forked from henryseg/spherical_image_editing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsphere_transforms2.py
309 lines (265 loc) · 11.7 KB
/
sphere_transforms2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import numpy as np
from scipy.interpolate import RectBivariateSpline
from scipy.ndimage import map_coordinates
from numpy import pi
from PIL import Image
def angles_from_pixel_coords(pts, size):
"""map from pixel coordinates to (0, 2*pi) x (-pi/2, pi/2) rectangle
Parameters
----------
pts : array_like (2,...)
pts[0,...], and pts[1,...] are row, column image coordinates in the ranges (0,size[0]) and (0,size[1]), respectively
size : tuple
rectangular image size (rows, columns)
Returns
-------
out : ndarray, same shape as pts
pts transformed into (0,2pi) x (-pi/2,pi/2) range (and transposed)
"""
pts = np.asarray(pts,dtype=np.float64) #turn into an ndarray if necessary
ys,xs = size #row,col indexing
out = np.empty_like(pts)
out[0] = pts[1]*2*pi/float(xs)
out[1] = pts[0]*pi/float(ys-1) - 0.5*pi
return out
def pixel_coords_from_angles(pts, size):
"""map from (0, 2*pi) x (-pi/2, pi/2) rectangle to pixel coordinates
Parameters
----------
pts : array_like (2,...)
pts[0,...], and pts[1,...] are x and y coordinates in the ranges (0,size[0]) and (0,size[1]), respectively
size : tuple
rectangle image size (rows, columns)
Returns
-------
out : ndarray, same shape as pts
pts transformed from (0,2*pi) x (-pi/2,pi/2) range into (0,width) x (0,height) range (and transposed)
"""
pts = np.asarray(pts) #turn into an ndarray if necessary
ys,xs = size #row, col indexing
out = np.empty_like(pts)
out[1] = pts[0]*float(xs)/(2*pi)
out[0] = (pts[1] + 0.5*pi)*float(ys-1)/pi
return out
def angles_from_sphere(pts):
"""equirectangular projection, ie. map from sphere in R^3 to (0, 2*pi) x (-pi/2, pi/2)
Parameters
----------
pts : array_like (3,...)
pts[0,...], pts[1,...], and pts[2,...] are x,y, and z coordinates
Returns
-------
out : ndarray (2,...)
pts transformed from x,y,z to longitude,latitude
"""
pts = np.asarray(pts) #turn into an ndarray if necessary
x,y,z = pts[0], pts[1], pts[2]
out = np.empty((2,) + pts.shape[1:])
#longitude:
out[0] = np.arctan2(y,x)
out[0] %= 2*pi #wrap negative values around the circle to positive
#latitude:
r = np.hypot(x,y)
out[1] = np.arctan2(z,r)
return out
def sphere_from_angles(pts):
"""inverse equirectangular projections, ie. map from (0,2*pi) x (-pi/2,pi/2) rectangle to sphere in R^3
Parameters
----------
pts : array_like (2,...)
pts[0,...], pts[1,...] are longitude, latitude
Returns
-------
out : ndarray (3,...)
pts transformed from longitude,latitude to x,y,z
"""
pts = np.asarray(pts)
out = np.empty((3,) + pts.shape[1:])
lon,lat = pts[0],pts[1]
horiz_radius = np.cos(lat)
out[0] = horiz_radius*np.cos(lon) #x
out[1] = horiz_radius*np.sin(lon) #y
out[2] = np.sin(lat) #z
return out
def sphere_from_pixel_coords(pts, size):
"""map from pixel coordinates to sphere in R^3
Parameters
----------
pts : array_like (2,...)
pts[0,...], and pts[1,...] are u and v coordinates in the ranges (0,size[0]) and (0,size[1]), respectively
size : tuple
rectangular image size (width, height)
Returns
-------
out : ndarray (3,...)
coordinates of pts wrapped around a sphere u,v -> x,y,z
"""
return sphere_from_angles(angles_from_pixel_coords(pts, size))
def CP1_from_sphere(pts):
"""map from sphere in R^3 to CP^1"""
pts = np.asarray(pts)
out = np.empty((2,)+pts.shape[1:],dtype=np.complex128)
x,y,z = pts[0],pts[1],pts[2]
mask = z<0
out[0] = np.where(mask, x + 1j*y, 1 + z)
out[1] = np.where(mask, 1 - z, x - 1j*y)
return out
def sphere_from_CP1(pts):
"""map from CP^1 to sphere in R^3"""
pts = np.asarray(pts)
out = np.empty((3,) + pts.shape[1:])
z1,z2 = pts[0],pts[1]
mask = abs(z2) > abs(z1)
z = np.where(mask, z1/z2, np.conj(z2/z1))
x,y = np.real(z), np.imag(z)
denom = 1 + x**2 + y**2
out[0] = 2*x/denom
out[1] = 2*y/denom
out[2] = (denom-2)/denom*(2*mask-1) #negate where mask is false
return out
def clamp(pts, size):
"""clamp to the size of the input, including wrapping around in the x direction"""
ys,xs = size
pts = np.asarray(pts)
out = np.empty_like(pts)
out[0] = np.clip(pts[0],0,ys-1)
out[1] = pts[1] % xs
return out
def get_pixel_color(pts, s_im, size):
"""given pts in integers, get pixel colour on the source image as a vector in the colour cube"""
pts = clamp(pts,size)
s_im = np.asarray(s_im)
return s_im[pts[0], pts[1]]
def get_interpolated_pixel_color(pts, s_im, size):
"""given pts in floats, linear interpolate pixel values nearby to get a good colour"""
pts = clamp(pts, size)
s_im = np.atleast_3d(s_im)
ys,xs = size
ycoords, xcoords = np.arange(ys), np.arange(xs)
out = np.empty(pts.shape[1:] + (s_im.shape[-1],),dtype=s_im.dtype)
for i in range(s_im.shape[-1]): #loop over color channels
map_coordinates(s_im[...,i],pts,out[...,i],mode='nearest')
return out
def get_interpolated_pixel_color_rbspline(pts, s_im, size):
"""given pts in floats, linear interpolate pixel values nearby to get a good colour"""
pts = clamp(pts, size)
s_im = np.atleast_3d(s_im)
ys,xs = size
ycoords, xcoords = np.arange(ys), np.arange(xs)
out = np.empty(pts.shape[1:] + (s_im.shape[-1],),dtype=s_im.dtype)
pts_vec = pts.reshape((2,-1))
out_vec = out.reshape((-1,s_im.shape[-1])) #flatten for easier vectorization
for i in range(s_im.shape[-1]): #loop over color channels
rbspline = RectBivariateSpline(ycoords, xcoords, s_im[...,i])
out_vec[:,i] = rbspline.ev(pts_vec[0],pts_vec[1])
return out
### Functions generating SL(2,C) matrices ###
# Do not need to be vectorized #
def inf_zero_one_to_triple(p,q,r):
"""return SL(2,C) matrix that sends the three points infinity, zero, one to given input points p,q,r"""
M = np.vstack((p,q)).T
mu,lam = np.linalg.lstsq(M,r)[0]
return np.vstack((mu*p,lam*q)).T
def two_triples_to_SL(a1,b1,c1,a2,b2,c2):
"""returns SL(2,C) matrix that sends the three CP^1 points a1,b1,c1 to a2,b2,c2"""
M1 = inf_zero_one_to_triple(a1,b1,c1)
M2 = inf_zero_one_to_triple(a2,b2,c2)
# solve M1.T @ X.T = M2.T => X = M2 @ inv(M1)
return np.linalg.lstsq(M1.T, M2.T)[0].T
def three_points_to_three_points_pixel_coords(p1,q1,r1,p2,q2,r2,size):
"""returns SL(2,C) matrix that sends the three pixel coordinate points a1,b1,c1 to a2,b2,c2"""
#convert to sphereical coordinates
p1,q1,r1,p2,q2,r2 = [sphere_from_pixel_coords(point, size = size) for point in [p1,q1,r1,p2,q2,r2]]
return two_triples_to_SL(p1,q1,r1,p2,q2,r2)
def normalize_vectors(vecs,ord=None,axis=None):
"""normalize vectors along axis using numpy.linalg.norm. See its documentation for details on ord"""
return vecs/np.linalg.norm(vecs,ord=ord,axis=axis,keepdims=True)
def get_vector_perp_to_p_and_q(p,q):
"""p and q are distinct points on sphere, return a unit vector perpendicular to both"""
if abs(np.dot(p,q)+1) < 0.0001: #awkward case when p and q are antipodal on the sphere
if abs(np.dot(p, [1,0,0])) > 0.9999: #p is parallel to (1,0,0)
return np.array([0,1,0])
else:
return normalize_vectors(np.cross(p, [1,0,0]))
else:
return normalize_vectors(np.cross(p,q))
def rotate_sphere_points_p_to_q(p,q):
"""p and q are points on the sphere, return SL(2,C) matrix rotating image of p to image of q on CP^1"""
if abs(np.dot(p,q)-1) < 0.0001:
return np.eye(2) #2d ident matrix
CP1p, CP1q = CP1_from_sphere(p), CP1_from_sphere(q)
r = get_vector_perp_to_p_and_q(p,q)
CP1r, CP1nr = CP1_from_sphere(r), CP1_from_sphere(-r)
return two_triples_to_SL(CP1p, CP1r, CP1nr, CP1q, CP1r, CP1nr)
def rotate_pixel_coords_p_to_q(p, q, size):
"""p and q are pixel coordinate points, return SL(2,C) matrix rotating image of p to image of q in CP^1"""
p = sphere_from_pixel_coords(p,size)
q = sphere_from_pixel_coords(q,size)
return rotate_sphere_points_p_to_q(p,q)
def rotate_around_axis_sphere_points_p_q(p,q,theta):
"""p and q are points on sphere, return SL(2,C) matrix rotating by angle theta around the axis from p to q"""
assert dot(p,q) < 0.9999, "axis points should not be in the same place!"
CP1p, CP1q = CP1_from_sphere(p), CP1_from_sphere(q)
r = get_vector_perp_to_p_and_q(p,q)
CP1r = CP1_from_sphere(r)
M_std = two_triples_to_SL(CP1p, CP1q, CP1r, [0,1], [1,0], [1,1])
M_th = np.array([[complex(np.cos(theta), np.sin(theta)),0],[0,1]]) #rotate on axis through 0, inf by theta
return np.dot(np.linalg.lstsq(M_std, M_th)[0], M_std) # inv(M_std) @ M_th @ M_std
def rotate_around_axis_pixel_coords_p_q(p,q,theta,size):
"""p and q are pixel coordinate points, return SL(2,C) matrix rotating by angle theta around the axis from p to q"""
p = sphere_from_pixel_coords(p,size)
q = sphere_from_pixel_coords(q,size)
return rotate_around_axis_sphere_points_p_q(p,q,theta)
def rotate_around_axis_pixel_coord_p(p,theta,size):
p = sphere_from_pixel_coords(p,size)
np = -p
return rotate_around_axis_sphere_points_p_q(p,np,theta)
def zoom_in_on_pixel_coords(p, zoom_factor, size):
M_rot = rotate_pixel_coords_p_to_q(p,[0,0],size)
M_scl = np.array([[zoom_factor,0],[0,1]])
return np.dot(np.linalg.lstsq(M_rot, M_scl)[0], M_rot)
def zoom_along_axis_sphere_points_p_q(p, q, zoom_factor):
assert np.dot(p,q) < 0.999, "points should not be in the same place!"
CP1p, CP1q = CP1_from_sphere(p), CP1_from_sphere(q)
r = get_vector_perp_to_p_and_q(p,q)
CP1r = CP1_from_sphere(r)
M_std = two_triples_to_SL(CP1p, CP1q, CP1r, [0,1], [1,0], [1,1])
M_th = [[zoom_factor,0],[0,1]]
return np.dot(np.linalg.lstsq(M_std, M_th)[0], M_std)
def zoom_along_axis_pixel_coords_p_q(p, q, zoom_factor, size):
p = sphere_from_pixel_coords(p,size)
q = sphere_from_pixel_coords(q,size)
return zoom_along_axis_sphere_points_p_q(p,q,zoom_factor)
def translate_along_axis_pixel_coords(p,q,r1,r2,size):
return three_points_to_three_points_pixel_coords(p,q,r1,p,q,r2,size)
### Apply tranformations
def apply_SL2C_elt_to_image(M_SL2C, src_image, out_size=None):
s_im = np.atleast_3d(src_image)
in_size = s_im.shape[:-1]
if out_size is None:
out_size = in_size
#We are going to find the location in the source image that each pixel in the output image comes from
#least squares matrix inversion (find X such that M @ X = I ==> X = inv(M) @ I = inv(M))
Minv = np.linalg.lstsq(M_SL2C, np.eye(2))[0]
#all of the x,y pairs in o_im:
pts_out = np.indices(out_size).reshape((2,-1)) #results in a 2 x (num pixels) array of indices
pts_out_a = angles_from_pixel_coords(pts_out, out_size)
pts_out_s = sphere_from_angles(pts_out_a)
pts_out_c = CP1_from_sphere(pts_out_s)
pts_in_c = np.dot(Minv, pts_out_c) # (2x2) @ (2xn) => (2xn)
pts_in_s = sphere_from_CP1(pts_in_c)
pts_in_a = angles_from_sphere(pts_in_s)
pts_in = pixel_coords_from_angles(pts_in_a, in_size)
#reshape pts into 2 x image_shape for the interpolation
o_im = get_interpolated_pixel_color(pts_in.reshape((2,)+out_size), s_im, in_size)
return o_im
def main():
#PIL images index by (x,y), but numpy goes by order in memory: (y,x)
source_image = np.array(Image.open('equirectangular_test_image.png'),dtype=np.float32)
sz = source_image.shape[:-1]
M = zoom_in_on_pixel_coords((179.5,360), 2, sz)
out_image = apply_SL2C_elt_to_image(M, source_image)
np.clip(out_image,0,255,out_image)
Image.fromarray(out_image.astype(np.uint8)).save('test_image.png')
if __name__ == '__main__':
main()