-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQAgent.py
61 lines (47 loc) · 2.12 KB
/
DQAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import torch as T
from DQNet import DQNetwork
from Memory import Memory
class Agent():
def __init__(self, gamma, n_actions, input_dim, mem_size, epsilon = 1.0, learning_rate = 1e-4, batch_size = 64, epsilon_min = 0.01, epsilon_dec = 1e-5):
self.gamma = gamma
self.epsilon = epsilon
self.n_actions = n_actions
self.action_space = [i for i in range(n_actions)]
self.input_dim = input_dim
self.mem_size = mem_size
self.batch_size = batch_size
self.epsilon_min = epsilon_min
self.epsilon_dec = epsilon_dec
self.memory = Memory(max_size = self.mem_size, input_dim = self.input_dim, n_actions = self.n_actions)
self.q_eval = DQNetwork(learning_rate = learning_rate, input_dim = self.input_dim, n_actions = self.n_actions)
def choose_action(self, observation):
rand = np.random.random()
actions = self.q_eval.forward(observation)
if rand > self.epsilon:
action = T.argmax(actions).item()
else:
action = np.random.choice(self.action_space)
return action
def store_transition(self, state, action, reward, state_, done):
self.memory.store_transition(state, action, reward, state_, done)
def decrement_epsilon(self):
self.epsilon = self.epsilon - self.epsilon_dec if self.epsilon > self.epsilon_min else self.epsilon_min
def learn(self):
if self.memory.mem_count < self.batch_size:
return
self.q_eval.optimizer.zero_grad()
state, action, reward, new_state, done = self.memory.sample_memory(self.batch_size)
reward = T.Tensor(reward).to(self.q_eval.device)
done = T.Tensor(done).to(self.q_eval.device)
action_values = np.array(self.action_space, dtype=np.int32)
action_indices = np.dot(action, action_values)
batch_index = np.arange(self.batch_size, dtype=np.int32)
q_pred = self.q_eval.forward(state).to(self.q_eval.device)
q_pred_next = self.q_eval.forward(new_state).to(self.q_eval.device)
q_target = q_pred.clone()
q_target[batch_index, action_indices] = reward + self.gamma * T.max(q_pred_next, dim=1)[0] * done
self.decrement_epsilon()
loss = self.q_eval.loss(q_target, q_pred).to(self.q_eval.device)
loss.backward()
self.q_eval.optimizer.step()