-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths_split.py
230 lines (216 loc) · 8.74 KB
/
s_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import sys
import re
import random
import numpy as np
from parsetree import ParseTree
from binarylr import BinaryLR
tagList = [
'VBG', 'NX', 'NNPS', 'JJS', '#', 'UCP', 'VBZ', 'VBN', 'PRN', "''", 'WHADJP', 'PP', 'LS', 'FRAG', 'NNP', 'JJR',
':', 'TO', 'WHPP', '``', 'ADVP', 'WHNP', 'VBD', ',', 'PDT', 'WHADVP', '$', 'S', 'RRC', 'RBS', 'CONJP', 'POS',
'SYM', 'ADJP', '.', 'NP-TMP', 'EX', 'VP', 'NNS', 'VB', 'NN', 'SBAR', 'WDT', '-LRB-', 'DT', 'MD', 'PRT', 'UH',
'WP', 'WP$', 'SINV', 'WRB', 'X', 'RB', 'PRP', '-RRB-', 'SBARQ', 'SQ', 'PRP$', 'FW', 'CC', 'QP', 'NAC', 'CD',
'JJ', 'VBP', 'ROOT', 'INTJ', 'NP', 'LST', 'RBR', 'IN', 'RP'
]
defaultLearningRate = 0.1
splitProbPredictionThreshold = 0.9
examplePtn = re.compile("^(?:[^,]*,){4}(?:\"(.*?)\"|([^\"]*?)),(?:\".*?\"|[^\"]*?),((?:Non-)?Split)$")
def getExamples(model, dataFileName):
"""
Returns an array of (ParseTree, label) tuples for either training or testing.
"""
with open(dataFileName, "r", encoding="utf8") as fp:
examples = fp.read().split("\n")
examples = examples[1:]
for i in range(len(examples)):
extractedExampleData = examplePtn.match(examples[i]).groups("")
examples[i] = (ParseTree("".join(extractedExampleData[:2]), tagList, model, splitProbPredictionThreshold), 1 if extractedExampleData[2][0] == "S" else 0)
return examples
def vote(models, dataFileName, votingThreshold):
"""
Tests a voting model made up of multiple classifiers.
"""
with open(dataFileName, "r", encoding="utf8") as fp:
examples = fp.read().split("\n")
examples = examples[1:]
truePositives = 0
falsePositives = 0
trueNegatives = 0
falseNegatives = 0
for i in range(len(examples)):
extractedExampleData = examplePtn.match(examples[i]).groups("")
parseTrees = [ParseTree("".join(extractedExampleData[:2]), tagList, model, splitProbPredictionThreshold) for model in models]
goldLabel = 1 if extractedExampleData[2][0] == "S" else 0
if sum([parseTree.predictSplit() for parseTree in parseTrees]) >= votingThreshold:
if goldLabel:
truePositives += 1
else:
falsePositives += 1
else:
if goldLabel:
falseNegatives += 1
else:
trueNegatives += 1
accuracy = (truePositives + trueNegatives) / (truePositives + trueNegatives + falsePositives + falseNegatives)
precision = truePositives / (truePositives + falsePositives)
recall = truePositives / (truePositives + falseNegatives)
f1 = 2/(1/precision + 1/recall)
print("Accuracy: {:11.12}%".format(100 * accuracy))
print("Precision: {:11.12}%".format(100 * precision))
print("Recall: {:11.12}%".format(100 * recall))
print("F1 Score: {:11.12}%".format(100 * f1))
def bootstrap(models, dataFileName, votingThreshold, numSamples, baseline):
"""
Tests a voting model made up of multiple classifiers and compares to a baseline using bootstrap resampling.
"""
with open(dataFileName, "r", encoding="utf8") as fp:
examples = fp.read().split("\n")
examples = examples[1:]
truePositives = 0
falsePositives = 0
trueNegatives = 0
falseNegatives = 0
for i in range(len(examples)):
extractedExampleData = examplePtn.match(examples[i]).groups("")
parseTrees = [ParseTree("".join(extractedExampleData[:2]), tagList, model, splitProbPredictionThreshold) for model in models]
goldLabel = 1 if extractedExampleData[2][0] == "S" else 0
if sum([parseTree.predictSplit() for parseTree in parseTrees]) >= votingThreshold:
if goldLabel:
examples[i] = [1, 0, 0, 0] # true positive
else:
examples[i] = [0, 1, 0, 0] # false positive
else:
if goldLabel:
examples[i] = [0, 0, 0, 1] # false negative
else:
examples[i] = [0, 0, 1, 0] # true negative
# examples[i] = [truePositives, falsePositives, trueNegatives, falseNegatives]
sampleResults = [None] * numSamples
for i in range(numSamples):
[truePositives, falsePositives, trueNegatives, falseNegatives] = np.sum(random.choices(examples, k=len(examples)), axis=0)
accuracy = (truePositives + trueNegatives) / (truePositives + trueNegatives + falsePositives + falseNegatives)
precision = truePositives / (truePositives + falsePositives)
recall = truePositives / (truePositives + falseNegatives)
f1 = 2/(1/precision + 1/recall)
sampleResults[i] = [accuracy > baseline, precision > baseline, recall > baseline, f1 > baseline]
[pAccuracy, pPrecision, pRecall, pF1] = np.subtract(1, np.divide(np.sum(sampleResults, axis=0), numSamples))
print("P-values that statistics fall at or below baseline:")
print("Accuracy: {:11.12}".format(pAccuracy))
print("Precision: {:11.12}".format(pPrecision))
print("Recall: {:11.12}".format(pRecall))
print("F1 Score: {:11.12}".format(pF1))
def train(model, trainingFileName, numEpochs, learningRate=None):
"""
Trains the provided classifier for the given number of epochs.
"""
examples = getExamples(model, trainingFileName)
if learningRate is not None:
examples[0][0].classifier.learningRate = learningRate
for i in range(numEpochs):
print(i)
random.shuffle(examples)
for (parseTree, goldLabel) in examples:
parseTree.predictSplitProb()
parseTree.learn(goldLabel)
def test(model, testingFileName):
"""
Tests the model against the indicated testing-data file.
"""
examples = getExamples(model, testingFileName)
truePositives = 0
falsePositives = 0
trueNegatives = 0
falseNegatives = 0
for [parseTree, goldLabel] in examples:
if parseTree.predictSplit():
if goldLabel:
truePositives += 1
else:
falsePositives += 1
else:
if goldLabel:
falseNegatives += 1
else:
trueNegatives += 1
accuracy = (truePositives + trueNegatives) / (truePositives + trueNegatives + falsePositives + falseNegatives)
precision = truePositives / (truePositives + falsePositives)
recall = truePositives / (truePositives + falseNegatives)
f1 = 2/(1/precision + 1/recall)
print("Accuracy: {:11.12}%".format(100 * accuracy))
print("Precision: {:11.12}%".format(100 * precision))
print("Recall: {:11.12}%".format(100 * recall))
print("F1 Score: {:11.12}%".format(100 * f1))
def loadAndTrain(trainingFileName, numEpochs, modelOutputFileName=None, learningRate=None, modelInputFileName=None):
"""
Loads a classifier from the indicated model file and trains it for the given number of epochs.
Creates a new model if no model file is provided.
Saves the model to disk if an output file is indicated.
Returns the model.
"""
numEpochs = int(numEpochs)
if learningRate is None:
learningRate = defaultLearningRate;
else:
learningRate = float(learningRate)
if modelInputFileName is not None:
model = BinaryLR.loadFromFile(modelInputFileName)
else:
model = BinaryLR(2 * len(tagList) + 6, learningRate)
train(model, trainingFileName, numEpochs, learningRate)
if modelOutputFileName is not None:
model.saveToFile(modelOutputFileName)
return model
def loadAndTest(testingFileName, modelInputFileName):
"""
Loads a classifier from the indicated model file and tests it against the data from the indicated testing file.
"""
test(BinaryLR.loadFromFile(modelInputFileName), testingFileName)
def loadAndVote(testingFileName, votingThreshold, *modelInputFileNames):
"""
Loads a classifier from the indicated model file and tests it against the data from the indicated testing file.
"""
votingThreshold = int(votingThreshold)
vote([BinaryLR.loadFromFile(modelInputFileName) for modelInputFileName in modelInputFileNames], testingFileName, votingThreshold)
def loadAndBootstrap(testingFileName, numSamples, baseline, votingThreshold, *modelInputFileNames):
"""
Loads a classifier from the indicated model file and tests it against the data from the indicated testing file.
"""
numSamples = int(numSamples)
baseline = float(baseline)
votingThreshold = int(votingThreshold)
bootstrap([BinaryLR.loadFromFile(modelInputFileName) for modelInputFileName in modelInputFileNames], testingFileName, votingThreshold, numSamples, baseline)
def showUsage():
"""
Show usage statement and exit.
"""
print("Usage:")
print("\tpython s_split.py train trainingFileName numEpochs modelOutputFileName [learningRate [modelInputFileName]]")
print("\tpython s_split.py test testingFileName modelInputFileName")
print("\tpython s_split.py vote testingFileName votingThreshold modelInputFileName_0 [...]")
print("\tpython s_split.py bootstrap testingFileName numSamples baseline votingThreshold modelInputFileName_0 [...]")
sys.exit(1)
if __name__ == "__main__":
if len(sys.argv) >= 2:
if sys.argv[1] == "train":
if len(sys.argv) >= 5 and len(sys.argv) <= 7:
loadAndTrain(*sys.argv[2:])
else:
showUsage()
elif sys.argv[1] == "test":
if len(sys.argv) == 4:
loadAndTest(*sys.argv[2:])
else:
showUsage()
elif sys.argv[1] == "vote":
if len(sys.argv) >= 5:
loadAndVote(*sys.argv[2:])
else:
showUsage()
elif sys.argv[1] == "bootstrap":
if len(sys.argv) >= 7:
loadAndBootstrap(*sys.argv[2:])
else:
showUsage()
else:
showUsage()
else:
showUsage()