forked from FStarLang/FStar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonadicLetBindings.fst
160 lines (137 loc) · 4.96 KB
/
MonadicLetBindings.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
module MonadicLetBindings
open FStar.List.Tot
/// This module illustrates monadic let bindings, which exist in
/// OCaml, see https://v2.ocaml.org/manual/bindingops.html.
///
/// Monadic let bindings allows the user to write custom _let
/// operators_ to ease writing monadic programs.
///
/// F* supports:
///
/// - [let] operators [let*], that represent the _bind_ operator of a
/// monad or the _map_ operator of a functor;
///
/// - [and] operators [and*], that represent a _pair_ operation
/// (a.k.a. a reformulation of the [<*>] operator of an
/// applicative);
///
/// - monadic pattern matching [match*], desugaring into (1) a [let]
/// operator [let*] and (2) a normal [match];
///
/// - monadic conditionals [if*], desugaring into (1) a [let]
/// operator [let*] and (2) a normal [if];
///
/// - and monadic sequences [x ;* y], that desugars into
/// [let* _ = x in y].
///
/// Note that above [*] stands for any non-empty sequence of character
/// in the class "!$%&*+-.<>=?^|~:@#\\/".
///
/// Also, F* support the lightweight do notations [x <-- y; z] and [x
/// ;; z] that desugars into [bind y (fun x -> z)] and [bind y (fun _
/// -> z)], using the ambient identifier `bind`. However, this do
/// notation is deprecated in favor of monadic let bindings.
(**** The [option] monad *)
// Bind operator
let (let?) (x: option 'a) (f: 'a -> option 'b): option 'b
= match x with
| Some x -> f x
| None -> None
// Sort of applicative
let (and?) (x: option 'a) (y: option 'b): option ('a & 'b)
= match x, y with
| Some x, Some y -> Some (x, y)
| _ -> None
let head: list _ -> option _
= function | v::_ -> Some v
| _ -> None
let option_example (a b: list (int & int)) (c: option bool) =
let? haL, haR = head a
and? hbL, hbR = head b in
match? c with
| true -> Some (haL + hbL)
| false -> Some (haR + hbR)
let let_punning (a: option int)
= let? a in // equivalent to [let? a = a in]
Some (a + 10)
let sequence_example (validate: int -> option int) (x: int)
= validate x ;?
if x = 0 then None
else Some (42 / x)
let _ = assert_norm (option_example [(1,2)] [(3,4)] (Some true) == Some 4)
let _ = assert_norm (option_example [] [(3,4)] (Some true) == None)
(**** How does let operators desugar? *)
/// The [let<OP>] syntax is desugared into function applications.
/// For instance, [sugared1] below desugars into [desugared1].
/// Using Emacs's F* mode, it is easy to evaluate [sugared1] to show to
/// what it desugar exactly, using the command [fstar-eval] (or the
/// keybinding <C-c C-s C-e>)
let sugared1 (let*) (and*) ex ey ez f
= let* x = ex
and* y = ey
and* z = ez in
f x y z
let desugared1 op_let_Star op_and_Star ex ey ez f
= op_let_Star (op_and_Star (op_and_Star ex ey) ez)
(fun ((x, y), z) -> f x y z)
let sugared2 (let?) (ex: option int): option int
= match? ex with
| 0 -> None
| x -> Some (10 / x)
let desugared2 op_let_Question ex
= op_let_Question ex (fun x -> match x with
| 0 -> None
| x -> Some (10 / x))
let sugared3 (let?) ex
= ex ;?
Some 1
let desugared3 op_let_Question ex
= op_let_Question ex (fun _ -> Some 1)
let sugared4 (let?) ex a b
= if? ex then a else b
let desugared4 op_let_Question ex a b
= op_let_Question ex (fun ex -> if ex then a b)
(**** The [list] monad *)
let ( let:: ) (l: list 'a) (f: 'a -> list 'b): list 'b
= flatten (map f l)
let rec zip (a: list 'a) (b: list 'b): list ('a & 'b)
= match a, b with
| ha::ta, hb::tb -> (ha,hb)::zip ta tb
| _ -> []
let ( and:: ) (a: list 'a) (b: list 'b): list ('a & 'b)
= zip a b
let list_example1 =
let:: x = [10;20;30] in
[x + 1; x + 2; x + 3]
let _ = assert_norm (list_example1 == [11;12;13;21;22;23;31;32;33])
let list_example2 =
let:: x = [10;20;30]
and:: y = ["A";"B";"C"] in
[x + 5, y ^ "!"]
let _ = assert_norm (list_example2 == [15, "A!"; 25, "B!"; 35, "C!"])
(**** Example: evaluating expressions *)
type exp =
| Const: int -> exp
| Addition: exp -> exp -> exp
| Division: exp -> exp -> exp
let rec eval (e: exp): option int
= match e with
| Const x -> Some x
| Addition x y -> let? x = eval x
and? y = eval y in
Some (x + y)
| Division x y -> match? eval y with
| 0 -> None
| y -> let? x = eval x in
Some (x / y)
(**** [pair] is just a reformulation of [<*>] *)
// Section 7 of McBride & Patterson "Applicative programming with
// effects" [https://www.staff.city.ac.uk/~ross/papers/Applicative.pdf]
let applicative_eq (m: Type -> Type) (fmap: (#a:Type -> #b:Type -> (a -> b) -> m a -> m b)) =
let (<*>) (pair: (#a:Type -> #b:Type -> m a -> m b -> m (a & b)))
: #a:Type -> #b:Type -> m (a -> b) -> m a -> m b
= fun f o -> fmap (fun (f, x) -> f x) (pair f o) in
let pair ((<*>): (#a:Type -> #b:Type -> m (a -> b) -> m a -> m b))
: #a:Type -> #b:Type -> m a -> m b -> m (a & b)
= fun x y -> fmap Mktuple2 x <*> y in
()