forked from cwhy/i-raven
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
105 lines (92 loc) · 4.71 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import cv2
import numpy as np
from const import DEFAULT_WIDTH, IMAGE_SIZE
from rendering import render_entity
class Bunch:
"""Dummy class"""
def __init__(self, **kwds):
self.__dict__.update(kwds)
def get_real_bbox(entity_bbox, entity_type, entity_size, entity_angle):
assert entity_type != "none"
center = (int(entity_bbox[1] * IMAGE_SIZE), int(entity_bbox[0] * IMAGE_SIZE))
M = cv2.getRotationMatrix2D(center, entity_angle, 1)
unit = min(entity_bbox[2], entity_bbox[3]) * IMAGE_SIZE / 2
delta = DEFAULT_WIDTH * 1.5 / IMAGE_SIZE
if entity_type == "circle":
radius = unit * entity_size
real_bbox = [center[1] * 1.0 / IMAGE_SIZE, center[0] * 1.0 / IMAGE_SIZE, 2 * radius / IMAGE_SIZE + delta, 2 * radius / IMAGE_SIZE + delta]
else:
if entity_type == "triangle":
dl = int(unit * entity_size)
homo_pts = np.array([[center[0], center[1] - dl, 1],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0), 1],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0), 1]],
np.int32)
if entity_type == "square":
dl = int(unit / 2 * np.sqrt(2) * entity_size)
homo_pts = np.array([[center[0] - dl, center[1] - dl, 1],
[center[0] - dl, center[1] + dl, 1],
[center[0] + dl, center[1] + dl, 1],
[center[0] + dl, center[1] - dl, 1]],
np.int32)
if entity_type == "pentagon":
dl = int(unit * entity_size)
homo_pts = np.array([[center[0], center[1] - dl, 1],
[center[0] - int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10)), 1],
[center[0] - int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5)), 1],
[center[0] + int(dl * np.sin(np.pi / 5)), center[1] + int(dl * np.cos(np.pi / 5)), 1],
[center[0] + int(dl * np.cos(np.pi / 10)), center[1] - int(dl * np.sin(np.pi / 10)), 1]],
np.int32)
if entity_type == "hexagon":
dl = int(unit * entity_size)
homo_pts = np.array([[center[0], center[1] - dl, 1],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0), 1],
[center[0] - int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0), 1],
[center[0], center[1] + dl, 1],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] + int(dl / 2.0), 1],
[center[0] + int(dl / 2.0 * np.sqrt(3)), center[1] - int(dl / 2.0), 1]],
np.int32)
after_pts = np.dot(M, homo_pts.T)
min_x = min(after_pts[1, :]) / IMAGE_SIZE
max_x = max(after_pts[1, :]) / IMAGE_SIZE
min_y = min(after_pts[0, :]) / IMAGE_SIZE
max_y = max(after_pts[0, :]) / IMAGE_SIZE
real_bbox = [(min_x + max_x) / 2, (min_y + max_y) / 2, max_x - min_x + delta, max_y - min_y + delta]
return list(np.round(real_bbox, 4))
def get_mask(entity_bbox, entity_type, entity_size, entity_angle):
dummy_entity = Bunch()
dummy_entity.bbox = entity_bbox
dummy_entity.type = Bunch(get_value=lambda : entity_type)
dummy_entity.size = Bunch(get_value=lambda : entity_size)
dummy_entity.color = Bunch(get_value=lambda : 0)
dummy_entity.angle = Bunch(get_value=lambda : entity_angle)
mask = render_entity(dummy_entity) // 255
return mask
# ref: https://www.kaggle.com/stainsby/fast-tested-rle
# ref: https://www.kaggle.com/paulorzp/run-length-encode-and-decode
def rle_encode(img):
'''
img: numpy array, 1 - mask, 0 - background
Returns run length as string formated
'''
pixels = img.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return "[" + ",".join(str(x) for x in runs) + "]"
def rle_decode(mask_rle, shape):
'''
mask_rle: run-length as string formated (start length)
shape: (height,width) of array to return
Returns numpy array, 1 - mask, 0 - background
'''
s = mask_rle[1:-1].split(",")
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(shape)