-
Notifications
You must be signed in to change notification settings - Fork 10
/
simulator_simple.py
471 lines (430 loc) · 16.8 KB
/
simulator_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import os
import sys
import json
import grpc
import argparse
import numpy as np
from workload import Workload
from concurrent import futures
from typing import Tuple
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.lines as lines
from collections import defaultdict
# something in pylab * screws up with random library, for now just overwriting
import random
sys.path.append(os.path.join(os.path.dirname(__file__), "./deployment/grpc_stubs"))
from blox.deployment.grpc_stubs import rm_pb2
from blox.deployment.grpc_stubs import rm_pb2_grpc
from blox.deployment.grpc_stubs import simulator_pb2
from blox.deployment.grpc_stubs import simulator_pb2_grpc
import traceback
class SimulatorRunner(simulator_pb2_grpc.SimServerServicer):
"""
Run jobs in the simulation mode
"""
def __init__(
self,
cluster_job_log,
list_jobs_per_hour,
job_ids_to_track,
schedulers,
placement_policies,
acceptance_policies,
model_class_split=(34, 33, 33),
ipaddr_resource_manager="localhost",
exponential=True,
multigpu=False,
small_trace=False,
placement=True,
prioritize=False,
round_duration=300,
number_of_machines=32,
gpus_per_machine=4,
memory_per_machine=16,
is_numa_available=False,
num_cpu_cores=16,
num_jobs_default=0,
exp_prefix="test",
):
self.cluster_job_log = cluster_job_log
self.list_jobs_per_hour = list_jobs_per_hour
self.job_ids_to_track = job_ids_to_track
self.schedulers = schedulers
self.placement_policies = placement_policies
self.acceptance_policies = acceptance_policies
self.model_class_split = model_class_split
self.exponential = exponential
self.multigpu = multigpu
self.small_trace = small_trace
self.placement = placement
self.prioritize = prioritize
self.round_duration = round_duration
self.num_jobs_default = num_jobs_default
# cluster parameters
self.number_of_machines = number_of_machines
self.gpus_per_machine = gpus_per_machine
self.memory_per_machine = memory_per_machine
self.is_numa_available = is_numa_available
self.num_cpu_cores = num_cpu_cores
self.ipaddr_rm = f"{ipaddr_resource_manager}:50051"
# self.jobs_to_run = Workload(cluster_job_log)
# setup the training
self.simulator_config = list()
self._generate_simulator_configs()
self.prev_job_time = 0
self.latest_job = None
self.prev_job = None
# first_job_config = self.simulator_config.pop(0)
# self.workload = self._generate_workload(first_job_config)
self.random_seed = 1
self.exp_prefix = exp_prefix
return None
def GetConfig(self, request, context):
"""
Provide new_jobt config to run the simulator.
"""
# get new job config
try:
job_config = self.simulator_config.pop(0)
# setup new workload
self.workload = self._generate_workload(job_config)
job_config_send = rm_pb2.JsonResponse()
job_config_send.response = json.dumps(job_config)
self.setup_cluster()
# reseting the job time
self.prev_job_time = 0
self.prev_job = None
print("Job config {}".format(job_config))
return job_config_send
except IndexError:
# list empty signal to terminate
job_config = dict()
job_config["scheduler"] = ""
job_config["load"] = -1
job_config["start_id_track"] = 0
job_config["stop_id_track"] = 0
job_config_send = rm_pb2.JsonResponse()
job_config_send.response = json.dumps(job_config)
# self.setup_cluster()
# self._plot_graphs()
return job_config_send
def GetJobs(self, request, context) -> rm_pb2.JsonResponse:
"""
Return a dictionary of jobs for simulating.
"""
simulator_time = request.value
job_to_run_dict = dict()
jcounter = 0
print("Simulator time {}".format(simulator_time))
new_job = None
while True:
try:
if self.prev_job is None:
new_job = self.workload.generate_next_job(self.prev_job_time)
new_job_dict = self._clean_sim_job(new_job.__dict__)
if self.prev_job is not None:
print("Self previous job")
new_job_dict = self.prev_job
print(
"New job dict arrival time {}".format(
new_job_dict["job_arrival_time"]
)
)
if new_job_dict["job_arrival_time"] <= simulator_time:
print("In getting more jobs")
job_to_run_dict[jcounter] = new_job_dict
self.prev_job_time = new_job_dict["job_arrival_time"]
self.prev_job = None
jcounter += 1
if new_job_dict["job_arrival_time"] > simulator_time:
# no more jobs for next time
print("returning previos job")
valid_jobs = rm_pb2.JsonResponse()
valid_jobs.response = json.dumps(job_to_run_dict)
self.prev_job = new_job_dict
self.prev_job_time = new_job_dict["job_arrival_time"]
print("Json dump and return")
return valid_jobs
except Exception as e:
# somewhere there is logger called in workload. I am just
# trying to avoid that possibly
print("Exception e {}".format(e))
traceback.print_exc()
# pass
def _get_avg_jct(self, time_dict):
"""
Fetch the avg jct from the dict
"""
values = list(time_dict.values())
count = 0
jct_time = 0
for v in values:
jct_time += v[1] - v[0]
count += 1
return jct_time / count
def _plot_graphs(self):
"""
Post Simulation Plot Graphs
"""
# print("plot called")
jct_dict = defaultdict(dict)
file_names_job_stats = list()
file_names_cluster_stats = list()
for scheduler in self.schedulers:
file_names_job_stats = list()
file_names_cluster_stats = list()
for load in self.list_jobs_per_hour:
stat_fname = f"{self.exp_prefix}_{self.job_ids_to_track[0]}_{self.job_ids_to_track[1]}_{scheduler}_load_{load}_job_stats.json"
print(stat_fname)
with open(stat_fname, "r") as fin:
data_job = json.load(fin)
print(scheduler, load)
jct_dict[scheduler][load] = self._get_avg_jct(data_job)
# print("Wrote to dict")
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(10, 3)
matplotlib.rcParams["pdf.fonttype"] = 42
matplotlib.rcParams["ps.fonttype"] = 42
print("Job completion dict {}".format(jct_dict))
for scheduler in self.schedulers:
plot_list = list()
# x_labels = list()
for load in self.list_jobs_per_hour:
plot_list.append(jct_dict[scheduler][load])
ax1.plot(self.list_jobs_per_hour, plot_list, label=scheduler)
ax1.legend()
ax1.set_title("Average JCT")
plt.savefig("jct.pdf", format="pdf", dpi=600, bbox_inches="tight")
# plot cdf
for scheduler in self.schedulers:
for load in self.list_jobs_per_hour:
stat_fname = f"{self.exp_prefix}_{self.job_ids_to_track[0]}_{self.job_ids_to_track[1]}_{scheduler}_load_{load}_job_stats.json"
with open(stat_fname, "r") as fin:
data_job = json.load(fin)
vals = data_job.values()
vals = [val[1] - val[0] for val in vals]
vals = sorted(vals)
plot_y_val = list()
for idx, val in enumerate(vals):
plot_y_val.append(float(idx) / len(vals))
write_folder = f"./plots/{self.exp_prefix}_{self.job_ids_to_track[0]}_{self.job_ids_to_track[1]}_{scheduler}_load_{load}"
if not os.path.exists(write_folder):
os.makedirs(write_folder)
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(10, 3)
ax1.set_xscale("log")
ax1.set_title(f"{scheduler}_load_{load}_cdf")
ax1.plot(vals, plot_y_val)
plt.savefig(
os.path.join(write_folder, f"{scheduler}_load_{load}_cdf.pdf"),
format="pdf",
dpi=600,
bbox_inches="tight",
)
# plot GPU demand
for scheduler in self.schedulers:
for load in self.list_jobs_per_hour:
stat_fname = f"{self.exp_prefix}_{self.job_ids_to_track[0]}_{self.job_ids_to_track[1]}_{scheduler}_load_{load}_cluster_stats.json"
with open(stat_fname, "r") as fin:
data_job = json.load(fin)
gpu_demand = list()
free_gpus = list()
for d in data_job.keys():
gpu_demand.append(data_job[d]["gpu_demand"])
free_gpus.append(data_job[d]["free_gpus"])
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(10, 3)
ax1.set_title(f"{scheduler}_load_{load}_gpu_demand")
ax1.set_xscale("log")
ax1.plot(data_job.keys(), gpu_demand)
write_folder = f"./plots/{self.exp_prefix}_{self.job_ids_to_track[0]}_{self.job_ids_to_track[1]}_{scheduler}_load_{load}"
if not os.path.exists(write_folder):
os.makedirs(write_folder)
plt.savefig(
os.path.join(
write_folder, f"{scheduler}_load_{load}_gpu_demand.pdf"
),
format="pdf",
dpi=600,
bbox_inches="tight",
)
# plot free GPUs
fig, ax1 = plt.subplots(1, 1)
fig.set_size_inches(10, 3)
ax1.set_title(f"{scheduler}_load_{load}_free_GPUs")
ax1.plot(data_job.keys(), free_gpu)
plt.savefig(
os.path.join(write_folder, f"{scheduler}_load_{load}_free_gpu.pdf"),
format="pdf",
dpi=600,
bbox_inches="tight",
)
def _clean_sim_job(self, new_job: dict) -> dict:
"""
Preprocesses the job for simulations.
Cleans some fields and non serializable input
"""
# new_job_time = random.randint(36000, 86400)
# new_job["job_total_iteration"] = new_job_time
# new_job["job_duration"] = new_job_time
new_job["simulation"] = True
new_job["submit_time"] = new_job["job_arrival_time"]
# temporary fix not sure why this is happening though
if "logger" in new_job:
new_job.pop("logger")
if "job_task" in new_job:
new_job.pop("job_task")
if "job_model" in new_job:
new_job.pop("job_model")
new_job["num_GPUs"] = new_job["job_gpu_demand"]
# new_job["params_to_track"] = [
# "per_iter_time",
# "attained_service",
# ]
# new_job["default_values"] = [0, 0]
return new_job
def _generate_workload(self, workload_config):
"""
Generate workload for a given config
"""
# set the random seed before generating the workload
random.seed(self.random_seed)
# print("After random seed")
return Workload(
self.cluster_job_log,
jobs_per_hour=workload_config["load"],
exponential=self.exponential,
multigpu=self.multigpu,
small_trace=self.small_trace,
series_id_filter=self.job_ids_to_track,
model_class_split=self.model_class_split,
# TODO: Fix this
per_server_size=[
self.gpus_per_machine,
self.num_cpu_cores,
self.memory_per_machine,
500,
40,
],
num_jobs_default=self.num_jobs_default,
)
def _generate_simulator_configs(self):
for scheduler in self.schedulers:
for placement_policy in self.placement_policies:
for acceptance_policy in self.acceptance_policies:
for load in self.list_jobs_per_hour:
self.simulator_config.append(
{
"scheduler": scheduler,
"load": load,
"start_id_track": self.job_ids_to_track[0],
"stop_id_track": self.job_ids_to_track[1],
"placement_policy": placement_policy,
"acceptance_policy": acceptance_policy,
}
)
def setup_cluster(self):
"""
Cluster setup
"""
count = 0
for _ in range(self.number_of_machines):
count += 1
request_to_rm = rm_pb2.RegisterRequest()
request_to_rm.ipaddr = ""
request_to_rm.numGPUs = self.gpus_per_machine
request_to_rm.gpuUUIDs = "\n".join(
[str(x) for x in range(self.gpus_per_machine)]
)
request_to_rm.memoryCapacity = self.memory_per_machine
request_to_rm.numCPUcores = self.num_cpu_cores
request_to_rm.numaAvailable = self.is_numa_available
request_to_rm.cpuMaping[0] = 0
with grpc.insecure_channel(self.ipaddr_rm) as channel:
stub = rm_pb2_grpc.RMServerStub(channel)
response = stub.RegisterWorker(request_to_rm)
print("Number of machines sent {}".format(count))
return None
def NotifyCompletion(self, request, context):
"""
Call to notify that jobs done
"""
pass
def parse_args(parser):
"""
Parse arguments
"""
parser.add_argument(
"--sim-type",
choices=["trace-synthetic", "trace-actual", "synthetic"],
type=str,
help="Type of simulation, trace-synthetic:philly trace with specific load, trace-actual : actual replay of philly trace, synthetic:synthetic trace",
)
parser.add_argument(
"--cluster-job-log",
type=str,
default="",
help="Name of the cluster log file to run",
)
parser.add_argument("--jobs-per-hour", type=int, default=5, help="Jobs per hour")
parser.add_argument(
"--start-job-track", type=int, default=3000, help="Start ID of job to track"
)
parser.add_argument(
"--end-job-track", type=int, default=4000, help="End ID of job to track"
)
parser.add_argument(
"--scheduler", type=str, default="Fifo", help="Name of the scheduler"
)
parser.add_argument(
"--exp-prefix",
type=str,
help="Unique name for prefix log files, makes sure it is the same as resource manager",
)
parser.add_argument(
"--simulator-rpc-port",
default=50050,
type=int,
help="Simulator RPC port to fetch jobs",
)
args = parser.parse_args()
return args
def launch_server(args) -> grpc.Server:
"""
Launches the server
"""
server = grpc.server(futures.ThreadPoolExecutor(max_workers=1))
simulator_pb2_grpc.add_SimServerServicer_to_server(
SimulatorRunner(
args.cluster_job_log,
np.arange(args.jobs_per_hour, args.jobs_per_hour + 1, 1.0).tolist(),
(args.start_job_track, args.end_job_track),
[
"Las",
],
["Place"],
["AcceptAll"],
exp_prefix=args.exp_prefix,
),
server,
)
server.add_insecure_port(f"[::]:{args.simulator_rpc_port}")
server.start()
print("Print Server started")
return server
if __name__ == "__main__":
args = parse_args(argparse.ArgumentParser(description="Arguments for simulation"))
try:
server = launch_server(args)
server.wait_for_termination()
except KeyboardInterrupt:
server.stop(0)
print("Exit by ctrl c")
# simulator = SimulatorRunner(
# args.cluster_job_log,
# args.jobs_per_hour,
# (args.start_job_track, args.end_job_track),
# args.scheduler,
# )
# simulator.run_simulation()