An official implementation code for paper "AI-Generated Video Detection via Spatial-Temporal Anomaly Learning", PRCV 2024. This repo will provide codes, trained weights, and our training datasets.
- Download the preprocessed training frames from Baiduyun Link (extract code: ra95).
- Download the test videos from Google Drive.
You are allowed to use the datasets for research purpose only.
- Prepare for the training datasets.
└─data
├── train
│ └── trainset_1
│ ├── 0_real
│ │ ├── video_00000
│ │ │ ├── 00000.png
│ │ │ └── ...
│ │ └── ...
│ └── 1_fake
│ ├── video_00000
│ │ ├── 00000.png
│ │ └── ...
│ └── ...
├── val
│ └── val_set_1
│ ├── 0_real
│ │ ├── video_00000
│ │ │ ├── 00000.png
│ │ │ └── ...
│ │ └── ...
│ └── 1_fake
│ ├── video_00000
│ │ ├── 00000.png
│ │ └── ...
│ └── ...
└── test
└── testset_1
├── 0_real
│ ├── video_00000
│ │ ├── 00000.png
│ │ └── ...
│ └── ...
└── 1_fake
├── video_00000
│ ├── 00000.png
│ └── ...
└── ...
- Modify configuration file in
core/utils1/config.py
. - Train the Spatial Domain Detector with the RGB frames.
python train.py --gpus 0 --exp_name TRAIN_RGB_BRANCH datasets RGB_TRAINSET datasets_test RGB_TESTSET
- Train the Optical Flow Detector with the optical flow frames.
python train.py --gpus 0 --exp_name TRAIN_OF_BRANCH datasets OpticalFlow_TRAINSET datasets_test OpticalFlow_TESTSET
Download the weights from Google Drive Link and move it into the checkpoints/
.
- Run on a dataset.
python test.py -fop "data/test/hotshot" -mop "checkpoints/optical_aug.pth" -for "data/test/original/hotshot" -mor "checkpoints/original_aug.pth" -e "data/results/T2V/hotshot.csv" -ef "data/results/frame/T2V/hotshot.csv" -t 0.5
- Run on a video.
python demo.py --use_cpu --path "video/000000.mp4" --folder_original_path "frame/000000" --folder_optical_flow_path "optical_result/000000" -mop "checkpoints/optical.pth" -mor "checkpoints/original.pth"
The code and dataset is released only for academic research. Commercial usage is strictly prohibited.
@article{AIGVDet24,
author = {Jianfa Bai and Man Lin and Gang Cao and Zijie Lou},
title = {{AI-generated video detection via spatial-temporal anomaly learning}},
conference = {The 7th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)},
year = {2024},}
If you have any questions, please contact us([email protected]).