-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiClassClassification.py
60 lines (47 loc) · 1.8 KB
/
multiClassClassification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
import numpy as np
from dataset import WineDataset
import torchvision
from torch.utils.data import Dataset,DataLoader
# Multi Class Problem
class NeuralNetwork(nn.Module):
def __init__(self,input_dim,hidden_nodes, num_classes):
super(NeuralNetwork,self).__init__()
self.linear1 = nn.Linear(input_dim,hidden_nodes)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_nodes,num_classes)
def forward(self,x):
out = self.linear1(x)
out = self.relu(out)
out = self.linear2(out)
# NO SOFTMAX
return out
if __name__=='__main__':
criterion = nn.CrossEntropyLoss()
dataset = WineDataset()
model = NeuralNetwork(input_dim=dataset.get_features(), hidden_nodes=15,num_classes=dataset.get_num_classes())
n_samples = len(dataset)
dataloader = DataLoader(dataset=dataset,batch_size=4,shuffle=True)
num_epochs=100
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
for epoch in range(num_epochs):
total_loss=0
model.train()
correct_preds=0
for i,(inputs,labels) in enumerate(dataloader):
y_pred = model(inputs)
# print(y_pred,labels)
l = criterion(y_pred,labels)
l.backward()
total_loss+=l.item()
optimizer.step()
optimizer.zero_grad()
# print(y_pred.shape)
_,predictions = torch.max(y_pred,1)
# print(predictions,labels)
# t=input()
correct_preds += predictions.eq(labels).sum()
if (epoch+1)%10==0:
tr_acc = correct_preds/n_samples
print(f'Epoch {epoch+1}: Accuracy = {tr_acc}, Loss = {total_loss:0.4f}')