-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
72 lines (61 loc) · 2.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import keras
from keras.models import Sequential
from keras.layers import Conv2D, Conv3D, Activation, Reshape, Flatten, Dense, Conv2DTranspose
from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint
import numpy as np
from manage_data import load_dataset
class FramePredictor:
def __init__(self, activation_type='elu', load_weights=False):
self.activation_type = activation_type
self.batch_size = 64
self.save_path = 'weights/frame_predictor_weights.hdf5'
self.predict_next_frame_mode = False
if load_weights:
self.load_data()
self.create_model()
self.load_model()
def load_data(self):
self.X, self.Y = load_dataset()
self.predicted_frame_buffer = np.zeros(self.X[0].shape)
def add_frame_to_predicted_frame_buffer(self, frame):
self.predicted_frame_buffer[0] = self.predicted_frame_buffer[1]
self.predicted_frame_buffer[1] = self.predicted_frame_buffer[2]
self.predicted_frame_buffer[2] = frame
def create_model(self):
model = Sequential()
model.add(Conv3D(64, (3, 3, 3), padding='same', input_shape=self.X.shape[1:]))
model.add(Activation(self.activation_type))
model.add(Conv3D(64, (3, 3, 3), padding='same'))
model.add(Activation(self.activation_type))
model.add(Conv3D(64, (3, 3, 3), padding='same'))
model.add(Activation(self.activation_type))
model.add(Conv3D(64, (3, 3, 3), padding='same'))
model.add(Activation(self.activation_type))
model.add(Conv3D(3, (3, 3, 3), strides=(3, 1, 1), padding='same'))
model.add(Reshape(self.Y.shape[1:]))
model.add(Activation(self.activation_type))
model.compile(
loss='mse',
optimizer=RMSprop(),
)
self.model = model
def train_model(self, epochs=200):
checkpointer = ModelCheckpoint(
filepath=self.save_path,
verbose=1,
save_best_only=True)
self.model.fit(
x=self.X,
y=self.Y,
validation_split=0.1,
batch_size=self.batch_size,
shuffle=True,
epochs=epochs,
callbacks=[checkpointer])
def load_model(self):
self.model.load_weights(self.save_path)
def predict(self, frames):
prediction = self.model.predict(np.array([frames]))[0]
self.add_frame_to_predicted_frame_buffer(prediction)
return prediction