-
Notifications
You must be signed in to change notification settings - Fork 148
Quickstart
Each Avro type maps to a corresponding JavaScript Type
:
-
int
maps toIntType
. -
array
s map toArrayType
s. -
record
s map toRecordType
s. - etc.
An instance of a Type
knows how to decode
and encode
and its corresponding objects. For
example the StringType
knows how to handle JavaScript strings:
const stringType = new avro.types.StringType();
const buf = stringType.toBuffer('Hi'); // Buffer containing 'Hi''s Avro encoding.
const str = stringType.fromBuffer(buf); // === 'Hi'
The toBuffer
and
fromBuffer
methods above are
convenience functions which encode and decode a single object into/from a
standalone buffer.
Each type
also provides other methods which can be useful. Here are a few
(refer to the API documentation for the full list):
-
JSON-encoding:
const jsonString = type.toString('Hi'); // === '"Hi"' const str = type.fromString(jsonString); // === 'Hi'
-
Validity checks:
const b1 = stringType.isValid('hello'); // === true ('hello' is a valid string.) const b2 = stringType.isValid(-2); // === false (-2 is not.)
-
Random object generation:
const s = stringType.random(); // A random string.
It is possible to instantiate types directly by calling their constructors
(available in the avro.types
namespace; this is what we used earlier), but in
the vast majority of use-cases they will be automatically generated by parsing
an existing schema.
avsc
exposes a parse
method to do the
heavy lifting:
// Equivalent to what we did earlier.
const stringType = avro.parse({type: 'string'});
// A slightly more complex type.
const mapType = avro.parse({type: 'map', values: 'long'});
// The sky is the limit!
const personType = avro.parse({
name: 'Person',
type: 'record',
fields: [
{name: 'name', type: 'string'},
{name: 'phone', type: ['null', 'string'], default: null},
{name: 'address', type: {
name: 'Address',
type: 'record',
fields: [
{name: 'city', type: 'string'},
{name: 'zip', type: 'int'}
]
}}
]
});
Of course, all the type
methods are available. For example:
personType.isValid({
name: 'Ann',
phone: null,
address: {city: 'Cambridge', zip: 02139}
}); // === true
personType.isValid({
name: 'Bob',
phone: {string: '617-000-1234'},
address: {city: 'Boston'}
}); // === false (Missing the zip code.)
Since schemas are often stored in separate files, passing a path to parse
will attempt to load a JSON-serialized schema from there:
const couponType = avro.parse('./Coupon.avsc');
For advanced use-cases, parse
also has a few options which are detailed the
API documentation.
Avro files (meaning Avro object container files) hold
serialized Avro records along with their schema. Reading them is as simple as
calling createFileDecoder
:
const personStream = avro.createFileDecoder('./persons.avro');
personStream
is a readable stream of decoded records, which we can
for example use as follows:
personStream.on('data', (person) => {
if (person.address.city === 'San Francisco') {
doSomethingWith(person);
}
});
In case we need the records' type
or the file's codec, they are available by
listening to the 'metadata'
event:
personStream.on('metadata', (type, codec) => { /* Something useful. */ });
To access a file's header synchronously, there also exists an
extractFileHeader
method:
const header = avro.extractFileHeader('persons.avro');
Writing to an Avro container file is possible using
createFileEncoder
:
const encoder = avro.createFileEncoder('./processed.avro', type);
The API documentation provides a comprehensive list of available functions and their options. The Advanced usage section goes through a few examples to show how the API can be used, including remote procedure calls.