shape):
- Td = dtensor(zeros(shape, dtype=np.float32))
- Td[subs] = vals
-
- for i in range(len(shape)):
- rdims = [i]
- cdims = setdiff1d(list(range(len(shape))), rdims)[::-1]
- Md = Td.unfold(i)
-
- T = sptensor(subs, vals, shape, accumfun=lambda l: l[-1])
-
- Ms = T.unfold(rdims, cdims)
- assert Md.shape == Ms.shape
- assert (allclose(Md, Ms.toarray()))
-
- Ms = T.unfold(rdims)
- assert Md.shape == Ms.shape
- assert (allclose(Md, Ms.toarray()))
-
- Md = Md.T
- Ms = T.unfold(rdims, cdims, transp=True)
- assert Md.shape == Ms.shape
- assert (allclose(Md, Ms.toarray()))
-
-
-def test_fold(subs, vals, shape):
- T = sptensor(subs, vals, shape)
- for i in range(len(shape)):
- X = T.unfold([i]).fold()
- assert shape == tuple(T.shape)
- assert len(shape) == len(T.subs)
- assert len(subs) == len(T.subs)
- assert X == T
- for j in range(len(subs)):
- subs[j].sort()
- T.subs[j].sort()
- assert (subs[j] == T.subs[j]).all()
-
-
-def test_ttm(T, Y, U):
- S = sptensor(T.nonzero(), T.flatten(), T.shape)
- Y2 = S.ttm(U, 0)
- assert (2, 4, 2) == Y2.shape
- assert (Y == Y2).all()
-
-
-def test_ttv_sparse_result():
- # Test case by Andre Panisson to check return type of sptensor.ttv
- subs = (
- array([0, 1, 0, 5, 7, 8]),
- array([2, 0, 4, 5, 3, 9]),
- array([0, 1, 2, 2, 1, 0])
- )
- vals = array([1, 1, 1, 1, 1, 1])
- S = sptensor(subs, vals, shape=[10, 10, 3])
-
- sttv = S.ttv((zeros(10), zeros(10)), modes=[0, 1])
- assert type(sttv) == sptensor
- # sparse tensor should return only nonzero vals
- assert (allclose(np.array([]), sttv.vals))
- assert (allclose(np.array([]), sttv.subs))
- assert sttv.shape == (3,)
-
-
-def test_ttv(T):
- result = array([
- [70, 190],
- [80, 200],
- [90, 210]
- ])
-
- X = fromarray(T)
- v = array([1, 2, 3, 4])
- Xv = X.ttv(v, 1)
-
- assert (3, 2) == Xv.shape
- assert (Xv == result).all()
-
-
-def test_sttm_me(T, U):
- S = sptensor(T.nonzero(), T.flatten(), T.shape)
- S._ttm_me_compute(U, [1], [0], False)
-
-
-def test_sp_uttkrp(subs, vals, shape):
- # Test case by Andre Panisson, sparse ttv
- # see issue #3
- S = sptensor(subs, vals, shape)
- U = []
- for shp in shape:
- U.append(np.zeros((shp, 5)))
- SU = S.uttkrp(U, mode=0)
- assert SU.shape == (25, 5)
-
-
-def test_getitem():
- subs = (
- array([0, 1, 0, 5, 7, 8]),
- array([2, 0, 4, 5, 3, 9]),
- array([0, 1, 2, 2, 1, 0])
- )
- vals = array([1, 2, 3, 4, 5, 6])
- S = sptensor(subs, vals, shape=[10, 10, 3])
- assert 0 == S[1, 1, 1]
- assert 0 == S[1, 2, 3]
- assert 1 == S[0, 2, 0]
- assert 2 == S[1, 0, 1]
- assert 3 == S[0, 4, 2]
- assert 4 == S[5, 5, 2]
- assert 5 == S[7, 3, 1]
- assert 6 == S[8, 9, 0]
-
-
-def test_add():
- subs = (
- array([0, 1, 0]),
- array([2, 0, 2]),
- array([0, 1, 2])
- )
- vals = array([1, 2, 3])
- S = sptensor(subs, vals, shape=[3, 3, 3])
- D = np.arange(27).reshape(3, 3, 3)
- T = S - D
- for i in range(3):
- for j in range(3):
- for k in range(3):
- assert S[i, j, k] - D[i, j, k] == T[i, j, k]
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_tucker_hooi.py b/dependencies/scikit-tensor/sktensor/tests/test_tucker_hooi.py
deleted file mode 100644
index 99852b2..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_tucker_hooi.py
+++ /dev/null
@@ -1,48 +0,0 @@
-import pytest
-import logging
-from numpy import allclose
-from numpy.random import randn
-from scipy.sparse import rand as sprand
-from sktensor import tucker
-from sktensor.core import ttm
-from sktensor.dtensor import dtensor, unfolded_dtensor
-from sktensor.sptensor import unfolded_sptensor
-#from sktensor.rotation import orthomax
-
-logging.basicConfig(level=logging.INFO)
-
-
-def normalize(X):
- return X / X.sum(axis=0)
-
-
-def disabled_test_factorization():
- I, J, K, rank = 10, 20, 75, 5
- A = orthomax(randn(I, rank))
- B = orthomax(randn(J, rank))
- C = orthomax(randn(K, rank))
-
- core_real = dtensor(randn(rank, rank, rank))
- T = core_real.ttm([A, B, C])
- core, U = tucker.hooi(T, rank)
-
- assert allclose(T, ttm(core, U))
- assert allclose(A, orthomax(U[0]))
- assert allclose(B, orthomax(U[1]))
- assert allclose(C, orthomax(U[2]))
- assert allclose(core_real, core)
-
-
-def disabled_test_factorization_sparse():
- I, J, K, rank = 10, 20, 75, 5
- Tmat = sprand(I, J * K, 0.1).tocoo()
- T = unfolded_sptensor((Tmat.data, (Tmat.row, Tmat.col)), None, 0, [], (I, J, K)).fold()
- core, U = tucker.hooi(T, rank, maxIter=20)
-
- Tmat = Tmat.toarray()
- T = unfolded_dtensor(Tmat, 0, (I, J, K)).fold()
- core2, U2 = tucker.hooi(T, rank, maxIter=20)
-
- assert allclose(core2, core)
- for i in range(len(U)):
- assert allclose(U2[i], U[i])
diff --git a/dependencies/scikit-tensor/sktensor/tests/test_utils.py b/dependencies/scikit-tensor/sktensor/tests/test_utils.py
deleted file mode 100644
index df24ee4..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/test_utils.py
+++ /dev/null
@@ -1,20 +0,0 @@
-from ..utils import accum
-from numpy import array, allclose
-
-
-def test_accum():
- subs1 = array([0, 1, 1, 2, 2, 2])
- subs2 = array([0, 1, 1, 1, 2, 2])
- vals = array([1, 2, 3, 4, 5, 6])
- nvals, nsubs = accum((subs1, subs2), vals, with_subs=True)
- assert allclose(nvals, array([1, 5, 4, 11]))
- assert allclose(nsubs[0], array([0, 1, 2, 2]))
- assert allclose(nsubs[1], array([0, 1, 1, 2]))
-
- subs1 = array([0, 0, 1])
- subs2 = array([0, 0, 1])
- vals = array([1, 2, 3])
- nvals, nsubs = accum((subs1, subs2), vals, with_subs=True)
- assert allclose(nvals, array([3, 3]))
- assert allclose(nsubs[0], array([0, 1]))
- assert allclose(nsubs[1], array([0, 1]))
diff --git a/dependencies/scikit-tensor/sktensor/tests/ttm_fixture.py b/dependencies/scikit-tensor/sktensor/tests/ttm_fixture.py
deleted file mode 100644
index 0026f55..0000000
--- a/dependencies/scikit-tensor/sktensor/tests/ttm_fixture.py
+++ /dev/null
@@ -1,23 +0,0 @@
-from numpy import array, zeros
-import pytest
-
-
-@pytest.fixture
-def T():
- T = zeros((3, 4, 2))
- T[:, :, 0] = array([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]])
- T[:, :, 1] = array([[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]])
- return T
-
-
-@pytest.fixture
-def Y():
- Y = zeros((2, 4, 2))
- Y[:, :, 0] = array([[22, 49, 76, 103], [28, 64, 100, 136]])
- Y[:, :, 1] = array([[130, 157, 184, 211], [172, 208, 244, 280]])
- return Y
-
-
-@pytest.fixture
-def U():
- return array([[1, 3, 5], [2, 4, 6]])
diff --git a/dependencies/scikit-tensor/sktensor/tucker.py b/dependencies/scikit-tensor/sktensor/tucker.py
deleted file mode 100644
index 5c91706..0000000
--- a/dependencies/scikit-tensor/sktensor/tucker.py
+++ /dev/null
@@ -1,150 +0,0 @@
-# sktensor.tucker - Algorithms to compute Tucker decompositions
-# Copyright (C) 2013 Maximilian Nickel
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see .
-
-import logging
-import time
-import numpy as np
-from numpy import array, ones, sqrt
-from numpy.random import rand
-from .pyutils import is_number
-from .core import ttm, nvecs, norm
-
-__all__ = [
- 'hooi',
- 'hosvd',
-]
-
-_log = logging.getLogger('TUCKER')
-__DEF_MAXITER = 500
-__DEF_INIT = 'nvecs'
-__DEF_CONV = 1e-7
-
-
-def hooi(X, rank, **kwargs):
- """
- Compute Tucker decompositions of a tensor using Higher-Order Orthogonal
- Iterations.
-
- Parameters
- ----------
- X : tensor_mixin
- The tensor to be decomposed
- rank : array_like
- The rank of the decompositions for each mode of the tensor.
- The length of ``rank`` must match the number of modes of ``X``.
- init : {'random', 'nvecs'}, optional
- The initialization method to use.
- - random : Factor matrices are initialized randomly.
- - nvecs : Factor matrices are initialzed via HOSVD.
- default : 'nvecs'
-
- Examples
- --------
- Create dense tensor
-
- >>> T = np.zeros((3, 4, 2))
- >>> T[:, :, 0] = [[ 1, 4, 7, 10], [ 2, 5, 8, 11], [3, 6, 9, 12]]
- >>> T[:, :, 1] = [[13, 16, 19, 22], [14, 17, 20, 23], [15, 18, 21, 24]]
- >>> T = dtensor(T)
-
- Compute Tucker decompositions of ``T`` with n-rank [2, 3, 1] via higher-order
- orthogonal iterations
-
- >>> Y = hooi(T, [2, 3, 1], init='nvecs')
-
- Shape of the core tensor matches n-rank of the decompositions.
-
- >>> Y['core'].shape
- (2, 3, 1)
- >>> Y['U'][1].shape
- (3, 2)
-
- References
- ----------
- .. [1] L. De Lathauwer, B. De Moor, J. Vandewalle: On the best rank-1 and
- rank-(R_1, R_2, \ldots, R_N) approximation of higher order tensors;
- IEEE Trans. Signal Process. 49 (2001), pp. 2262-2271
- """
- # init options
- ainit = kwargs.pop('init', __DEF_INIT)
- maxIter = kwargs.pop('maxIter', __DEF_MAXITER)
- conv = kwargs.pop('conv', __DEF_CONV)
- dtype = kwargs.pop('dtype', X.dtype)
- if not len(kwargs) == 0:
- raise ValueError('Unknown keywords (%s)' % (list(kwargs.keys())))
-
- ndims = X.ndim
- if is_number(rank):
- rank = rank * ones(ndims)
-
- normX = norm(X)
-
- U = __init(ainit, X, ndims, rank, dtype)
- fit = 0
- exectimes = []
- for itr in range(maxIter):
- tic = time.clock()
- fitold = fit
-
- for n in range(ndims):
- Utilde = ttm(X, U, n, transp=True, without=True)
- U[n] = nvecs(Utilde, n, rank[n])
-
- # compute core tensor to get fit
- core = ttm(Utilde, U, n, transp=True)
-
- # since factors are orthonormal, compute fit on core tensor
- normresidual = sqrt(normX ** 2 - norm(core) ** 2)
-
- # fraction explained by model
- fit = 1 - (normresidual / normX)
- fitchange = abs(fitold - fit)
- exectimes.append(time.clock() - tic)
-
- _log.debug(
- '[%3d] fit: %.5f | delta: %7.1e | secs: %.5f'
- % (itr, fit, fitchange, exectimes[-1])
- )
- if itr > 1 and fitchange < conv:
- break
- return core, U
-
-def hosvd(X, rank, dims=None, dtype=None, compute_core=True):
- U = [None for _ in range(X.ndim)]
- if dims is None:
- dims = list(range(X.ndim))
- if dtype is None:
- dtype = X.dtype
- for d in dims:
- U[d] = array(nvecs(X, d, rank[d]), dtype=dtype)
- if compute_core:
- core = X.ttm(U, transp=True)
- return U, core
- else:
- return U
-
-def __init(init, X, N, rank, dtype):
- # Don't compute initial factor for first index, gets computed in
- # first iteration
- Uinit = [None]
- if isinstance(init, list):
- Uinit = init
- elif init == 'random':
- for n in range(1, N):
- Uinit.append(array(rand(X.shape[n], rank[n]), dtype=dtype))
- elif init == 'nvecs':
- Uinit = hosvd(X, rank, list(range(1, N)), dtype=dtype, compute_core=False)
- return Uinit
diff --git a/dependencies/scikit-tensor/sktensor/utils.py b/dependencies/scikit-tensor/sktensor/utils.py
deleted file mode 100644
index f35922e..0000000
--- a/dependencies/scikit-tensor/sktensor/utils.py
+++ /dev/null
@@ -1,38 +0,0 @@
-import numpy as np
-from numpy import cumprod, array, arange, zeros, floor, lexsort
-
-
-def accum(subs, vals, func=np.sum, issorted=False, with_subs=False):
- """
- NumPy implementation for Matlab's accumarray
- """
- # sort accmap for ediff if not sorted
- if not issorted:
- sidx = lexsort(subs, axis=0)
- subs = [sub[sidx] for sub in subs]
- vals = vals[sidx]
- idx = np.where(np.diff(subs).any(axis=0))[0] + 1
- idx = np.concatenate(([0], idx, [subs[0].shape[0]]))
-
- # create values array
- nvals = np.zeros(len(idx) - 1)
- for i in range(len(idx) - 1):
- nvals[i] = func(vals[idx[i]:idx[i + 1]])
-
- # return results
- if with_subs:
- return nvals, tuple(sub[idx[:-1]] for sub in subs)
- else:
- return nvals
-
-
-def unravel_dimension(shape, idx):
- if isinstance(idx, type(1)):
- idx = array([idx])
- k = [1] + list(cumprod(shape[:-1]))
- n = len(shape)
- subs = zeros((len(idx), n), dtype=np.int)
- for i in arange(n - 1, -1, -1):
- subs[:, i] = floor(idx / k[i])
- idx = idx % k[i]
- return subs
diff --git a/dependencies/scikit-tensor/sktensor/version.py b/dependencies/scikit-tensor/sktensor/version.py
deleted file mode 100644
index 11d27f8..0000000
--- a/dependencies/scikit-tensor/sktensor/version.py
+++ /dev/null
@@ -1 +0,0 @@
-__version__ = '0.1'
diff --git a/requirements.txt b/requirements.txt
index d53af0c..ecbd861 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,5 +1,6 @@
numpy
scipy
-tensorly
+scikit-tensor-py3
+tensorly-musco
absl-py
tqdm
\ No newline at end of file
diff --git a/setup.py b/setup.py
index 4262dee..dded4ad 100644
--- a/setup.py
+++ b/setup.py
@@ -2,13 +2,6 @@
from setuptools import setup, find_packages
from setuptools.command.install import install
-
-class InstallLocalPackage(install):
- def run(self):
- install.run(self)
- subprocess.call("cd dependencies/scikit-tensor && python setup.py install && cd ../..", shell=True)
-
-
try:
from pip._internal.req import parse_requirements
except ImportError:
@@ -22,14 +15,13 @@ def load_requirements(file_name):
setup(
name="musco-tf",
- version="1.0.1",
+ version="1.0.2",
description="MUSCO: Multi-Stage COmpression of neural networks",
author="Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev, Larisa Markeeva, Andrzej Cichocki, Ivan Oseledets",
author_email="m.kholyavchenko@innopolis.ru",
url="https://github.com/musco-ai/musco-tf",
- download_url="https://github.com/musco-ai/musco-tf/archive/1.0.1.tar.gz",
+ download_url="https://github.com/musco-ai/musco-tf/archive/1.0.2.tar.gz",
license="Apache-2.0",
packages=find_packages(),
- cmdclass={"install": InstallLocalPackage},
install_requires=load_requirements("requirements.txt")
)