forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquesst14_test.py
164 lines (130 loc) · 5.25 KB
/
quesst14_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
from collections import defaultdict
from pathlib import Path
from parameterized import parameterized
from torchaudio.datasets import quesst14
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase
def _get_filename(folder, index):
if folder == "Audio":
return f"quesst14_{index:05d}.wav"
elif folder == "dev_queries":
return f"quesst14_dev_{index:04d}.wav"
elif folder == "eval_queries":
return f"quesst14_eval_{index:04d}.wav"
return
def _get_key(folder):
folder_key_mapping = {
"Audio": "utterances",
"dev_queries": "dev",
"eval_queries": "eval",
}
return folder_key_mapping[folder]
def _save_sample(dataset_dir, folder, language, index, sample_rate, seed):
# create and save audio samples to corresponding files
path = os.path.join(dataset_dir, folder)
os.makedirs(path, exist_ok=True)
filename = _get_filename(folder, index)
file_path = os.path.join(path, filename)
data = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
seed=seed,
)
save_wav(file_path, data, sample_rate)
sample = (data, sample_rate, Path(file_path).with_suffix("").name)
# add audio files and language data to language key files
scoring_path = os.path.join(dataset_dir, "scoring")
os.makedirs(scoring_path, exist_ok=True)
wav_file = f"quesst14Database/{folder}/{filename}"
line = f"{wav_file} {language}"
key = _get_key(folder)
language_key_file = f"language_key_{key}.lst"
language_key_file = os.path.join(scoring_path, language_key_file)
with open(language_key_file, "a") as f:
f.write(line + "\n")
return sample
def _get_mocked_samples(dataset_dir, folder, sample_rate, seed):
samples_per_language = 2
samples_map = defaultdict(list)
samples_all = []
curr_idx = 0
for language in quesst14._LANGUAGES:
for _ in range(samples_per_language):
sample = _save_sample(dataset_dir, folder, language, curr_idx, sample_rate, seed)
samples_map[language].append(sample)
samples_all.append(sample)
curr_idx += 1
return samples_map, samples_all
def get_mock_dataset(dataset_dir):
"""
dataset_dir: directory to the mocked dataset
"""
os.makedirs(dataset_dir, exist_ok=True)
sample_rate = 8000
audio_seed = 0
dev_seed = 1
eval_seed = 2
mocked_utterances, mocked_utterances_all = _get_mocked_samples(dataset_dir, "Audio", sample_rate, audio_seed)
mocked_dev_samples, mocked_dev_samples_all = _get_mocked_samples(dataset_dir, "dev_queries", sample_rate, dev_seed)
mocked_eval_samples, mocked_eval_samples_all = _get_mocked_samples(
dataset_dir, "eval_queries", sample_rate, eval_seed
)
return (
mocked_utterances,
mocked_dev_samples,
mocked_eval_samples,
mocked_utterances_all,
mocked_dev_samples_all,
mocked_eval_samples_all,
)
class TestQuesst14(TempDirMixin, TorchaudioTestCase):
root_dir = None
backend = "default"
utterances = {}
dev_samples = {}
eval_samples = {}
utterances_all = []
dev_samples_all = []
eval_samples_all = []
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
dataset_dir = os.path.join(cls.root_dir, "quesst14Database")
(
cls.utterances,
cls.dev_samples,
cls.eval_samples,
cls.utterances_all,
cls.dev_samples_all,
cls.eval_samples_all,
) = get_mock_dataset(dataset_dir)
def _testQuesst14(self, dataset, data_samples):
num_samples = 0
for i, (data, sample_rate, name) in enumerate(dataset):
self.assertEqual(data, data_samples[i][0])
assert sample_rate == data_samples[i][1]
assert name == data_samples[i][2]
num_samples += 1
assert num_samples == len(data_samples)
def testQuesst14SubsetDocs(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="docs")
self._testQuesst14(dataset, self.utterances_all)
def testQuesst14SubsetDev(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="dev")
self._testQuesst14(dataset, self.dev_samples_all)
def testQuesst14SubsetEval(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="eval")
self._testQuesst14(dataset, self.eval_samples_all)
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14DocsSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="docs")
self._testQuesst14(dataset, self.utterances[language])
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14DevSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="dev")
self._testQuesst14(dataset, self.dev_samples[language])
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14EvalSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="eval")
self._testQuesst14(dataset, self.eval_samples[language])