forked from cwhy/i-raven
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAttribute.py
361 lines (290 loc) · 12.5 KB
/
Attribute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
import numpy as np
from const import (ANGLE_MAX, ANGLE_MIN, ANGLE_VALUES, COLOR_MAX, COLOR_MIN,
COLOR_VALUES, NUM_MAX, NUM_MIN, NUM_VALUES, SIZE_MAX,
SIZE_MIN, SIZE_VALUES, TYPE_MAX, TYPE_MIN, TYPE_VALUES,
UNI_MAX, UNI_MIN, UNI_VALUES)
class Attribute:
"""Super-class for all attributes. This should not be instantiated.
In the sub-class, each attribute should have a pre-defined value set
and a member to indicate the index in the value set. This design enables
setting a value by modifying the index only. Also, each instance should
come with value index boundaries, set as min_level and max_level. Boundaries
are good when we want to set constraints on the value set.
Before accessing the value, we should sample a value level by calling
the sample function.
"""
def __init__(self, name):
self.name = name
self.level = "Attribute"
# memory to store previous values
self.previous_values = []
def sample(self):
pass
def get_value(self):
pass
def set_value(self):
pass
def __repr__(self):
return self.level + "." + self.name
def __str__(self):
return self.level + "." + self.name
class Number(Attribute):
def __init__(self, min_level=NUM_MIN, max_level=NUM_MAX):
super(Number, self).__init__("Number")
self.value_level = 0
self.values = NUM_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self, min_level=NUM_MIN, max_level=NUM_MAX):
# min_level: min level index
# max_level: max level index
min_level = max(self.min_level, min_level)
max_level = min(self.max_level, max_level)
self.value_level = np.random.choice(list(range(min_level, max_level + 1)))
def sample_new(self, min_level=None, max_level=None, previous_values=None):
"""Sample new values for generating the answer set.
Returns:
new_idx(int): a new value_level
"""
if min_level is None or max_level is None:
values = list(range(self.min_level, self.max_level + 1))
else:
values = list(range(min_level, max_level + 1))
if not previous_values:
available = set(values) - set(self.previous_values) - {self.value_level}
else:
available = set(values) - set(previous_values) - {self.value_level}
new_idx = np.random.choice(list(available))
return new_idx
def get_value_level(self):
return self.value_level
def set_value_level(self, value_level):
self.value_level = value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Type(Attribute):
def __init__(self, min_level=TYPE_MIN, max_level=TYPE_MAX):
super(Type, self).__init__("Type")
self.value_level = 0
self.values = TYPE_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self, min_level=TYPE_MIN, max_level=TYPE_MAX):
min_level = max(self.min_level, min_level)
max_level = min(self.max_level, max_level)
self.value_level = np.random.choice(list(range(min_level, max_level + 1)))
def sample_new(self, min_level=None, max_level=None, previous_values=None):
if min_level is None or max_level is None:
values = list(range(self.min_level, self.max_level + 1))
else:
values = list(range(min_level, max_level + 1))
if not previous_values:
available = set(values) - set(self.previous_values) - {self.value_level}
else:
available = set(values) - set(previous_values) - {self.value_level}
new_idx = np.random.choice(list(available))
return new_idx
def get_value_level(self):
return self.value_level
def set_value_level(self, value_level):
self.value_level = value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Size(Attribute):
def __init__(self, min_level=SIZE_MIN, max_level=SIZE_MAX):
super(Size, self).__init__("Size")
self.value_level = 3
self.values = SIZE_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self, min_level=SIZE_MIN, max_level=SIZE_MAX):
min_level = max(self.min_level, min_level)
max_level = min(self.max_level, max_level)
self.value_level = np.random.choice(list(range(min_level, max_level + 1)))
def sample_new(self, min_level=None, max_level=None, previous_values=None):
if min_level is None or max_level is None:
values = list(range(self.min_level, self.max_level + 1))
else:
values = list(range(min_level, max_level + 1))
if not previous_values:
available = set(values) - set(self.previous_values) - {self.value_level}
else:
available = set(values) - set(previous_values) - {self.value_level}
new_idx = np.random.choice(list(available))
return new_idx
def get_value_level(self):
return self.value_level
def set_value_level(self, value_level):
self.value_level = value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Color(Attribute):
def __init__(self, min_level=COLOR_MIN, max_level=COLOR_MAX):
super(Color, self).__init__("Color")
self.value_level = 0
self.values = COLOR_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self, min_level=COLOR_MIN, max_level=COLOR_MAX):
min_level = max(self.min_level, min_level)
max_level = min(self.max_level, max_level)
self.value_level = np.random.choice(list(range(min_level, max_level + 1)))
def sample_new(self, min_level=None, max_level=None, previous_values=None):
if min_level is None or max_level is None:
values = list(range(self.min_level, self.max_level + 1))
else:
values = list(range(min_level, max_level + 1))
if not previous_values:
available = set(values) - set(self.previous_values) - {self.value_level}
else:
available = set(values) - set(previous_values) - {self.value_level}
new_idx = np.random.choice(list(available))
return new_idx
def get_value_level(self):
return self.value_level
def set_value_level(self, value_level):
if isinstance(value_level, np.int64):
self.value_level = int(value_level)
else:
self.value_level = value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Angle(Attribute):
def __init__(self, min_level=ANGLE_MIN, max_level=ANGLE_MAX):
super(Angle, self).__init__("Angle")
self.value_level = 3
self.values = ANGLE_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self, min_level=ANGLE_MIN, max_level=ANGLE_MAX):
min_level = max(self.min_level, min_level)
max_level = min(self.max_level, max_level)
self.value_level = np.random.choice(list(range(min_level, max_level + 1)))
def sample_new(self, min_level=None, max_level=None, previous_values=None):
if min_level is None or max_level is None:
values = list(range(self.min_level, self.max_level + 1))
else:
values = list(range(min_level, max_level + 1))
if not previous_values:
available = set(values) - set(self.previous_values) - {self.value_level}
else:
available = set(values) - set(previous_values) - {self.value_level}
new_idx = np.random.choice(list(available))
return new_idx
def get_value_level(self):
return self.value_level
def set_value_level(self, value_level):
self.value_level = value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Uniformity(Attribute):
def __init__(self, min_level=UNI_MIN, max_level=UNI_MAX):
super(Uniformity, self).__init__("Uniformity")
self.value_level = 0
self.values = UNI_VALUES
self.min_level = min_level
self.max_level = max_level
def sample(self):
self.value_level = np.random.choice(list(range(self.min_level, self.max_level + 1)))
def sample_new(self):
# Should not resample uniformity
pass
def set_value_level(self, value_level):
self.value_level = value_level
def get_value_level(self):
return self.value_level
def get_value(self, value_level=None):
if value_level is None:
value_level = self.value_level
return self.values[value_level]
class Position(Attribute):
"""Position is a special case. There are the planar position and
the angular position. Planar position allows translation in the plane
while angular Position performs roration around an axis penperdicular to the plane.
"""
def __init__(self, pos_type, pos_list):
"""Instantiate the Position attribute by passing a position type
and a pre-defined position distribution on the plane. This attribute
is strongly coupled with Number and hence value index boundaries are
not needed.
Arguments:
pos_type(str): either "planar" or "angular
pos_list(list of list of numbers): actual distribution on the plane
"""
super(Position, self).__init__("Position")
# planar: [x_c, y_c, max_w, max_h]
# angular: [x_c, y_c, max_w, max_h, x_r, y_r, omega]
assert pos_type in ("planar", "angular")
self.pos_type = pos_type
self.values = pos_list
self.value_idx = None
self.isChanged = False
def sample(self, num):
"""Sample multiple positions at the same time.
Arguments:
num(int): the number of positions to sample
"""
length = len(self.values)
assert num <= length
self.value_idx = np.random.choice(list(range(length)), num, False)
def sample_new(self, num, previous_values=None):
# Here sample new relies on probability
length = len(self.values)
if not previous_values:
constraints = self.previous_values
else:
constraints = previous_values
while True:
finished = True
new_value_idx = np.random.choice(length, num, False)
if set(new_value_idx) == set(self.value_idx):
continue
for previous_value in constraints:
if set(new_value_idx) == set(previous_value):
finished = False
break
if finished:
break
return new_value_idx
def sample_add(self, num):
"""Sample additional number of positions.
Arguments:
num(int): the number of additional positions to sample
Returns:
ret(tuple of position): new positions to add to the layout
"""
ret = []
available = set(range(len(self.values))) - set(self.value_idx)
idxes_2_add = np.random.choice(list(available), num, False)
for index in idxes_2_add:
self.value_idx = np.insert(self.value_idx, 0, index)
ret.append(self.values[index])
return ret
def get_value_idx(self):
return self.value_idx
def set_value_idx(self, value_idx):
# Note that after sampling self.value_idx is a Numpy array
self.value_idx = value_idx
def get_value(self, value_idx=None):
if value_idx is None:
value_idx = self.value_idx
ret = []
for idx in value_idx:
ret.append(self.values[idx])
return ret
def remove(self, bbox):
# Note that after sampling self.value_idx is a Numpy array
idx = self.values.index(bbox)
np_idx = np.where(self.value_idx == idx)[0][0]
self.value_idx = np.delete(self.value_idx, np_idx)